强台风“达维”经过海南岛过程结构演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
登陆是热带气旋生命史的一个重要转折点。热带气旋登陆过程受到浅海区大陆架和海岸地形等的影响,结构发生突变,从而使与结构相关的强度、运动和风雨分布发生相应变化。目前对台风登陆过程结构演变规律认识不足是台风登陆以后风雨预报失误的一个关键原因。
     热带气旋是造成海南岛气象灾害最多且最严重的热带天气系统,是海南省防御和抗击自然灾害中最主要的防御对象和防御难点,热带气旋经过海南岛过程的研究对海南省防灾减灾具有重要的现实意义。另外,热带气旋经过岛屿及深入内陆的过程结构变化差异也是值得关注的科学问题。
     本文首先利用中国气象局整编的《台风年鉴》和《热带气旋年鉴》,分析热带气旋经过海南岛过程中其路径、强度、移速以及对流云系所发生的变化,揭示了一些普遍的演变特征,如热带气旋经过海南岛的平均时间为10小时,热带气旋造成海南岛大风呈东部、南部沿海大而西部内陆小的特征,两种典型的登陆热带气旋降水分布型是:东西多南北少型和南强北弱型。西行路径经过海南岛的热带气旋强对流云系由环流中心向西南偏移,北行路径经过海南岛的热带气旋强对流云系由环流中心南侧向北侧偏移。
     选取强台风“达维”经过海南岛过程作为典型个例,对其大尺度物理量场的演变进行诊断分析,进而利用中尺度数值模式模拟该热带气旋的过岛过程,分析该过程中其内核结构演变特征。设计地形敏感性试验,分析热带气旋经过海南岛过程中各物理量场对海南岛山脉地形的响应,得出以下主要研究结果:
     (1)结构对称的强台风经过海南岛时表现为对称结构先破坏到再复原的过程。其中,登陆过程中,边界层靠近陆地一侧风速减小,靠近海洋一侧风速增大,形成风场不对称结构,眼区结构由于低层摩擦加大、入流增强而破坏,环流中心附近的上升气流发生倾斜,次级环流结构破坏;登陆后由陆地到再入海过程中,破坏的不对称结构逐渐复原,低层风场趋于对称,倾斜的上升气流趋于垂直,眼区结构在入海后重新建立。
     (2)与登陆大陆热带气旋物理量场演变的最大差别是,强台风经过海南岛的过程中,水汽不被切断,反而由于陆地摩擦加大、辐合增强而导致水汽通量辐合增加,水汽垂直输送加强,中低层对流活动在登陆过程经历短暂的衰减,登陆后到再入海过程重新加强。在岛上移动过程中,眼壁上的对流单体易在海南岛南部海岸及山区加强为中尺度雨团。离岛入海后,外螺旋雨带上的对流单体易加强合并为中尺度雨带。
     (3)强台风登陆海南岛过程以及登陆初期,其内核区的切向风与径向风、凝结加热率同时减小;在岛上移动的后期到再入海过程,其切向风与径向风增大,中低层凝结加热率加大。
     (4)西行强台风经过海南岛的过程中,形成南强北弱型降水分布的可能机制是:低层中尺度扰动气旋和高层中尺度辐散场在强降水区形成,垂直风切变下风方向左侧的有利于对流发展的区域与降水区对应,以及地形的辐合抬升的共同影响。
Land-falling is an important turning point in the life history of a tropical cyclone. Landfall process which subjected to shallow continental shelf and coastal topography may change the TC structure, thus the structure-related intensity, track and precipitation changes. It is a key factor for the wind and precipitation forecast failure after TC landfall that the evolving structure change during the landfall process is lack of understanding.
     Tropical cyclone is the most severe tropical weather systems caused meteorological disasters in Hainan Island, and it is the most important defense objects and defensive difficulties in Hainan Province. A study on tropical cyclones over the Hainan Island process (TCOHIP) has an important practical significance in disaster prevention and mitigation. In addition, it is also concerned in scientific issue that the structural feature of tropical cyclones when it through a small island differs from land-falling inland.
     In this paper, the change of track, intensity and moving speed, as well as the convective rain-bands are analyzed when TCOHIP occurs, using the ((Typhoon Yearbook)) and ((Tropical Cyclones Yearbook)) data which are supplied by the China Meteorological Administration (CMA). It has demonstrated that the TCOHIP has some distinctive characteristics, such as the average time is 10 hours in the island activities, Hainan Island wind which caused by tropical cyclones shows the eastern and southern coast stronger, while the western inland weaker, resulting in two kinds of typical rainfall distribution patterns, that is the west and the east strong while the south and the north weak type and the north weak and south strong type. TO a westwards TC, the deep convective rain-bands moves from the center to the southwest quadran of the TC circulation through TCOHIP. To a northwards TC, it moves from the centre to the northern quadrant.
     Take strong typhoon Damrey (0518) as an example, as it has a typical TCOHIP stage concerned in this paper, its physical field changes in large-scale are diagnosed, and the meso-scale numerical model is applied to simulate the tropical cyclone landfall process, furthermore, terrain sensitivity experiments are designed to analyze the TCOHIP. The results indicate:
     (1) The symmetric structure shows damage to recovery when a symmetric strong typhoon through a TCOHIP. To the land-falling process, the wind speed near the land side of the boundary layer decreases, while near the ocean side increases, thus results in asymmetric wind field, the eye area and inner eye-wall destruct for the inflow wind. The upward current tilts to the land side, the secondary circulation destroyed. To the TC moving to the sea process, the asymmetric structure recovering, wind field tends to symmetry, the tilting upward current toward vertical, the eye-wall re-established in the sea.
     (2) Contrasting to land-falling mainland China, the biggest difference is the water vapor will not be cut off when TCOHIP occurs, thus may cause water vapor flux convergence increases due to the impact of land surface friction, results in the vertical water vapor transport enhances, the convective activities in lower troposphere exhibits a short-term decay process during land-falling, but it will be re-strengthened after landing, as well as into the sea. When the strong typhoon moves on the island, eye wall convection intensifies into meso-scale rain cluster easily on Hainan Island's southern coast and mountain region, when it leaving Islands and into the sea, the spiral rain belt convective cells easily develop into meso-scale rain bands.
     (3) When a strong typhoon landfalls Hainan Island, the tangential wind, the radial wind and condensation heating rate decrease in the inner-core zone. When it leaves Hainan Island and moves into the sea, the tangential wind and the radial wind increase, and the condensation heating rate of the lower-middle troposphere increases as well.
     (4) A possible mechanism of the north weak and south strong precipitation type may include low-level cyclonic disturbances and high-level meso-scale divergence formatted in the rain area, the down shear left region which favorites to the development of convection has good consistency with the precipitation areas, and the uplift and convergence which caused by topography in central and southern Hainan Island contribute to convection intensitification.
引文
[1]MENG Zhi-yong(孟智勇),CHEN Lian-shou(陈联寿),XU xiang-de(徐祥德).Recent progress on tropical cyclone research in China[J].Adv Atmos Sci,2002,19:103-110.
    [2]JOHN KAPLAN,MARK DEMARIA.On the Decay of Tropical Cyclone Winds after Landfall in the New England Area[J].Journal of Applied Meteorology,2001,40:280- 286.
    [3]CHARLES E,KONRAD II.Diurnal Variations in the Landfall Times of Tropical Cyclones over the Eastern United States[J].
    [4]Monthly Weather Review,2001,129:2627-2631.Cyclones over the Eastern United States[J].
    [5]李英,陈联寿,徐祥德.水汽输送对登陆TC维持机制的数值试验.第十三届全国TC科学讨论
    [6]漆梁波,余晖.利用风廓线仪及PASS系统对TC边界层风温结构的初步分析.气象学报,2002,60(增刊):127-135
    [7]陈联寿,徐祥德,罗哲贤,等.热带气旋动力学引论[M].北京:气象出版社,2002:317.
    [8]姚才,张诚忠,黄明策.华南登陆台风“榴莲”的能量分析[J].气象,2001,30(6):12-17.
    [9]陈联寿等.登陆TC研究的进展[J].气象学报,2004,62:541-549.
    [10]李英.登陆热带气旋维持机制的研究[D].2004
    [11]李英,陈联寿,徐祥德.登陆热带气旋维持的次天气尺度环流特征[J].气象学报,2004,62(3):257-267.
    [12]何洁琳.冬季登陆我国热带气旋的性质及其成因研究[D].2006
    [13]罗哲贤,陈联寿.台湾岛地形对热带气旋路径的作用[J].大气科学,1995,19:701-706
    [14]董林,端义宏.热带气旋经过台湾岛强度变化特征[J].气象,2008,34:10-14.
    [15]Wang,P.-Y.,Numerical simulation of mesoscale structure of typhoon and orographric effeets using MM5.Acta Meteorological Snica,1999:13:474-493
    [16]Marks F.The USWRP landfalling tropical cyclone research program.WMO/TD,1998,875:1.1.1-1.1.7
    [17]陈联寿,丁一汇.西太平洋台风概论.北京:科学出版社,1979,1-491
    [18]刘学刚.登陆台风暖心结构与强度的统计关系[D].2007
    [19]李忆平.南海台风暖心结构形成的个例研究及台风登陆前后暖心结构变化的初步研究[D].2007
    [20]马晓星.理想热带气旋登陆数值模拟研究[D].2003
    [21]Holland G J.The Maximum potential intensity of tropical cyclone.J Atmos Sci,1997,54,2519-2541.
    [22]Emanuel K A.The maximum intensity of hurricanes,J Atmos Sci,1998,54:1143-1155
    [23]Dimego D J and Bossrt L F.The transformation of tropical storm Agnes into extratrpical cyclone.Part Ⅰ:TheObserved Fields and vertical motion computations;Part Ⅱ:Moisture Vorticity and Kinetic energy budgets.Monthly Weather Review,1982,110(5):385-441
    [24]丁治英,陈久康.台风暴雨与环境水汽场的数值试验[J].南京气象学院学报,1995,8(1):33-38.
    [25]丁治英,陈久康.不同雨强台风的诊断对比与数值试验研究[J].南京气象学院学报,1995,8(2):234-241.
    [26]Roger Edwards.Storm Prediction Center Forecast Support for landfalling Tropical Cyclones.Ditto,1999,1:53-56.
    [27]徐健.台风登陆前后湿度场变化的初步研究[D].2007
    [28]李江南等.QUIKSCAT资料分析“黄蜂”登陆前后近地层风场的分布特征[J].热带气象学报,2003,VOL.19(S1):88-960.
    [29]黄新晴.台风形成及登陆过程中三维结构演变特征的初步分析[D].2007.
    [30]李江南等.南海台风Vongfong(2002)的数值模拟试验[J].中山大学学报,2004,42(3).
    [31]MARK D.POWELL AND SAMUEL H.HOUSTON.Surface Wind Fields of 1995 Hurricanes Erin,Opal,Luis,Marilyn,and Roxanne at Landfall[J].Monthly Weather Review,vol.126,1259-1273.
    [32]Mrtin L.M.Wong,Johnny C.L,Chan.TroPical Cyclone Intensity in Vertical Wind Shear[J].Atmos.Sci.,2004,61:1859-1876.
    [33]DeMaria,M.The effete of vertical shear on tropical cyclone intensity change[J].Atmos.Sci.,1996,53:2076-2087.
    [34]Corbosiero,K.L.,and Molinari J.The effects of vertical wind shear on the distribution of convection in tropical cyclones[J].Mon.Wea.Rev.,2002,130:2110-2123.
    [35]余志豪.台风螺旋雨带涡旋Rossby波[J].气象学报,2002,60:502-507.
    [36]徐明.垂直风切变对登陆台风的影响[D].2008
    [37]JTWC.AnnualTroPiealCyeloneRePort[R],1998.Guam,U.S.A.
    [38]JTWC.AnnualTroPicalCycloneRePortlR],2002,Guam,U.S.A.
    [39]朱佩君,郑永光,王洪庆等.台风螺旋雨带的数值模拟研究[J].科学通报,2005,50:485-494.
    [40]王勇,丁治英.台风“海棠”的螺旋雨带结构及特征[J].南京气象学院学报,2008,352-361.
    [41]陈子通.登陆过程中热带风暴“黄蜂”螺旋云带的分析[J].热带气象学报,2003,19:59-64.
    [42]Ching S E,Johnny C L C and Edwin S T L.Tropical cyclone landfall along the south China coast.Preprints 24~(th) Confenrence on Hurricanes and Tropical Meteorology.Fort Lauderale,FL.May.29—June.2,2000,274-275.
    [43]冀春晓,薛根元,赵放等.Rananim登陆期间地形对其降水及结构影响的数值试验[J].
    [44]陈子通,闫敬华,丁伟钰等.尤特台风登陆过程中眼区结构变化的分析研究[J].大气科学,2004,28:471-478.
    [45]徐亚梅.8807号登陆台风的数值研究:内核结构及能量水汽收支[J].气象学报,2007,67: 877-887.
    [46]薛根元,赵放,冀春晓等.多普勒天气雷达探测揭示的台风云娜(Rananmi)登陆前后特征演变研究[J].第四纪研究,2006,126:370-383.
    [47]KEITH G.BLACKWELL.The Evolution of Hurricane Danny(1997) at Landfall:Doppler-Observed Eyewall Replacement,Vortex Contraction/Intensification,and Low-Level Wind Maxima[J].Monthly Weather Review,2000,128:4002-4016.
    [48]Willoughby,H.E.Temporal changes of the primary circulation in tropical cyclones.J.Atmos.Sci.,1990,47:242-264.
    [49]闫敬华,徐建平,丁伟钰等.地形对登陆热带气旋“黄蜂”(2002)强度影响的模拟研究[J].大气科学,2005,29:205-212.
    [50]袁金南,谷德军,梁建茵.地形和边界层摩擦对登陆热带气旋路径和强度影响的研究[J].大气科学,2005,29:429-437.
    [51]袁金南,黄燕燕,刘春霞等.陆地摩擦对登陆热带气旋路径和强度影响的模拟研究[J].热带气象学报,2007.23:531-537.
    [52]HAMISH A.RAMSAY and LANCE M.LESLIE.The Effects of Complex Terrain on Severe Landfalling Tropical Cyclone Larry(2006) over Northeast Australia[J].Monthly Weather Review,2008,136:4337-4354.
    [53]LUIS M.FARFAN and JOSEPH A.ZEHNDER.An Analysis of the Landfall of Hurricane Nora (1997)[J].MonthIy Weather Review,2001,129:2073-2088
    [54]GUO-JI JIAN and CHUN-CHIEH WU.A Numerical Study of the Track Deflection of Supertyphoon Haitang(2005) Prior to Its Landfall in Taiwan[J].Monthly Weather Review,2008,136:598-615.
    [55]JIANJUN LI,NOEL E.DAVIDSON,G.DALE HESS,AND GRAHAM MILLSA.High-Resolution Prediction Study of Two Typhoons at Landfall[J].Monthly Weather Review,1997,125:2856-2878.
    [56]MING-JEN YANG,DA-LIN ZHANG and HSIAO-LING HUANG.A Modeling Study of Typhoon Nari (2001) at Landfall.Part Ⅰ:Topographic Effects[J].JOURNAL OF THE ATMOSPHERIC SCIENCES,2008,65:3095-3114.
    [57]朱锁凤,黄玉贤,张建新.海南台风.北京:气象出版社,1994.
    [58]孟智勇,徐祥德,陈联寿.台湾岛地形诱生次级环流系统对热带气旋异常运动的影响机制[J].大气科学,1998,28:156-168.
    [59]Lin.Y Han,D W.Hamilton.and C-Y.huang.Orographic influence on drafting cyclone [J].Atmos.Sci.,1999.56:534-562.
    [60]黄清勇、许依萍,台湾地形对理想型台风环流变化之影响,大气科学(台湾),1998,26:281-321.
    [61]简国基.台湾地形对侵台台风之影响—TCM-90个案之模拟和分析[D],2000:310.
    [62]龚奥.小型岛屿地形对登陆热带气旋影响的数值模拟[D],2003
    [63]段丽,陈联寿.热带风暴“菲特”(0114)特大暴雨的诊断研究[J].大气科学,2005,29:343-352.
    [1]任福民,王小玲,陈联寿等.登陆中国大陆、海南和台湾的热带气旋及其相互作用[J].气象学报,2008,66(2):224-235.
    [2]陈联寿,丁一汇.西太平洋台风概论.北京:科学出版社,1979,410-491
    [3]李英,陈联寿,张胜军.登陆我国TC的统计特征[J].热带气象学报2004,20(1),14-23.
    [4]董林,端义宏.热带气旋经过台湾岛强度变化特征[J].气象,2008,34:10-14.
    [5]李曾中.对海南岛登陆台风的研究.1978年台风会议文集[R].上海:上海科技出版,1981: 110-116.
    [6]董克勤,李曾中.海南岛地形对过岛台风影响的初步研究.大气科学,1980,4(3):288-292.
    [7]朱锁凤,黄玉贤,张建新.海南台风.北京:气象出版社,1994.
    [8]中国气象局.台风年鉴(1949-1990).北京:气象出版社,1950-1991.
    [9]中国气象局.TC年鉴(1991-2006).北京:气象出版社,1992-2004.
    [10]魏凤英.现代气候诊断与预测技术.北京:气象出版社2007:63-66
    [11]施能.气象科研与预报中的多元分析方法[M].北京:气象出版社,2002:120-122.
    [12]李英.登陆热带气旋维持机制的研究[D].2004
    [13]Frank W M.Structure and Energy-dynamics of Tropical Cyclone Ⅰ:Storm Structure.Mon Wea Rev,1977,105(9):1119-1135
    [14]Gray W M.Recent advance in tropical cyclone research from rawnsonde composite anlysis,WMO Programme on Research in Tropical Meteorology.Department of Atmospheric Science,Colorado State University.1979,Fort Collins,Colorado 80T523.
    [15]徐祥德,许健民,王继志等.大气遥感再分析场构造技术与原理.北京:气象出版社,2003.
    [1]陈联寿,丁一汇.西太平洋台风概论[M].北京:科学出版社,1979,410-491
    [2]雷小途,陈联寿.大尺度环境场对热带气旋影响的动力分析[J].气象学报,2001,59:429-439.
    [3]李忆平.南海台风暖心结构形成的个例研究及台风登陆前后暖心结构变化的初步研究[D].2007
    [4]徐健.台风登陆前后湿度场变化的初步研究[D].2007
    [5]徐明.垂直风切变对登陆台风的影响[D].2008
    [6]黄新晴.台风形成及登陆过程中三维结构演变特征的初步分析[D].2007.
    [7]毛燕军,潘小帆.9219号台风登陆前后动力结构变化和动能平衡[J].海洋预报,1994,11:73-80.
    [8]何凤翩,陈飞飞,张建海.台风“麦莎”(0509)登陆北上变性加强的诊断分析[J].科技导报,2007,227:66-71.
    [9]梁建茵,陈子通,万齐林等.热带气旋“黄蜂”登陆过程诊断分析.热带气象学报,2003,19(增刊):45-55.
    [10]李英.登陆热带气旋维持机制的研究[D].2004
    [11]丁一汇,刘月贞.台风中动能收支的研究—辐散风动能和无辐散风动能的转换[J].中国科学,1985(11):1045-1054.
    [12]于玉斌 我国近海热带气旋强度突变的机理研究[D].2007.
    [13]于玉斌,姚秀萍.北上台风暴雨过程涡散场的能量收支和转换特征[J].气象学报,1999,57(4):439-449.
    [14]刘春霞,容广埙.近海突然加强台风能量的诊断分析[J].热带气象学报,1996,12(2):174-180.
    [15]Fuelberg H E,Browning P A.Role of divergent and rotational winds in the kinetic energy balance during intense convection activity[J].Mon Wea Rev.,1983,111:2176-2193.
    [16]赵大军.0608超强台风“桑美”在我国近海强度突变的诊断分析和数值模拟[D].2008.
    [17]寿绍文,励申申,王信.登陆台风动能平衡和转换的诊断[J].南京气象学院学报,1994,17(1):27-31.
    [18]姚才,张诚忠,黄明策.华南登陆台风“榴莲”的能量分析[J].气象,2004,30(6):12-17.
    [19]姚才.0103号台风“榴莲”强度变化特征及暴雨成因的分析[J].热带气象学报,2003,19(增刊):180-188.
    [20]Wu C C,Cheng H J.An observational study of environmental influences on the intensity changes of Typhoons Flo(1990) and Gene(1990).Mon Wea Rev,1999,127:3003-3031
    [21]Frank W M,Ritchie E A.Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes.Mon Wea Rev,2001,129(9):2249-2269.
    [22]Liu Y B,D-L Zhang and M K Yau,A multiscale numerical study of Hurricane Andrew(1992).Part Ⅱ:Kinematics and inner-core structure,Mon.Wea.Rev.,1999,127,2597-2616.
    [23]Braun S A.A cloud-resolving simulation of hurricane Bob(1991):storm structure and eyewall buoyancy.Mon Wea Rev,2002,130:1573-1592
    [24]陈光华,裘国庆.对南海热带气旋近海加强机理个例模拟研究.气象学报,2005,63(3):359-364
    [25]Hanley D E,Molinari J,Keyser D.A composite study of the interactions between tropical cyclonesand upper-tropospheric troughs.Mon Wea Rev,2001,129:2570-2584.
    [26]Endlich R M.An iterative method for the kinematic properties of wind fields[J].J hop1Met.,1967,6:P837-844.
    [27]李江南.南海热带气旋登陆过程的诊断分析和数值模拟研究[D].2004
    [28]马晓星.理想热带气旋登陆数值模拟研究[D].2003
    [29]徐明.垂直风切变对登陆台风的影响[D].2008
    [30]JTWC.AnnualTroPiealCyeloneRePort[R],1998.Guam,U.S.A.
    [31]JTWC.AnnualTroPicalCycloneRePortl[R],2002,Guam,U.S.A.
    [32]范可,琚建华,寿绍文.位涡守恒原理在中尺度低涡降水中的应用研究[J].云南大学学报(自然科学版),2001,23(5):374-378
    [33]赵大军,朱伟军,于玉斌等.2006年超强台风“桑美”强度突变的动能特征分析[J].热带气象学报,2009,25:141-146
    [1]陈联寿,丁一汇.西太平洋台风概论.北京:科学出版社,1979,1-491
    [2]于玉斌 我国近海热带气旋强度突变的机理研究[D].2007.
    [3]林元弼.环境场对近海台风强度突变影响的数值试验.859-06-07 课题组编,台风科学业务试验和天气动力学理论研究(第三分册).北京:气象出版社,1996.31-38
    [4]江敦春,党人庆,朱志宏[J].台风暴雨中尺度系统与结构的数值研究
    [5]王继志,杨元琴.8807号台风次天气尺度结构的分析[J].海洋学报,1993,15(1):53-61.
    [6]胡坚.华东地区台风暴雨的诊断研究.大气科学[J].1991,15(3):111-117.
    [7]万齐林.热带气旋外围环流中次天气尺度系统与天气尺度系统相互作用的诊断分析[J].热带气象,1991,7(4):372-377.
    [8]何会中,程明虎,朱富康等.热带气旋登陆前后降水的三维结构变化[J].2004,538-552.
    [9]李英.登陆热带气旋维持机制的研究[D].2004.
    [1]陈联寿,孟智勇.我国热带气旋研究十年进展.大气科学,2001,25(3):420-432.
    [2]Liu Y,Zhang D L,Yau M K.A multiscale numerical study of Hurricane Andrew(1992).Part Ⅰ:explicit simulation and verification.Mon Wea Rev,1997,125(11):3073-3093.
    [3]Corbosiero K L,Molinari J,Aiyyer A R,Black M L.The structure and evolution of Hurricane Elena(1985).Part Ⅱ:convective asymmetries and evidence for vortex Rossby waves.Mon Wea Rev,2006,134:3073-3091.
    [4]Willoughby H E,Jin H-Li,Lord S J,Piotrowicz J M.Hurricane structure and evolution as simulatedby an axisymmetric,nonhydrostatic numerical model.J Atmos Sci,1984,41(7):1169-1186
    [5]Willoughby H E,Clos J A,Shoreibah M G.Concentric eyewalls,secondary wind maxima, and the evolution of the hurricane vortex. J Atmos Sci, 1982, 39: 395-411.
    
    [6] Chen Y, Yau M K. Asymmetric structures in a simulated landfalling hurricane. J Atmos Sci, 2003, 60(18):2294-2312.
    
    [7] Frank W M, Ritchie E A. Effects of environmental flow upon tropical cyclone structure.Mon Wea Rev, 1999, 127: 2044-2061
    
    [8] Frank W M, Ritchie E A. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon Wea Rev, 2001, 129 (9) : 2249-2269.
    
    [9] Reasor P D, Montgomery M T, Marks F D, Gamache J F. Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon Wea Rev, 2000, 128 (6) :1653-1680
    
    [10] Reasor P D, Montgomery M T, Grasso L D. A New Look at the Problem of Tropical Cyclones in Vertical Shear Flow: Vortex Resiliency. J Atmos Sci, 2004, 61 (1): 3-22.
    
    [11] Corbosiero K L, Molinari J, Black ML. The structure and evolution of Hurricane Elena (1985). Part I:symmetric intensification. Mon Wea Rev, 2005, 133(10): 2905-2921
    
    [12] Corbosiero K L, Molinari J, Aiyyer A R, Black M L. The structure and evolution of Hurricane Elena (1985). Part II: convective asymmetries and evidence for vortex Rossby waves. Mon Wea Rev, 2006, 134: 3073-3091
    
    [13] Braun S A. A cloud-resolving simulation of hurricane Bob(1991): storm structure and eyewall buoyancy. Mon Wea Rev, 2002, 130: 1573-1592
    
    [14] Braun S A, Montgomery M T, Pu Z. High-resolution simulation of Hurricane Bonnie (1998).Part I:the organization of eyewall vertical motion. J Atmos Sci, 2006, 63: 19-42
    
    [15] Braun S A, WuL. High-resolution simulation of Hurricane Bonnie (1998). Part II: shear and the organization of eyewall vertical motion.Mon Wea Rev,2007,135:1179-1194.
    [16]Zhu T,Zhang D L,Weng F.Numerical simulation of Hurricane Bonnie(1998).Part Ⅰ:eyewall evolution and intensity changes.Mon Wea Rev,2004,132:225-241.
    [17]Wu L,Braun S A,Halverson J,Heymsfield G.A numerical study of hurricane Erin(2001).Part Ⅰ:Model verification and storm evolution.J Atmos Sci,2006,63(1):65-86.
    [18]薛根元,赵放,冀春晓等.多普勒天气雷达探测揭示的台风云娜(Rananmi)登陆前后特征演变研究[J].第四纪研究,2006.126:370-383.
    [19]KEITH G.BLACKWELL.The Evolution of Hurricane Danny(1997) at Landfall:Doppler-Observed Eyewall Replacement,Vortex Contraction/Intensification,and Low-Level Wind Maxima[J].Monthly Weather Review,2000,128:4002-4016.
    [20]徐亚梅.8807号登陆台风的数值研究:内核结构及能量水汽收支[J].气象学报,2007,67:877-887.
    [21]Chan S-W.The orography effects induced by an island moutain range on ProPagating tropical cyclones[J].Mon,Wea,Rev.,1982,110:1255-1270.
    [22]罗哲贤,陈联寿.台湾岛地形对热带气旋移动路径的影响[J].大气科学(台湾),1998,26,281-321.
    [23]Yeh,T.-C.,and R.L.Elsberry,Interaetion of typhoons with the Taiwan orograPhy.PartⅡ:Continuous and disContinuous tracks across the island[J].Mon,Wea,Rev.,1993,121:3213-3233.
    [24]孟智勇,徐祥德,陈联寿.台湾岛地形诱生次级环流系统对热带气旋异常运动的影响机制[J].大气科学,1998,28:156-168.
    [25]Lin.Y Han,D W.Hamilton.and C-Y.huang.Orographic influence on drafting cyclone [J].Atmos.Sci.,1999.56:534-562.
    [26]黄清勇、许依萍,台湾地形对理想型台风环流变化之影响,大气科学(台湾),1998,26:281-321.
    [27]段丽,陈联寿.热带风暴“菲特”(0114)特大暴雨的诊断研究[J].大气科学,2005,29: 343-352.
    [28]Michalakes J,Dudhia J,Gill D,Klemp J,Skamarock W C.Design of a next-generation regional weather research and forecast model.Towards Teracomputing,World Scientific,River Edge,New Jersey,1999,117-124.
    [29]邓莲堂,王建捷.新一代中尺度天气预报模式——WRF模式简介.天气与气候,2003
    [30]Skamarock W C,Klemp J B,Dudhia J,Gill D O,Barker DM,Wang W,Powers J G.A Description of the Advanced Research WRF Version 2.NEAR Tech.Note NCAR/TH-486+STR,2005.
    [31]Laprise R.The Euler equations of motion with hydrostatic pressure as an independent variable.Mon Wea Rev,1992,120:197-207.
    [32]Wicker L J,Skamarock W C.A time-splitting scheme for the elastic equations incorporating second-order Runge-Kutta time differencing.Mon Wea Rev,1998,126(1):1992-1999.
    [33]Liu Y B,D-L Zhang and M K Yau,A multiscale numerical study of Hurricane Andrew(1992).Part Ⅱ:Kinematics and inner-core structure,Mon.Wea.Rev.,1999,127,2597-2616.
    [34]Braun S A.A cloud-resolving simulation of hurricane Bob(1991):storm structure and eyewall buoyancy.Mon Wea Rev,2002,130:1573-1592
    [35]陈光华,裘国庆.对南海热带气旋近海加强机理个例模拟研究.气象学报,2005,63(3):359-364
    [36]李勋.南海迅速加强和缓慢加强热带气旋的对比分析[D].2009
    [37]麻素红.东太平洋飓风快速发展研究[D].2005
    [1]Anthes R.A.成熟飓风的能量和动力学.王志烈,丁一汇译.北京:科学出版社,1980,13-30.
    [2]于玉斌 我国近海热带气旋强度突变的机理研究[D].2007.
    [3]麻素红.东太平洋飓风快速发展研究[D].2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700