产氢产乙酸互营共培养体的选育及其应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统观点认为,产甲烷作用是厌氧消化过程的限速步骤。然而,前期研究发现,产氢产乙酸菌群的生态幅要比产甲烷菌更加狭窄,对环境的变化更加敏感,其代谢强度直接决定了产甲烷菌群的增殖和代谢能力,因此提出了“产氢产乙酸菌群的产氢产乙酸作用是厌氧消化的第一限速步骤”这一学术观点。产氢产乙酸菌的分离纯化非常困难,其研究进展缓慢,目前获得的纯培养物只有少数几个。种子资源的匮乏,极大限制了基于强化产氢产乙酸作用的高效厌氧生物处理技术的研发。基于以上认识和研究现状,本论文开展了产氢产乙酸互营共培养体的分离筛选工作,并以此为基础,对所筛选的共培养体进行了生理生态特性研究,并进一步探索了以其强化厌氧生物处理系统效能的可行性。
     论文利用基质选择作用,通过选择培养基的传代培养和代时控制以及培养条件的优化,最终选育到7号和8号两个产氢产乙酸菌互营共培养体。在含有丙酸钠和丁酸钠各10 g/L的培养基中,经过30 d的培养,7号和8号互营共培养体的乙酸产量分别达到2485 mg/L和3362 mg/L,产氢率分别达到549.06 mL/L-culture和456.57 mL/L-culture。
     通过PCR-DGGE分子检测手段,分析了7号和8号两个互营共培养体的种群结构。在PCR-DGGE图谱中,7号培养物显示出4个条带,8号则呈现出5个条带,而且两个共培养体中有重叠条带,说明这两个培养物均为微生物的混合培养物。将扩增得到的所有16SrDNA序列测序,并构建了系统发育树,发现两个共培养体中都包含有专性产氢产乙酸菌Syntrophospora bryantiii和专性的互营产乙酸菌Desulfotomaculum sp.,除此之外还有伴生菌,如能利用甲酸盐和H2/CO2的Uncultured bacterium和Sedimentibacter sp.等。
     生态因子对7号和8号两个互营共培养体的生长和产氢产乙酸特性研究表明,以丁酸作为碳源(10 g/L)、胰蛋白胨和酵母膏作为氮源时,7号共培养体在35℃、初始pH 7的条件下,具有最佳的生长和产氢产乙酸能力;8号共培养体则在45℃、初始pH 7.5时具有最大的生长和产氢产乙酸能力。
     摇瓶发酵试验结果表明,7号和8号两个互营共培养体是开发厌氧发酵系统生物强化技术的良好种子资源。取自发酵制氢反应系统的污泥,在投加7号共培养体后,其氢气产量和氢气产生速率分别可提高1.15倍和1.24倍;取自厌氧废水处理系统的污泥,在投加8号共培养体后,其底物转化率和甲烷产生速率可分别提高1.35倍和1.76倍。初步证明了以产氢产乙酸菌互营共培养体强化厌氧生物处理系统效能的可行性。
Among the bacteria colony in the anaerobic digestion system, hydrogen-producing acetogens (HPA) connect acidogenic fermentation bacteria with methanogens in functional niche. But HPA is quite difficult to be isolated in purity and ampliative culture by reason of the accrete characteristic.In order to research into its physiological and ecological characteristics and to lay the scientific basis for the development of highly efficient anaerobic biological treatment technology,the syntrophic acetogen cocultures were enriched and Selective bred by the Selective medium which is mixed by the Propionic acid and butyric acid from the anaerobic activated sludge with methanogens. Cultured in selective medium with propionic acid and butyric acid as carbon source for 30 days, the acetic acid yields for 7th and 8th were 2485 mg/L and 3326 mg/L with a hydrogen yield of 549.06 mL/L-culture and 456.57 mL/L-culture respectively.
     The population structures of two co-cultures were made clear by polymerase chain reaction - denaturing gradient gel electrophoreses (PCR-DGGE) analysis. Four bandings were showed in the DGGE profile of 7th and five in 8th profile, indicating that two or more bacteria existed in 7th and 8th. The 16S rDNA sequences of all the clones from the 16 bandings showed that both 7th and 8th were new syntrophic acetogen cocultures with non-methanogens as the associated bacteria. The associated bacteria are uncultured bacterium Syntrophospora bryantiii and Desulfotomaculum sp., which could utilize the formate and the H2/CO2. There were no CH4 or H2S being evolved in both culture systems, while hydrogen and acetic acid were detected.
     The influence of ecological factors on the growth and metabolism of the two co-cultures was investigated farther more. With butyrate as carbon source (10g/L), tryptone and the yeast extract as nitrogen source, 7th could present an excellent performance in growth and metabolism at 45℃with a initial pH 8, while 8th with a initial pH 7.
     According to the reaseach of the physiology and ecology characters of the two co-cultures and the ability to producing hydrogen and acetic acid, Then the 7th and 8th co-cultures were separately put into the fermentation hydrogen production system and wastewater treatment system, The result of wave-bottled ferment examination prove that the two co-cultures are favorable seminal bacteria to expand bioaugmentation of anaerobic ferment system..The muddily mud from anaerobic ferment system by enhancing the 7th co-culture.The results show that the efficiency of hydric yield and speed were improved by enhancing the 8th co-culture with 1.15 and 1.24 times while improved 1.35 and 1.76 times in anaerobic organic wastewater treatment by enhancing the 8th co-culture.
引文
1国家环保总局.2001年中国环境状况公报[J].环境保护,2002(6):3~10
    2顾润南.国城市生活污水处理方法述评[J].环境保护,2002(9):46~47
    3王凯军.厌氧处理技术发展现状与未来发展领域.中国沼气.1999,17(4):14~16
    4中国工程院士.城市水资源的可持续发展与水质保护.中国可持续发展水资源战略研究报告, 1994:12~14
    5 Yu Liu~Hwa Tay. Strategy for Minimization of Excess Sludge Production from the Activated Sludge Process .Biotechnology Advances.2001,19:97~107
    6 S.M.斯特罗纳奇.工业废水处理的厌氧消化过程.李敬译.中国环境科学出版社,1989:64~67
    7何振庆.微生物生理.辽宁大学出版社,1994:78~80
    8 H. W.多伊尔.细菌的新陈代谢.郭杰炎等译.科学出版社,1983:97~98
    9贺延龄.废水的厌氧生物处理.中国轻工业出版社,1998:16~21
    10刘艳玲.两相厌氧系统底物转化规律与群落演替的研究.哈尔滨工业大学博士论文. 2001:58~98
    11闵航.厌氧微生物学.浙江大学出版社,1992:112~115
    12王爱杰.任南琪.杜大仲.徐潇文.吴丽红.酸盐还原过程中乙酸型代谢方式的形成及其稳定性.环境科学. 2004,25(2):55~59
    13徐金兰等. ABR系统中酸解过程的污泥特性及分析.环境污染治理技术与设备. 2003, 5(2): 60~64
    14任南琪.刘敏.王爱杰.丁杰.两相厌氧系统中产甲烷相有机酸转化规律.环境科学. 2003,24(2): 21~26
    15 21 Brant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S..Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Microbiol., 1967, 59: 20~31
    16 McInerney, M. J., Bryant, M. P., and Pfenning, N., Anaerobic bacteria that degrade fatty acids in syntrophic association with methanogens. Archl. Microbiol., 1979, 122: 129~135
    17 McInerney, M. J., Mackie, R. J., and Bryant, M. P.. Syntrophic association of a butyrate-degrading bacterium and Methanosarcina enriched from bovine rumen fluid. Appl. Environ. Microbiol., 1981, 41: 826~828
    18 Boone, D. R., and Bryant, M. P. Propiate-degrading bacterium, Syntrophobacter wolinii sp.nov.gen.nov., from methanogenic ecosysteems. Appl. Environ. Microbiol.1980, 40: 626~632
    19 Ianotti, E. L., D. Kafkewitz, M. J. Wolin, and Bryant, M. P. Glucose ferentation products by Ruminococcus albus grown in contonuous Vibrbio succinogenes: changes caused by interspecies transfer of H2. J. Bacteriol., 1973, 114: 1231~1240
    20 Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2~utilizing methanogenic bacteria. Appl. Environ. Microbiol., 1977, 33: 1162~1169
    21 Reddy, M. P., M. P.Bryant, and M. J. Wolin. Charcteristics of S organism isolates from Methanobacilllus omelianskii. J. Bactrriol. 1972, 109: 539~545
    22 Eichler, B., and B. Schink. Ferentation of primary alcohols and diols and pure culture of syntrophically alcohol-oxidizing anaerobes. Arch. Microbiol. 1985, 143: 60~66
    23 Wofford, N. Q., Beaty, P. S.& McInerney, M. J.. Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J. Bactrriol. 1986, 167: 179~185
    24 .Stams, A. J. M., Van Dijk, j., Dijkema, and C. M. Plugge. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absense of methanogenic bacteria. Appl. Environ. Microbiol., 1993, 59: 1114~1119
    25 Roy, F., E. Samain, H. C. Dubourguier, and G. Albaganac. Syntrophomonas sapovorans sp. Nov. A new obligately proton-reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Archl. Microbiol., 1986, 145: 142~147
    26 Zhao, H. X., Yang, D. C., Woese, C. R. & Bryant, M.P.Assignment of Clostridirum bryantii to Syntrophspora bryantti gen. nov. comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacterial., 1990, 40: 40~44
    27 Mountfort, D. O., W. J. Brulla, L. R. Krumholz, and M. P.. Bryant. Syntrophus buswellii gen. Nov.; sp. Nov.: a benzoate catabolizer from methanogenic ecosystems. Int J Syst Bacterial., 1984, 34: 216~217
    28 Wallrabenstein, C., and B. Schink. Evidence of reverse electron transport insyntrophic butyrate or benezoate oxidation by Syntrophmonas wolfei and Syntrophus buswllii. Archl. Microbiol., 1994, 162: 136~142
    29 Jakson, B. E., V. K. Bhupathiraju, R. S. Tanner, C. R. Woese, and M. J. McInerney. Syntrophus aciditrophicus sp. Nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen~using microorganisms. Archl. Microbiol., 1999, 171: 107~114
    30 Friedrich, M. N., N. Springer, W. Ludwig, and B. Schink. Phylogenetic positios of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophbotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int J Syst Bacterial., 1996, 46: 1065~1069
    31 Svetlitshnyi, V., F. Rainey, and J. Wiegel. Thermosyntropha lipolytica gen. nov., sp.nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short~chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacterial., 1996, 46: 1131~1137
    32 Liu, Y., D. L. Balkwill, H. C. Aldrich, G. R. Darke, and D. R. Boone. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. Nov. ,sp.nov.,and syntrophobacter wolinii. Int J Syst Bacterial., 1999, 49: 545~556.
    33 Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. And Harada, H. Syntrophothermus lipocalidus gen. nov.,sp. Nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol.Microbiol. 2000, 50: 771~779.
    34刘隶太,王大耜.产氢产乙酸菌与产甲烷菌互养培养物的分离.中国沼气.1987,5(3):8~11
    35钱泽澍,马晓航.丁酸盐降解菌和氢营养菌共培养物的研究.微生物学报, 1989,29(5):321~329
    36赵宇华,钱泽澍.硬脂酸降解菌与嗜氢产甲烷杆菌共培养物的研究.浙江农业大学学报, 1991,17(1):75~79
    37程光胜,屠雄海,东秀珠,苏京军.厌氧降解丁酸共培养物中产氢产乙酸细菌与产甲烷细菌的分离与再组合.微生物学, 1995,35(6):442~449
    38 Schink, B.,and Stieb,M.,Fermentative degradation of polythylene glycol by a new strictly anaerobic Gram~negative nonsporeforming bacterium, Pelobacter venetianus sp. Nov. Appl.Eviron.Microbiol.,1983,45:1905~1913
    39 Schink,B. Fermentative of acetylene by an obligate anaerobe,Pelobacteracetylenicus sp. Nov. Arch..Microbiol.,1985,142:295~301
    40 Szewzyk, U., and B. Schink. Degradation of hydroquinone, gentisate,and benzoate,by a fermenting bacterium in pure culure or defined mixed culture. Arch..Microbiol.,1989,151:541~545
    41 McInerney, M. J. Transient and persistent associations among prokaryotes. In proindexter. Bacteria in nature, vol a. New York: Plenum Press, 1986,pp 293~338.
    42 McInerney, M.J, Bryant, M.P.Hespell, R. B. And Costerton, J. W. Syntrophomonas wolfei gen. Nov. Sp. Nov. an anaerobic ,syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol.,1981,41:1029~1039.
    43郑建斌.复合微生物菌剂的应用与发展前景.甘肃农业.2001,3:26~27
    44 J.萨姆布鲁克.E.F.弗里奇.T.曼妮阿蒂斯.分子克隆实验指南.金冬雁,黎孟枫.第二版.1999:908~909
    45 Dunbar J, White S, Forney L. Genetic diversity through the looking glass: effect of enrichment bias[J]. Appl Environ Microbiol, 1997, 63: 1326~1331.
    46 Schut F, de Vries E J, Gottschal J C, et al. Isolation of typical marine bacteria by dilutionculture: growth, maintenance, and characteristics of isolates under laboratory conditions[J]. Appl Environ Microbiol, 1993, 59: 2150~2160.
    47 Bruns A , Heribert C , Jêrg O. Cyclic AMP and acyl homoserine lactones increase thecultivation efficiency of heterotrophic bacteria from the central baltic sea[J]. Appl EnvironMicrobiol , 2002 , 68 : 3978~ 39871
    48 Bartscht K, Cypionka H, Overmann J. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community[J]. FEMS Microbiol Ecol, 1999, 28:249~259.
    49 Bruns A, Nübel U, Cypionka H, et al. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton[J]. Appl Environ Microbiol, 2003, 69: 1980~1989.
    50 Franklin R B, Garland J L, Bolster C H, et al. Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments. Appl Environ Microbiol, 2001, 67: 702~712.
    51 Schoenborn L, Yates P S, Grinton B E, et al. Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum~level diversity of soil bacteria. Appl Environ Microbiol, 2004, 70: 4363~4366.
    52 Kanagawa T, Kanagata Y, Aruga S, et al. Phylogenetic Analysis of and Oligonucleotide Probe Development for Eikelboom Type 021N Filamentous Bacteria Isolated from Bulking Activated Sludge [ J ]. Appl Environ Microbiol, 2000, 66: 5043 ~5052.
    53 J.萨姆布鲁克, E.F.弗里奇, T.曼妮阿蒂斯.分子克隆实验指南.金冬雁,黎孟枫.第二版.1999: 908~909
    54 Kong Y H, Beer M, Rees G N, et al., Functional analysis of microbial communities in aerobic-anaerobic sequencing batch reactors fed with different phosphorus/carbon (P/C) ratios [J]. Microbiol, 2007, 148: 2299~2307
    55 Akira Hiraishi,, Yoko Ueda, Junko Ishihara. Quinone profiling of bacterial communities in natural and synthetic sewage activated sludge for enhanced phosphate removal[J].Appl. Environ Microbiol, 1998, 64(3): 992~998.
    56 Kampfer P, Erhart R, Beimfohr C, et al. Characterization of bacterial communities from activated sludge:culture-dependent numerical identification versus in situ identification using group-and genus~specific rRNAtargeted oligonucleotide probes[J]. Microb Ecol, 2007, 32: 101–121.
    57 Carr E L, Kampfer P, Patel B K, et al. Seven novel species of Acinetobacter isolated from activated sludge[J]. Int J Syst Evol Microbiol, 2003, 53: 953~963
    58 Bartscht K, Cypionka H, Overmann J. Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community[J]. FEMS Microbiol Ecol, 1999, 28: 249~259
    59 GonzaElez J M, Whitman W B, Hodson R E, et al. Identifying numerically abundant culturable bacteria from complex communities:an example from a lignin enrichment culture[J]. Appl Environ Microbiol, 1996, 62: 4433~4440
    60 Bruns A, Nübel U, Cypionka H, et al. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton[J]. Appl Environ Microbiol, 2003, 69: 1980~1989
    61叶姜瑜,罗固源.微生物可培养性低的生态学释因与对策[J].微生物学报, 2005,4(53): 116~120
    62 Guan L L, Onuki H I, Kamino K. Bacterial growth stimulation with exogenous siderophore and synthetic N2acyl homoserine lactone autoinducers under iron2limited and low2nutrient conditions[J]. Appl Environ Microbiol, 2006, 66: 2797–2803
    63 Bruns A, Heribert C, Jerg O. Cyclic AMP and acyl homoserine lactones increasethe cultivation efficiency of heterotrophic bacteria from the central baltic sea[J]. Appl Environ Microbiol, 2007, 68: 3978~3987
    64 Simu K, Hagstrêm. Oligotrophic bacterioplankton with a novel single-cell life strategy[J]. Appl Environ Microbiol, 2004, 70: 2445~2451
    65 Che Ok Jeon,Dae Sung Lee,Jong Moon Park.Microbial communities in activated sludge performing enhanced biological phosphorus removal in a sequencing batch reactor[J]. Water Research, 2006, 37: 2195~2205
    66徐亚同. PH值、温度对反硝化的影响[J].中国环境科学,1994, 14(4): 309~313
    67 Kim J O ,Kim Y H ,Ryu J Y,et al. Immobilization methods for continuous hydrogen gas production biofilmformation versus granulation[J].Process Biochem , 2005(40) :1331~1337.
    68 Tatsuya N. Feasibility of biological hydrogen production from organic fraction of municipal solid waste [J] . Wat Res , 1999 ,33(11) :2579 ~2586.
    69 Lay J J .Modeling and optimization of anaerobic digested sludge converting starch to hydrogen[J] . Biotechno1 Bioeng ,2000 ,68(3) :269 ~ 278.
    70王江辉,刘红,欧阳威,等.3种有机废水的酸化发酵产氢特性研究[J].中国给水排水,2003 ,19(10) :18~21.
    71周俊虎,戚峰,程军,等.秸秆发酵产氢的碱性预处理方法研究[J].太阳能学报. 2007 ,28(3) :329~333.
    72宫曼丽,任南琪,邢德峰.生物制氢反应系统的启动负荷与乙醇型发酵[J].太阳能学报,2005 ,26(2) :244~247.
    73 Venkata M S ,Lalit B V ,Sarma P N. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor(AnSBR) : effect of organic loading rate[J].Enz Micro Technology,2007,3(3) :1~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700