BK_(Ca)通道的功能活动可调控细胞蛋白酪氨酸磷酸化水平
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大电导钙激活钾通道(BK_(Ca)通道)作为一种由细胞去极化和细胞内钙离子浓度升高而激活的钾通道,广泛分布于神经细胞、肌细胞、腺细胞、淋巴细胞、成骨细胞等多种细胞类型。它不仅在调节动作电位的复极和发放频率、细胞膜兴奋性、平滑肌细胞收缩性、神经递质释放、学习记忆过程等中起重要作用,而且还参与了免疫调节和细胞凋亡过程,但目前对于BK_(Ca)通道下游的信号转导通路仍不了解。
     蛋白酪氨酸磷酸化是细胞重要的信号转导过程,它在细胞增殖、分化及凋亡等过程中都起到了重要的作用。细胞内蛋白酪氨酸磷酸化水平由蛋白酪氨酸激酶(PTKs)和蛋白酪氨酸磷酸酶(PTPases)二者共同调控。PTKs活性增加则细胞内蛋白酪氨酸磷酸化水平增加;PTPases活性增加则细胞内蛋白酪氨酸磷酸化水平降低。当生长因子、细胞因子、神经递质等与细胞上相应受体结合后,PTKs的活性将显著增加,导致细胞内蛋白酪氨酸磷酸化水平升高。同时也有研究表明,细胞膜去极化和钙离子内流同样能够影响细胞内PTKs的活性及蛋白酪氨酸磷酸化水平。
     本实验探讨了异源表达的BK_(Ca)通道及通道激动剂、阻断剂对细胞内蛋白酪氨酸磷酸化水平的调节,试图寻找BK_(Ca)通道下游可能的信号转导通路。
     1.BK_(Ca)通道的表达降低过钒酸盐处理后细胞蛋白酪氨酸磷酸化水平
     HEK293细胞不表达内源性BK_(Ca)通道,因此可作为研究BK_(Ca)通道异源表达的良好模型。生理状态下,HEK293细胞内PTPases的活性高于PTKs,因此细胞蛋白酪氨酸磷酸化水平相对较低。PTPases特异性抑制剂过钒酸盐能够时间依赖性地增加细胞内蛋白酪氨酸磷酸化水平。为检测BK_(Ca)通道对细胞内蛋白酪氨酸磷酸化水平的影响,我们比较了转染BK_(Ca)通道α亚基或对照质粒后HEK293细胞蛋白酪氨酸磷酸化水平。用过钒酸盐处理转染了BK_(Ca)通道或对照质粒的细胞后发现,NK_(Ca)通道的表达能够显著降低细胞的酪氨酸磷酸化水平(p<0.05,独立样本t检验),同时,β-actin对照结果显示,BK_(Ca)通道的表达并不影响细胞总蛋白量。
     2.BK_(Ca)通道的表达降低过表达v-Src细胞的蛋白酪氨酸磷酸化水平
     为检测BK_(Ca)通道能否降低PTKs激活造成的蛋白酪氨酸磷酸化水平升高,我们比较了共转染BK_(Ca)通道和非受体型酪氨酸激酶v-Src或其无活性突变体R385A Src后细胞酪氨酸磷酸化水平的变化。
     v-Src是细胞内重要的非受体型酪氨酸激酶,转染细胞后可以显著提高细胞蛋白酪氨酸磷酸化水平。但共转染BK_(Ca)通道则使过表达v-Src细胞的蛋白酪氨酸磷酸化水平降低(p<0.05,独立样本t检验),而共转染对照质粒则无此作用。无活性突变体R385A Src不影响细胞酪氨酸磷酸化水平,但共转染BK_(Ca)通道仍能使表达R385A Src细胞的蛋白酪氨酸磷酸化水平降低(p<0.05,独立样本t检验)。
     3.BK_(Ca)通道特异性激动剂及阻断剂对细胞蛋白酪氨酸磷酸化水平的影响
     为确定BK_(Ca)通道的功能活动能否影响细胞蛋白酪氨酸磷酸化水平,我们使用BK_(Ca)通道特异性激动剂NS1619及特异性阻断剂paxilline,观察二者对细胞蛋白酪氨酸磷酸化水平的影响。HEK293细胞本身不表达BK_(Ca)通道,单独使用NS1619或paxilline对细胞蛋白酪氨酸磷酸化水平无影响(p>0.05)。转染BK_(Ca)通道后,NS1619能进一步降低细胞蛋白酪氨酸磷酸化水平(p<0.05,One-way ANOVA),而paxilline则部分逆转BK_(Ca)通道的作用(p<0.05,One-way ANOVA)。海马神经元表达内源性BK_(Ca)通道,NS1619降低海马神经元蛋白酪氨酸磷酸化水平,paxilline则使蛋白酪氨酸磷酸化水平升高(p<0.05,One-way ANOVA)。
     综合以上结果,BK_(Ca)通道的功能活动可以调控细胞蛋白酪氨酸磷酸化水平。
Large conductance calcium-activated potassium channel (BK_(Ca) channel) is a special kind of potassium channel, which could be activated by cell membrane hypopolarization and the elevation of the intracellular calcium concentration. BK_(Ca) channels are widely expressed in many types of cells, such as neurons, muscle cells, gland cells, lymph cells, and osteoblasts. BK_(Ca) channels can not only regulate the repolarization and firing rate of action potential, cell membrane excitability, smooth muscle contraction, neurotransmitter release, learning and memory, but also participate in immunity regulation and cell apoptosis. But the downstream pathways of BK_(Ca) channels are still unknown.Protein tyrosine phosphorylation is an important process in cellular signal transduction. It plays an important role in cell proliferation, differentiation and apoptosis. The cellular protein tyrosine phosphorylation is regulated by the activities of protein tyrosine kinases (PTKs) and protein tyrosine phosphotases (PTPases). PTKs increase the cellular protein tyrosine phosphorylation, while PTPases decrease it. When growth factors, cytokines, and neurotransmitters bind their receptors in the cell membrane, PTKs activities will increase dramatically, which will induce the elevation of the cellular protein tyrosine phosphorylation. It was also reported that hypopolarization of plasma membrane and calcium influx could influence the cellular PTKs activities and protein tyrosine phosphorylation.Our experiments discussed the effects of the expressed BK_(Ca) channels, the agonist and the antagonist of the channels on the cellular protein tyrosine phosphorylation and try to find the downstream signaling pathways of the channel.
     1. BK_(Ca) channel expression decreased endogenous protein tyrosine phosphorylation in pervanadate-treated HEK 293 cells. Cells were transfected with cDNA for either control vector or BK_(Ca) channels. 36 h after transfection, cells were treated with the membrane-permeant tyrosine phosphatase inhibitor pervanadate (250μM; 0-30 min). Endogenous protein tyrosine phosphorylation in pervanadate-treated HEK 293 cells decreased after BK_(Ca) channels expression (p<0.05, independent sample t test).
     2. BK_(Ca) channel coexpression decreased v-Src-induced protein tyrosine phosphorylation. HEK 293 cells were cotransfected with vector together with v-Src, vector together with R385A Src, BK_(Ca) channels together with v-src, or BK_(Ca) channels together with R385A Src vectors. 36h after transfection, immunoblots were probed with anti-phosphotyrosine, v-Src expression increased the protein tyrosine phosphorylation and BK_(Ca) channel coexpression decreased v-Src-induced protein tyrosine phosphorylation (p<0.05, independent sample t test).
     3. BK_(Ca) channel agonist and antagonist affected protein tyrosine phosphorylation. HEK 293 cells were transfected with cDNA for either control vector or BK_(Ca) channels. We detected the effects of BK_(Ca) channels agonist NS1619 or antagonist paxilline on the protein phosphorylation. NS1619 and paxilline had no effects on the cellular protein tyrosine phosphorylation in the vector transfected 293 cells. But NS1619 could further decrease the protein tyrosine phosphorylation in BK_(Ca) channels expressing 293 cells; while paxilline could partly reverse the BK_(Ca) channels effects (p<0.05, One-way ANOVA). The cellular protein tyrosine phosphorylation of hippocampal neurons was decreased by NS 1619, but increased by paxilline (p<0.05, One-way ANOVA). The experiment was repeated 3 times and the results were reproducible.
     From the results above, we concluded that the functional activity of large conductance calcium-activated potassium channels could regulate cellular protein tyrosine phosphorylation.
引文
1. Sah P. Ca~(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci, 1996,19:150-4.
    
    2. Vegara C, Latorre R, Marrion NV, et al. Calcium-activated potassium channels. Curr Opin Neurobiol, 1998, 8:321-9.
    
    3. Toro L, Wallner M, Meera P, et al. Maxi K_(Ca), a unique member of the voltage-gated K channel superfamily. News Physiol Sci, 1998, 13: 112-117.
    
    4. Roger R, Corinne C, Georges R, et al. Focal Adhesion Kinase pp125~(FAK) Interacts With the Large Conductance Calcium-Activated hSlo Potassium Channel in Human Osteoblasts: Potential Role in Mechanotransduction, Journal of Bone and Mineral Research, 2003,18:1863-1871.
    
    5. Jatinder A, Andrew T, Lucie H, et al. The large conductance Ca~(2+)-activated K~+ channel is essential for innate immunity. Nature, 2004,427:853-858.
    
    6. Gong L, Gao TM, Li X, et al. Enhancement in activities of large conductance calcium-activated potassium channels in CA1 pyramidal neurons of rat hippocampus after transient forebrain ischemia. Brain Res, 2000, 884(1-2):147-154.
    
    7. Gong LW, Gao TM, Huang H, et al. Transient forebrain ischemia induces persistent hyperactivity of large conductance calcium-activated potassium channels via oxidation modulation in rat hippocampal CA1 pyramidal neurons. Eur. J. Neurosci. 2002, 15 (4):779-783.
    
    8. Chen M, Sun HY, Wang Y, et al. Activation of BK channels mediate hippocampal neuronal apoptosis in culture induced by hypoxia/reoxygenation. J Neurochem, 2003, 87 (Suppl.1):137.
    
    9. Garcia-Calvo M, Knaus HG, McManus OB, et al. Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem, 1994, 269:676-682.
    
    10. Atkinson NS, Robertson GA and Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science, 1991,253:551-555.
    
    11. Adelman JP, Shen KZ, Kavanaugh MP et al. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron, 1992, 9:209-216.
    
    12. Tseng-Crank J, Foster CD, Jrause JD,et al. Cloning, expression, and distribution of functionally distinct Ca~(2+)-activated K~+ channel isoforms from human brain. Neuron, 1994, 13:1315-1330.
    
    13. Saito M, Nelson C, Salfkoff L et al. A cysteine-rich domain defined by a novel exon in a Slo variant in rat adrenal chromaffin cells and PC12 cells. J Biol Chem, 1997,18:11710-11717.
    
    14. LY Jan and YN Jan. Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci, 1997, 20:91-123.
    
    15. Shih TM and Goldin AL. Topology of the Shaker potassium channel probed with hydrophilic epitope insertions. J Cell Biol, 1997, 136:1037-1045.
    
    16. Meera P, Wallner M, Song M et al. Large conductance voltage- and calcium-dependent K~+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus of outstanding interest. Proc Natl Acad Sci USA, 1997,94:14066-14071.
    
    17. Wei A, Solaro C, Lingle C, et al. Calcium sensitivity of BK type K_(Ca) channels determined by a separable domain. Neuron 1994,13:671-81.
    
    18. Wei A, Jegla T and Salkoff L. Conserved classes of potassium channel genes identified from the Caenorhabditis elegans genome. Neuropharmacology, 1996, 5:805-829.
    
    19. Schreiber M and Salkoff L. A novel calcium-sensing domain in the BK channel of special interest. Biophys J, 1997, 73: 1355-1363.
    
    20. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515-22.
    
    21. Piskorowski R, Aldrich RW. Calcium activation of BK(Ca) potassium channels lacking the calcium bowl and RCK domains. Nature, 2002,420:499-502.
    
    22. Shao-xiong W, Masahiro I, and William BG. The cytoplasmic tail of large conductance, voltage- and Ca~(2+)-activated K~+ (MaxiK) channel is necessary for its cell surface expression. Journal of Biology Chemistry, 2003,278(4):2713-2722.
    23. Wallner MP, et al. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca sensitive K channels: an additional transmembrane region at the N-terminus. Proc Natl Acad Sci USA,1996, 93:14922-14927.
    
    24. Stefani EM et al. Voltage-controlled gating in a large conductance Ca sensitive K channel (hslo) Proc Natl Acad Sci USA,1997,94:5427-5431.
    
    25. Hanner M, Schmalhofer WA, Munujos P, et al. The β subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc Natl Acad Sci USA, 1997, 94:2853-2858.
    
    26. Kaczorowski gj, et al. High-conductance voltage-activated potassium channels: structure, pharmacology, and function. J Bionerg Biomen, 1996, 28:255-267.
    
    27. Meera P et al. A calcium switch for the functional coupling between a and β subunit of MaxiK channels. FEBS Lett, 1996,382:84-88.
    
    28. Dworetzky SI, Trojnacki JT, Gribkoff VK. Cloning and expression of a human large-conductance calcium-activated potassium channel. Brain Res Mol Brain Res 1994,27:189-93.
    
    29. Knaus HG, Folander M, Garcia-Calvo ML et al. Primary sequence and immunological characterisation of beta-subunit of high conductance Ca~(2+)-activated K~+ channel from smooth muscle. J Biol Chem 1994, 269:17274-8.
    
    30. Tseng-Crank J, Godinot N, Johansen TE, et al. Cloning, expression, and distribution of a Ca~(2+)-activated K~+ channel beta-subunit from human brain. Proc Natl Acad Sci USA 1996, 93:9200-5.
    
    31. Brenner R, Jegla TJ, Wickenden A, et al. Cloning and functional characterisation of novel large conductance calciumactivated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem, 2000, 275:6453-61.
    
    32. Meera P, Wallner M, Toro L. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca~(2+)-activated K~+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 2000, 97:5562-7.
    33. McManus OB, Helms LM, Pallank M, et al. Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron, 1995, 14: 645-650.
    
    34. Tanaka Y, Meera P, Song M, et al. Molecular constituents of maxi K_(Ca) channels in human coronary smooth muscle: predominant a+P subunit complexes of special interest. J Physiol, 1997, 502:545-557.
    
    35. Chang CP, Dworetzky SI, Wang J, et al. Differential expression of the a and β subunits of the large-conductance calcium-activated potassium channel: implication for channel diversity. Mol Brain Res 1997, 45:33-40.
    
    36. Reinhart PH and Levitan IB. Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J Neurosci 1995, 15:4572-4579.
    
    37. Wang ZW, Nara M, Wang YX et al. Redox regulation of large conductance Ca~(2+)-activated K~+ channels in smooth muscle. J Gen Physiol, 1997, 110:35-44.
    
    38. Ding JP, Li ZW, Lingle CJ. Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits. Biophys J,1998, 74:268-89.
    
    39. Wallner M, Meera P, Toro L.. Molecular basis of fast inactivation in voltage and Ca~(2+)-activated K~+ channels: a transmembrane betasubunit homolog. Proc Natl Acad Sci USA, 1999, 96:4137-42.
    
    40. Xia XM, Ding JP, Lingle CJ. Molecular basis for the inactivation of Ca~(2+)-and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci 1999, 19:5255-64.
    
    41. Latorre R, Oberhauser A, Labarca P, et al. Varieties of calcium- activated potassium channels. Ann Rev Physiol, 1989,51:385-99.
    
    42. Desai CJ, Sun Q, Zinn K. Tyrosine phosphorylation and axon guidance: of mice and flies. Curr Opin Neurobiol, 1997, 7(1):70-4.
    
    43. Atherton-Fessler S, Hannig G, Piwnica-Worms H. Reversible tyrosine phosphorylation and cell cycle control. Semin Cell Biol, 1993,4(6):433-42.
    
    44. Li M, Ping G, Plathow C, et al. Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells. BMC Cancer. 2006,6:79.
    
    45. Daoud G, Rassart E, Masse A et al. Src family kinases play multiple roles in differentiation of trophoblasts from human term placenta. J.physiol, 2006 571:537-553.
    
    46. Cursi S, Rufini A, Stagni V, et al. Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. EMBO J,2006, 25:1895-1905.
    
    47. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signalling. Cell, 1995, 80:225-236.
    
    48. Erpel T, Courtneidge SA. Src family protein tyrosine kinases and cellular signal transduction pathways. Curr Biol, 1995, 7:176-182.
    
    49. Wan Y, Kurosaki T, Huang XY. Tyrosine kinases in activation of the MAP kinase cascade by G-protein-coupled receptors. Nature, 1996, 380:541-544.
    
    50. Siciliano JC, Gelman M, Girault J. Depolarization and neurotransmitters increase neuronal protein tyrosine phosphorylation. J Neurochem, 1994,62:950 -959.
    
    51. Olivotto M, Arcangelli A, Carla M, et al. Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling. Bioessays, 1996, 18:495-504.
    
    52. Bading H, Greenberg ME. Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science, 1991, 253:912-914.
    
    53. Rusanescu G, Qi H, Thomas SM, et al. Calcium influx induces neurite growth through a src-ras signaling cassette. Neuron, 1995, 15:1415-1425.
    
    54. Takashi O, Munehisa U, Shoichi N, et al. Tyrosine kinase inhibitors reduce bcl-2 expression and induce apoptosis in androgen-dependent cells. Am J Physiol Cell Physiol, 2000, 278: C66-C72.
    
    55. Otani H, Erdos M and Leonard WJ. Tyrosine kinase(s) regulate apoptosis and bcl-2 expression in a growth factor-dependent cell line. J Biol Chem, 1993, 268: 22733-22736.
    
    56. Brown A, Jolly P, and H Wei. Genistein modulates neuroblastoma cell proliferation and differentiation through induction of apoptosis and regulation of tyrosine kinase activity and N-myc expression. Carcinogenesis, 1998, 19:991- 997.
    
    57. Karsten S, Ralf JD, Ruth S et al. The protein tyrosine kinase inhibitor SU5614 inhibits FLT3 and induces growth arrest and apoptosis in AML-derived cell lines expressing a constitutively activated FLT3. Blood, 2003,101:1494 - 1504.
    
    58. Tallett A, Chilvers ER, Hannah S, et al. Inhibition of neuropeptide-stimulated tyrosine phosphorylation and tyrosine kinase activity stimulates apoptosis in small cell lung cancer cells. Cancer Res, 1996,56: 4255.
    
    59. Christopher DK, Eugene HC, John DY, et al, The Endothelial Receptor Tyrosine Kinase Tie1 Activates Phosphatidylinositol 3-Kinase and Akt To Inhibit Apoptosis. Mol Cell Biol, 2002,22: 1704 -1713.
    
    60. Wallace BG. Regulation of the interaction of nicotinic acetylcholine receptors with the cytoskeleton by agrin-activated protein tyrosine kinase. J Cell Biol, 1995, 128:1121-1129.
    
    61. Stratton KR, Worley PF, Litz JS, et al. Electroconvulsive treatment induces a rapid and transient increase in tyrosine phosphorylation of a 40-kilodalton protein associated with microtubule-associated protein kinase activity. J Neurochem, 1991, 56:147-152.
    
    62. Woodrow S, Bissoon N, Gurd JW. Depolarization-dependent tyrosine phosphorylation in rat brain synaptosomes. J Neurochem, 1992, 59:857- 862.
    
    63. Todd CH, Kevin B, Jill E. et al. Expression of voltage-gated potassium channels decreases cellular protein tyrosine phosphorylation. J. Neurosci, 1997, 17: 8964-8974.
    
    64. Abderrahmane A, Aman M, Kazuhide N, et al. Coupling of c-Src to large conductance voltage- and Ca~(2+)-activated K~+ channels as a new mechanism of agonist-induced vasoconstriction. Proc Natl Acad Sci ,2002, 99:14560-565.
    
    65. Ling S, Woronuk G, Sy L, et al. Enhanced activity of a large conductance, calcium-sensitive K channel in the presence of Src tyrosine kinase. J Biol Chem, 2000, 275:30683-30689.
    1. Sah P. 1996. Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19:150-4.
    
    2.Vegara C, Latorre R, Marrion NV, Adelman JP. 1998. Calcium-activated potassium channels. Curr Opin Neurobiol 8:321-9.
    
    3.L Toro, M Wallner, P Meera and Y Tanaka 1998, Maxi K_(Ca), a unique member of the voltage-gated K channel superfamily. News Physiol Sci 13: 112-117
    
    4.Marty A. 1981. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature 291:497-500
    
    5.McManus OB. 1991. Calcium-activated potassium channels: regulation by calcium. J Bioenerg Biomembr 23:537-6
    
    6.M Garcia-Calvo, HG Knaus, OB McManus, KM Giangiacomo, GJ Kaczorowski, ML Garcia and HG Knaus , 1994 Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem 269,. 676-682.
    
    7.NS Atkinson, GA Robertson and B Ganetzky 1991, A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253. 551-555
    
    8.JP Adelman, K-Z Shen, MP Kavanaugh, RA Warren, Y-N Wu, A Lagrutta, CT Bond and RA North,1992, Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9. 209-216.
    
    9.J Tseng-Crank, CD Foster, JD Jrause, R Mertz, R Godinot, TJ DiChiara and PH Reinhart 1994, Cloning, expression, and distribution of functionally distinct Ca~(2+)-activated K~+ channel isoforms from human brain. Neuron 13. 1315-1330
    
    10. M Saito, C Nelson, L Salfkoff and CJ Lingle 1997, A cysteine-rich domain defined by a novel exon in a Slo variant in rat adrenal chromaffin cells and PC12 cells. J Biol Chem 18:11710-11717.
    
    11.LY Jan and YN Jan,1997 , Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20. 91-123.
    
    12.TM Shih and AL Goldin 1997, Topology of the Shaker potassium channel probed with hydrophilic epitope insertions. J Cell Biol 136. 1037-1045.
    
    13. P Meera, M Wallner, M Song and L Toro 1997, Large conductance voltage- and calcium-dependent K~+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus of outstanding interest. Proc Natl Acad Sci USA 94. 14066-14071.
    
    14. Wei A, Solaro C, Lingle C, Salkoff L. 1994. Calcium sensitivity of Bk type KCa channels determined by a separable domain. Neuron 13:671-81.
    
    15. A Wei, T Jegla and L Salkoff , 1996 Conserved classes of potassium channel genes identified from the Caenorhabditis elegans genome. Neuropharmacology 35 805-829.
    
    16. M Schreiber and L Salkoff 1997, A novel calcium-sensing domain in the BK channel of special interest. Biophys J 73 1355-1363.
    
    17. Schreiber M, Salkoff L. 1997. A novel calcium-sensing domain in the BK channel. Biophys J 73:1355-63.
    
    18.Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515-22.
    
    19 Piskorowski R, Aldrich RW. 2002. Calcium activation of BK(Ca) potassium channels lacking the calcium bowl and RCK domains. Nature 420:499-502.
    
    20. Shao-xiong Wang, Masahiro Ikeda, and William B. Guggino 2003 The cytoplasmic tail of large conductance, voltage- and Ca~(2+)-activated K~+ (MaxiK) channel is necessary for its cell surface expression. Journal of Biology Chemistry 278(4) 2713-2722
    
    21. Dworetzky SI, Trojnacki JT, Gribkoff VK. 1994. Cloning and expression of a human large-conductance calcium-activated potassium channel. Brain Res Mol Brain Res 27:189-93.
    
    22. Knaus HG, Folander M, Garcia-Calvo ML, Garcia GJ, Kaczorowski GJ, Smith M, and others. 1994. Primary sequence and immunological characterisation of beta-subunit of high conductance Ca2+—activated K+ channel from smooth muscle. J Biol Chem 269:17274-8.
    
    23. Tseng-Crank J, Godinot N, Johansen TE, Ahring PK, Strobaek D, Mertz R, and others. 1996. Cloning, expression, and distribution of a Ca2+-activated K+ channel beta-subunitfrom human brain. Proc Natl Acad Sci U S A 93:9200-5.
    
    24. Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW. 2000. Cloning and functional characterisation of novel large conductance calciumactivated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275:6453-61.
    
    25. Meera P, Wallner M, Toro L. 2000. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 97:5562-7.
    
    26. M Hanner, WA Schmalhofer, P Munujos, HG Knaus, GJ Kaczorowski and ML Garcia 1997, The β subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin. Proc Natl Acad Sci USA 94. 2853-2858.
    
    27. OB McManus, LM Helms, M Pallank, B Ganetzky, R Swanson and RJ Leonard 1995, Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14: 645-650
    
    28. Y Tanaka, P Meera, M Song, HG Knaus and L Toro , 1997 Molecular constituents of maxi K_(Ca) channels in human coronary smooth muscle: predominant α+β subunit complexes of special interest. J Physiol 502. 545-557.
    
    29. CP Chang, SI Dworetzky, J Wang and ME Goldstein 1997, Differential expression of the aand β subunits of the large-conductance calcium-activated potassium channel: implication for channel diversity. Mol Brain Res 45. 33-40
    
    30. PH Reinhart and IB Levitan 1995, Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J Neurosci 15. 4572-4579.
    
    31.Z-W Wang, M Nara, Y-X Wang and ML Kotlikoff, 1997 Redox regulation of large conductance Ca~(2+)-activated K~+ channels in smooth muscle. J Gen Physiol 110. 35-44.
    
    32. Ding JP, Li ZW, Lingle CJ. 1998. Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits. Biophys J 74:268-89.
    
    33. Wallner M, Meera P, Toro L. 1999. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane betasubunit homolog. Proc Natl Acad Sci U S A 96:4137-42.
    
    34. Xia X-M, Ding JP, Lingle CJ. 1999. Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci 19:5255-64.
    
    35. Latorre R, Oberhauser A, Labarca P, Alvarez O. 1989. Varieties of calcium-activated potassium channels. Ann Rev Physiol 51:385-99.
    
    36. Atkinson NS, Robertson GA, Ganetzky B. 1992. A component of calcium-activated potassium channels encoded by the drosophila slo locus. Science 253:551-5.
    
    37. Navaratnam DS, Bell TJ, Tu TD, Cohen EL, Oberholtzer JC. 1997. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 19:1077-85.
    
    38. Rosenblatt KP, Sun Z-P, Heller S, Hudspeth AJ. 1997. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chickens cochlea. Neuron 19:1061-75.
    
    39. Xie J, McCobb DP. 1998. Control of alternative splicing of potassium channels by stress hormones. Science 280:443-6.
    
    40. Lovell PV, McCobb DP. 2001. Pituitary control of BK potassium channel function and intrinsic firing properties of adrenal chromaffin cells. J Neurosci 21:3429-42.
    
    41. Garcia-Calvo M, Knaus HG, McManus OB, Giangiacomo KM, Kaczorowski GJ, Garcia ML, and others. 1994. Purification and reconstruction of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem 269:676-82.
    
    42 Toro L, Stefani E. 1991. Ca2+-activated K+ channels: metabolic regulation. J Bioenerg Biomembr 23:561-76.
    
    43. Sansom SC, Stockland JD, Hall D, Williams B. 1997. Regulation of calcium-activated potassium channels by protein phosphatase 2A. J Biol Chem 272:9902-6.
    44. PH Reinhart and IB Levitan 1995, Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J Neurosci 15. 4572-4579.
    
    45. Fadool DA, Levitan IB. 1998 Modulation of olfactory bulb neuron potassium current by tyrosine phosphorylation. J Neurosci. Aug 15;18(16):6126-37
    
    46. Zhou Y, Wang J, Wen H, Kucherovsky O, Levitan IB. 2002 Modulation of Drosophila slowpoke calcium-dependent potassium channel activity by bound protein kinase a catalytic subunit.J Neurosci. May 15;22(10):3855-63
    
    47. Abderrahmane Alioua, Aman Mahajan, Kazuhide Nishimaru, Masoud M. Zarei, Enrico Stefani, and Ligia Toro 2002Coupling of c-Src to large conductance voltage- and Ca2_-activated K_ channels as a new mechanism of agonist-induced vasoconstriction Proc Natl Acad Sci U S A.;99(22):14560-565
    
    48. Ling S, Woronuk G, Sy L, Lev S, Braun AP 2000 Enhanced activity of a large conductance, calcium-sensitive K_ channel in the presence of Src tyrosine kinase. J Biol Chem 275:30683-30689.
    
    49.Wang J, Zhou Y, Wen H, Levitan IB. 1999Simultaneous binding of two protein kinases to a calcium-dependent potassium channel. J Neurosci. May 15;19(10):RC4
    
    50.Prevarskaya NB, Skryma RN, Vacher P, Daniel N, Djiane J, Dufy B 1995.Role of tyrosine phosphorylation in potassium channel activation. Functional association with prolactin receptor and JAK2 tyrosine kinase. J Biol Chem. Oct 13;270(41):24292-9
    
    51. Hall SK , & Armstrong DL 2000 Conditional and unconditional inhibition of calcium-activated potassium channels by reversible protein phosphorylation. J Biol Chem 275, 3749-3754
    
    52. Reinhart PH, Chung SK, Martin BL, Brautigan DL & Levitan IB 1991. Modulation of calcium-activated potassium channels from rat brain by protein kinase A and phosphatase 2A.. J Neurosci 11, 1627-1635
    
    53.Widmer HA, Rowe IC, Shipston MJ. 2003Conditional protein phosphorylation regulates BK channel activity in rat cerebellar Purkinje neurons.J Physiol. Oct 15;552(Pt 2):379-91
    
    54. Gola M, Crest M 1993 Colocalization of active KCa channels and Ca2+ channels within Ca2+ domains in helix neuronsNeuron. Apr;10(4):689-993.
    
    55. R Robitaille, ML Garcia, GJ Kaczorowski and MP Charlton , 1993 Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11:645-655.
    
    56. B Yazejian, DA DiGregorio, J Vergara, RE Poage, SD Meriney and AD Grinnel , Direct measurement of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve—muscle synapses of special interest. J Neurosci 17
    
    57. MT Nelson, H Cheng, M Rubart, LF Santana, AD Bonev, HJ Knot and WJ Lederer 1995, Relaxation of arterial smooth muscle by calcium sparks. Science 270. 633-637. 6.
    
    58. WM Roberts, RA Jacobs and AJ Hudspeth 1990, Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10. 3664-3684.
    
    59. NP Issa and AJ Hudspeth 1994, Clustering of Ca~(2+) channels and Ca~(2+)-activated potassium channels at fluorescently labeled presynaptic active zones of hair cells. Proc Natl Acad Sci USA 91. 7578-7582.
    
    60.Marrion NV, Tavalin SJ. 1998 Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature. Oct 29;395(6705):900-5.
    
    61. Xiaolu Sun, Xiang Q. Gu, and Gabriel G Haddad 2003 Calcium Influx via L-and N-Type Calcium Channels Activates a Transient Large-Conductance Ca~(2+)-Activated K~+ Current in Mouse Neocortical Pyramidal NeuronsThe Journal of Neuroscience, May 1,, 23(9):3639
    
    62. Mary D. Womack, Carolyn Chevez, and Kamran Khodakhah 2004Calcium-Activated Potassium Channels Are Selectively Coupled to P/Q-Type Calcium Channels in Cerebellar Purkinje NeuronsThe Journal of Neuroscience, October 6,, 24(40):8818-8822
    63. Murali Prakriya and Christopher J. Lingle 1999 BK Channel Activation by Brief Depolarizations Requires Ca~(2+) Influx Through L- and Q-Type Ca~(2+) Channels in Rat Chromaffin CellsJ Neurophysiol 81: 2267-2278,
    
    64.Wisgirda ME, Dryer SE. 1994 Functional dependence of Ca(2+)-activated K+ current on L- and N-type Ca2+ channels: differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms.Proc Natl Acad Sci U S A. Mar 29;91(7):2858-62.
    
    65. Wu SN, Lo YK, Li HF, Shen AY 2001 Functional coupling of voltage-dependent L-type Ca2+ current to Ca2+-activated K+ current in pituitary GH3 cellsChin J Physiol. Dec 31;44(4):161-7.
    
    66. Grunnet M, Kaufmann WA. 2004 Coassembly of big conductance Ca2+-activated K+ channels and L-type voltage-gated Ca2+ channels in rat brain. J Biol Chem. Aug 27;279(35):36445-53
    
    67. Chien-Chang Chen, Kathryn G Lamping, Daniel W. Nuno, Rita Barresi, Sally J. Prouty, Julie L. Lavoie,Leanne L. Cribbs, Sarah K. England,Curt D. Sigmund, Robert M. Weiss, Roger A. Williamson, Joseph A. Hill, Kevin P. Campbell 2003 Abnormal Coronary Function in Mice Deficient in α~(1H) T-type Ca~(2+) Channels Science,Vol 302, Issue 5649, 1416-1418
    
    68. Irwin B. LevitanIt 1999 Is Calmodulin After All! Mediator of the Calcium Modulation of Multiple Ion Channels. Neuron, Vol. 22,645-648, April,
    
    69. Sorensen JB, Nielsen MS, Gudme CN, Larsen EH, Nielsen R. 2001 Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Arch. Apr;442(1):1-11.
    
    70. O'Neill WC, Steinberg DF1995 Functional coupling of Na(+)-K(+)-2Cl-cotransport and Ca(2+)-dependent K+ channels in vascular endothelial cells. Am J Physiol. Jul;269(1 Pt 1):C267-74.
    
    71. F agni L, Bossu JL, Bockaert J. 1991 Activation of a Large-conductance Ca2+-Dependent K+ Channel by Stimulation of Glutamate Phosphoinositide-coupled Receptors in Cultured Cerebellar Granule Cells.、 Eur J Neurosci.;3(8):778-789.
    
    72. WA Twitchell and SG Rane Nucleotide-independent modulation of Ca(2+)-dependent K+ channel current by a mu-type opioid receptor Mol. Pharmacol. 46, 793-798
    
    73. Chavis P, Ango F, Michel JM, Bockaert J, Fagni L. 1998 Modulation of big K+ channel activity by ryanodine receptors and L-type Ca2+ channels in neurons Eur J Neurosci. Jul;10(7):2322-7
    
    74. Isaacson JS, Murphy GJ 2001 Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca(2+)-activated K+ channels. Neuron. Sep 27;31(6): 1027-34.
    
    75.Guoxia Liu,Jingyi Shi, Lin Yang, Luxiang Cao, Soo Mi Park, Jianmin Cui and Steven Marx 2004 Assembly of a Ca~(2+) dependent BK channel signaling complex by binding toβ_2 adrenergic receptor. The EMBO Journal23, 2196-2205
    
    76. Schopperle WM, Holmqvist MH, Zhou Y, Wang J, Wang Z, Griffith LC, Keselman I, Kusinitz F, Dagan D, Levitan IB 1998 .Slob, a novel protein that interacts with the Slowpoke calcium-dependent potassium channel. Neuron. Mar;20(3):565-73.
    
    77. Zhou Y, Schopperle WM, Murrey H, Jaramillo A, Dagan D, Griffith LC, Levitan IB.1999 A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron 22:809-818
    
    78. Xia X, Hirschberg B, Smolik S, Forte M, Adelman JP. 1998 dSLo interacting protein 1, a novel protein that interacts with large-conductance calcium-activated potassium channels. J Neurosci. Apr 1;18(7):2360-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700