锌吸收调控蛋白Zur调控十字花科黑腐病菌锌平衡及致病的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌中锌离子的平衡主要是通过调控Zn~(2+)吸收系统和Zn~(2+)排放系统的表达来维持的。长期以来一直认为,细菌的金属离子吸收系统和排放系统是由不同的调控蛋白分开调控的。众所周知,Zur蛋白的主要功能是负调控Zn~(2+)吸收系统的表达。但是,在十字花科黑腐病菌(Xanthomonas campestrispv.campestris,简称Xcc)中,zur突变体对高浓度Zn~(2+)敏感、EPS产量下降和致病力降低,表明在Xcc中,Zur不但调控Zn~(2+)平衡,还与EPS产生和致病性相关(Tang et al,MPMI Vol.18,No.7,2005,pp.652-658.)。
     为了研究Xcc中Zur蛋白在调控锌平衡方面的真正功能,我们用DNA芯片分析的方法鉴定出在锌丰富条件下Zur的调控元。芯片结果表明,在锌丰富条件下,有38个基因受Zur负调控,而有29个基因受Zur正调控。通过构建基因启动子与gusA基因转录融合的报告质粒检测表明芯片结果是可靠的。
     对这67个受Zur调控的基因进行生物信息学分析,我们推测XC0266-XC0267,XC2471-XC2472-XC2473和XC3786-XC3787-XC3788可能分别编码三个Zn~(2+)吸收系统,而XC2976可能编码一个Zn~(2+)排放泵。对这些Zn~(2+)平衡相关基因的启动子与gusA基因转录融合的报告质粒在野生型背景下的GUS活性检测表明,三个假定的Zn~(2+)吸收系统的表达均受低Zn~(2+)浓度诱导,受高Zn~(2+)浓度抑制,而假定的Zn~(2+)排放泵受低Zn~(2+)浓度抑制,受高Zn~(2+)浓度诱导。而所有这些Zn~(2+)平衡相关基因的报告质粒在zur突变体背景下的GUS活性不受Zn~(2+)浓度影响,说明Zn~(2+)浓度对这些基因的诱导依赖于Zur蛋白。
     为了鉴定这些基因在Zn~(2+)平衡方面的功能,我们构建了这些基因的突变体并检测假定的Zn~(2+)吸收系统的基因突变体在低Zn~(2+)浓度下生长情况,而检测假定的Zn~(2+)排放泵的基因突变体在高Zn~(2+)浓度下生长情况。结果表明,所有假定的Zn~(2+)吸收系统的基因突变体在低Zn~(2+)浓度培养基中的生长均比野生型菌株差,但加入一定浓度的Zn~(2+)又使突变体的生长恢复到野生型水平,这些结果表明,XC0266-XC0267,XC2471-XC2472-XC2473和XC3786-XC3787-XC3788可能分别编码三个Zn~(2+)吸收系统。XC2976基因突变体在高Zn~(2+)浓度条件下生长比野生型菌株差,且XC2976的产物与已鉴定的一个Zn~(2+)排放泵,Ralstonia的CzcD,在序列和结构上很相似,表明XC2976编码一个CDF型Zn~(2+)排放泵。
     对基因启动子与gusA基因转录融合报告质粒的GUS活性检测表明,在Xcc中,Zur不但负调控三个假定的Zn~(2+)吸收系统的表达,还正调控一个Zn~(2+)排放泵的表达。为了检测Zur蛋白是否直接调控这些基因的表达,我们用EMSA检测Zur与这些基因的启动子在体外的结合情况。结果表明,Xcc的Zur蛋白不仅能与Zn~(2+)吸收系统的启动子结合,而且能与Zn~(2+)排放泵的启动子结合,且Zur与它们的结合需要Zn~(2+),说明Zur直接调控这些基因的表达。为了证明Zur确实直接激活Zn~(2+)排放泵的转录和直接抑制Zn~(2+)吸收系统的转录,我们进行体外转录实验。结果表明,XC0267、XC2471-2和XC3788的转录随Zur蛋白的增加而减少,而XC2976的转录随Zur蛋白的增加而增加,证明Zur蛋白直接抑制XC0267、XC2471-2和XC3788的转录而直接激活XC2976的转录。
     为了确定Zur结合在这些基因启动子区的序列,我们进行DNaseI足迹试验。结果表明,Xcc的Zur蛋白结合在假定的Zn~(2+)吸收系统启动子区的序列是一段约30 bp的与Ecoli的Zur-box相似的保守序列,而结合在Zn~(2+)排放泵的启动子区的序列是一段59 bp的富含GC的序列,该序列有一个20 bp的反向重复序列。序列比对表明Zur结合在Zn~(2+)排放泵启动子区的序列与结合在假定的Zn~(2+)吸收系统启动子区的序列相似性极低,表明在Xcc中,Zur能识别两个完全不同的序列。用5'-RACE方法确定Zn~(2+)平衡相关基因的转录起始位点后发现,Xcc的Zur蛋白均结合在这些Zn~(2+)平衡相关基因启动子的-10和-35区。
     zur突变体与Zn~(2+)排放泵的突变体对高Zn~(2+)浓度的敏感程度及细胞内聚集的锌含量基本一致,表明zur突变体对高浓度Zn~(2+)敏感是由于Zn~(2+)排放泵的功能缺失引起的。所有Zn~(2+)平衡相关基因的致病性和EPS产量与野生型菌株一致,说明Xcc中Zur蛋白调控Zn~(2+)敏感性是独立于致病性和EPS产生的。
     为了研究Xcc中,Zur蛋白在调控致病性方面的功能,我们用DNA芯片分析的方法鉴定出在基本培养基MMX(大多数致病相关基因受诱导表达)条件下Zur的调控元。芯片结果显示,在MMX培养条件下,有149个基因受Zur负调控,而有216个基因受Zur正调控。在216个受Zur正调控的基因中,几乎包括所有的hrp基因,表明zur突变体致病力的下降可能是由于hrp基因的表达下降引起的。RT-PCR检测进一步证实了zur突变体中hrp基因的表达是下降的。通过检测所有hrp基因的启动子与gusA基因转录融合的报告质粒在野生型菌株Xcc 8004和在zur突变体中的GUS活性,我们发现Zur蛋白出除了正调控hrp基因簇外,还调控hrpX,但不调控hrpG。说明Zur通过hrpX调控hrp基因簇的表达。Zur不能与hrpX的启动子结合,说明Zur可能间接调控hrpX的表达。
     为了进一步证实Zur通过hrpX调控hrp基因簇,我们构建了组成型表达的hrpX并导入到zur突变体中。HR和致病性检测结果表明,组成型表达的hrpX能使zur突变体延迟的HR恢复到野生型水平,且能使zur突变体的致病力得到部分恢复,说明Zur通过hrpX调控hrp基因簇的表达。组成型表达的hrpX仅部分恢复zur突变体的致病力说明除hrp基因外,Zur还调控其它致病相关基因的表达。
In bacteria,the balance between Zn~(2+)import and export,known as Zn~(2+) homeostasis,is maintained mainly through the coordinated expression of export and uptake systems,and it has been long considered that metal ion export and uptake systems are separately controlled by their own regulators.Although it is well-known that the Zn~(2+)uptake regulator Zur typically acts as a repressor of Zn~(2+)uptake systems,our previous work showed that,in addition to plays an important role in zinc homeostasis,the Zur of Xanthomonas campestris pv. campestris(Xcc)is involved in the extracellular polysaccharide(EPS) production and pathogenesis of the pathogen(Tang et al,MPMI Vol.18,No.7, 2005,pp.652-658.).
     To investigate the exact role of Zur in the zinc homeostasis of Xcc,in this study,we identified the genes that are regulated by Zur(Zur regulon)in zinc-rich condition using DNA microarray hybridization analysis.The results showed that 38 genes were negatively regulated and 29 genes were positively regulated by Zur in zinc-rich condition.The reliability of the microarray data was confirmed by promoter-gusA transcriptional fusion reporter analysis.
     By using bioinformatics analysis,of the 67 Zur-regulated genes,we found that XC0266-XC0267,XC2471-XC2472-XC2473 and XC3786-XC3787-XC3788 may encode zinc uptake systems,and XC2976 may be a zinc effiux gene.The promoter-gusA transcriptional fusion reporter analysis revealed that the expression of putative zinc uptake systems was induced by low Zn~(2+)and repressed by high Zn~(2+)concentration,in contrast,the expression of the putative zinc efflux gene was induced by high Zn~(2+)and repressed by low Zn~(2+) concentration.We further found that the expression of the putative zinc homeostasis genes was not response to Zn~(2+)in the zur mutant background, demonstrating that the induction of zinc homeostasis genes by Zn~(2+)is mediated by Zur.
     To determine these putative zinc uptake systems really play a role in zinc uptake and the putative zinc efflux gene play a role in zinc export,the disruption mutants of these genes were constructed and the growths of the mutants of the putative zinc uptake systems were tested in Zn~(2+)deficient conditions,while the mutants of the zinc export gene were tested in high Zn~(2+)conditions.The results showed that mutants of the putative zinc uptake systems grew weakly than the wild type strains in zinc-deficient condition and addition of Zn~(2+)restore the growth to the wild type level,indicating that XC0266-XC0267, XC2471-XC2472-XC247 and XC3786-XC3787-XC3788 may encode zinc uptake systems.And the mutant of XC2976 mutant showed more sensitivity to Zn~(2+) than the wild type strain.This result combined with the fact that XC2976 showed sequence and structural similarity to CzcD,a characterized CDF type Zn~(2+)efflux protein,we concluded that XC2976 encoded a CDF-type Zn~(2+)efflux pump.
     The promoter-gusA transcriptional fusion reporter analysis showed that Zur negatively regulated the expression of these putative Zn~(2+)uptake systems and positively regulated the expression of a Zn~(2+)efflux pump.To determine Zur regulates theses genes directly or indirectly,electrophoretic mobility shift assays (EMSAs)were performed to analysis the in vitro binding of Zur with the promoter DNA fragment of these genes.EMSA results showed that Zur binds specifically to the promoter DNA fragments of both Zn~(2+)uptake systems and Zn~(2+)efflux pump and the binding required Zn~(2+),indicating that Zur regulates these genes directly.To completely demonstrate that Zur indeed directly
     activates the transcription of the Zn~(2+)efflux pump XC2976 and represses Zn~(2+) uptake systems XC0267,XC2471-2 and XC3788,in vitro transcription assays were performed.The results showed that addition of Zur to the in vitro reactions decreased the transcription from the promoters of XC0267,XC2471-2 and XC3788,but increased the transcription from the XC2976 promoter.These demonstrate that Zur represses the transcription of XC0267,XC2471-2 and XC3788,and activates the transcription ofXC2976,directly.
     To determine the Zur binding site in its target promoter,DNase I footprinting analysis was performed,and the results show that Zur bound to an~30bp E.coli "Zur-box" like sequence in the promoter of there putative Zn~(2+) uptake systems,but to a 59bp GC rich sequence containing a 20bp imperfect invert repeat in the promoter of the Zn~(2+)efflux pump.The Zur-binding sequence in the promoter of Zn~(2+)efflux pump show no sequence similarity to that in the promoter of putative Zn~(2+)uptake systems,indicating that Zur can recognize at least two distinct target sequences in Xcc.After determining the transcription start site by 5'-RACE,we found that Zur bound to the -10 and -35 regions in all the promoters of zinc homeostasis genes.
     The Zn~(2+)sensitivity and the zinc content in the cell of zur mutant were identical to those of the mutant of the Zn~(2+)efflux pump,indicating that the Zn~(2+) sensitivity of zur mutant was due to the absence of the Zn~(2+)efflux pump.All the mutants of zinc homeostasis genes showed identical virulence and EPS yield to wild type strain,revealing that the regulatory roles of Zur in zinc homeostasis was independent to that in virulence and EPS production.
     To investigate the exact role of Zur in the pathogenesis of Xcc,the genes that are regulated by Zur in minimal media MMX(a condition that most virulence genes were induced)were determined by DNA microarray analysis. The results showed that 149 genes were negatively regulated and 216 genes were positively regulated by Zur when grown in MMX.Of these 216 genes positively regulated by Zur,nearly all hrp genes were included,suggested that the reduced virulence of the zur mutant was due to the reduced expression of hrp genes.The reduced expression of hrp genes in the zur mutant was further confirmed by RT-PCR.Importantly,by construction of a promoter-gusA transcriptional reporter,we demonstrated that,in addition to the hrp cluster,Zur also positively regulates hrpX but not hrpG,indicating that Zur regulates the hrp cluster through controlling hrpX.Zur failed binding to the promoter of hrpX in EMSA indicating that Zur may regulate hrpX indirectly.
     To further confirm that Zur regulates hrp cluster via hrpX,a plasmid containing constitutively expressing hrpX was constructed and was induced into the zur mutant.Results of HR and virulence tests showed that a constitutive expressing hrpX fully restore the HR and partially restore the virulence of the zur mutant.These results demonstrated that Zur regulated hrp gene via hrpX.A constitutive expression hrpX conly partially restore the virulence of the zur mutant,indicating virulence gene(s)outside the HrpX regulon is regulated by Zur.
引文
1. Nies,D. H. (1999) Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. , 51, 730-750.
    2. Nies,D. H. and Silver,S. (1995) Ion efflux systems involved in bacterial metal resistances. J. Indust. Microbiol, 14,186-199.
    3. Beard,S. J. , Hashim,R. , Wu,G. , Binet,M. R. B. , Hughes,M. N. and Poole,R. K. (2000) Evidence for the transport of zinc(II) ions via the Pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. , 184,231-235.
    4. Webb,M. (1970) Interrelationships between the utilisation of magnesium and the uptake of other bivalent cations by bacteria. Biochim. Biophys. Acta. , 222, 428-439.
    5. Nelson,D. L. and Kennedy,E. P. (1971) Magnesium transport in Escherichia coli Inhibition by cobaltous ion. J. Biol. Chem. , 246, 3042- 3049.
    6. Jasper,P. and SiIver,S. (1997) Magnesium transport in microorganisms. Microbiology Series, 3, 7-47.
    7. Higgins,C. F. (1992) ABC transporters: from microorganisms to man, Ann. Rev. Cell Biol. , 8, 150-155.
    8. Claverys,J. P. (2001) A new family of high-affinity ABC manganese and zinc permeases. Res. Microbiol. , 152(3-4), 231-243.
    9. Haney,C. J. , Grass,G. , Franke,S. and Rensing,C. (2005) New developments in the understanding of the cation diffusion facilitator family. J. Ind. Microbiol Biotechnol. , 32(6), 215-226.
    10. Tseng,T. T. , Gratwick,K. S. , Kollman, J. , Park,D. , Nies,D. H. , Goffeau,A. and Saier,M. H. J. (1999) The RND superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol, 1, 107-125.
    11. Brown,D. E. , Thrall,M. A. , Walkley,S. U. , Wurzelmann,S. , Wenger,D. A. , Allison,R. W. and Just,C. A. (1996) Metabolic abnormalities in feline Niemann-Pick type C heterozygotes. J. Inherit. Metab. Dis. , 19, 319-330.
    12. Campo,J. V. , Stowe,R. , Slomka,G. , Byler,D. and Gracious,B. (1998) Psychosis as a presentation of physical disease in adolescence: a case of Niemann-Pick disease, type C. Dev. Med. Child. Neurol. , 40, 126-129.
    13. Saier,M. H. J. (1994) Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev. , 58, 71-93.
    14. Andersen,C. , Hughes,C. and Koronakis,V. (2001) Protein export and drug efflux through bacterial channel-tunnels. Curr. Opin. Cell Biol. , 13,412-416.
    15. Nies,D. H. , Nies,A. , Chu,L. and SiIver,S. (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. , 86, 7351-7355.
    16. Grosse,C. , Grass,G. , Anton,A. , Franke,S. , Navarrete Santos,A. , Lawley,B. , Brown,N. L. and Nies,D. H. (1999) Transcriptional organization of the czc heavy metal homoeostasis determinant from Alcaligenes eutrophus. J. Bacteriol. , 181, 2385-2393.
    17. Nies,D. H. (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J. Bacterioi. , 177, 2707-2712.
    18. GoIdberg,M. , Pribyl ,T. , Juhnke,S. and Nies,D. H. (1999) Energetics and topology of CzcA, a cation/proton antiporter of the RND protein family. J. Biol. Chem. , 274, 26065-26070.
    19. Zgurskaya,H. I. and Nikaido,H. (1999) Bypassing the periplasm: Reconstitution of the AcrAB multi drug efflux pump of Escherichia coli. Proc. Natl Acad. Sci. , 96, 7190-7195.
    20. Zgurskaya,H. I. and Nikaido,H. (2000) Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol. , 37,219-225.
    21. Paulsen, I. T. and Saier-Jr,M. H. (1997) A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol. , 156, 99-103.
    22. Anton,A. , Grosse,C, Reissmann,J. , PribyI,T. and Nies,D. H. (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J. Bacterioi, 181, 6876-6881.
    23. Delhaize,E. , Kataoka,T. , Hebb,D. M. , White,R. G. and Ryan,P. R. (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell, 15,1131-1142.
    24. Grass,G. , Otto,M. , Fricke,B. , Haney,C. J. , Rensing,C. , Nies,D. H. and MunkeIt,D. (2005) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch. Microbioi, 183, 9-18.
    25. Munkelt,D. , Grass,G. and Nies,D. H. (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J. Bacterioi, 186, 8036-8043.
    26. Persans,M. W. , Nieman,K. and Salt,D. E. (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc. Natl.Acad Sci.,98,9995-10000.
    27.Guffanti,A.A.,Wei,Y.,Rood,S.V.and Krulwich,T.A.(2002)An antiport mechanism for a member of the cation diffusion facilitator family:divalent cations efflux in exchange for K~+ and H~+.Mol.Microbiol.,45,145-153.
    28.Lee,S.M.,Grass,G.,Haney,C.J.,Fan,B.,Rosen,B.P.,Anton,A.,Nies,D.H.,Rensing,C.(2002)Functional analysis of the Escherichia coli zinc transporter ZitB.FEMS Microbiol Lett.,215,273-278.
    29.Fagan,M.J.and Saier-Jr.,M.H.(1994)P-type ATPases of eukaryotes and bacteria:sequence comparisons and construction of phylogenetic trees.J.Mol.Evol.,38,57-99.
    30.Okamura,H.,Denawa,M.,Ohniwa,R.and Takeyasu,K.(2003).P-Type ATPase Superfamily:Evidence for Critical Roles for Kingdom Evolution.Annals of the New York Academy of Sciences,986,219-223.
    31.Rensing,C.,Ghosh,M.and Rosen,B.P.(1999)Families of soft-metal-ion-transporting ATPases.J.Bacteriol.,181,5891-5897.
    32.Solioz,M.and Vulpe,C.(1996)CPx-type ATPases:A class of p-type ATPases that pump heavy metals.Trends Biochem.Sci.,21,237-241.
    33.Blencowe,D.K.and Morby,A.P.(2003)Zn(Ⅱ)metabolism in prokaryotes.FEMS Microbiology Reviews,27,291-311.
    34.Fan,B.and Rosen,B.P.(2002)Biochemical characterization of CopA,the Escherichia coli Cu(Ⅰ)-translocating P-type ATPase.J.Biol.Chem.,277,46987-46992.
    35.Rensing,C.and Grass,G.(2003)Escherichia coli mechanisms of copper homeostasis in a changing environment.FEMS Microbiol.Rev.,27,197-213.
    36.Nies,D.H.(2003)Efflux-mediated heavy metal resistance in prokaryotes.FEMS Microbiol.Rev.,27,313-339.
    37.Nucifora,G.,Chu,L.,Misra,T.K.and Silver,S.(1989)Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase.Proc.Natl.Acad.Sci.,86,3544-3548.
    38.Udo,E.E.,Jacob,L.E.and Mathew,B.(2000)A cadmium resistance plasmid,pXU5,in Staphylococcus aureus strain ATCC25923.FEMS Microbiol.Lett.,189,79-80.
    39.Tong,L.,Nakashima,S.,Shibasaka,M.,Katsuhara,M.and Kasamo,K.(2002)A novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavymetal cotolerance.J.Bacteriol.,184,5027-5035.
    40.Gabaila,A.and Heimann,J.D.(2002)A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis.Mol.Microbiol.,45,997-1005.
    41.Odermatt,A.,Suter,H.,Krapf,R.and Solioz,M.(1992)An ATPase operon involved in copper resistance by Enterococcus hirae. Ann. NY Acad. Sci. , 671, 484-486.
    42. Odermatt,A. , Suter,H. , Krapf,R. and Solioz,M. (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. , 268, 12775-12779.
    43. Odermatt,A. , Krapf,R. and SoIioz,M. (1994) Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Agt and Cu2t, and Agt extrusion by CopB. Biochem. Biophys. Res. Commun. , 202,44-48.
    44. Odermatt,A. and Solioz,M. (1995) Two trans-acting metalloregulatory proteins controlling expression of the copper-ATPases of Enterococcus hirae. J. Biol. Chem. , 270, 4349-4354.
    45. Lu,Z. H. , Dameron,C. T. and Solioz,M. (2003) The Enterococcus hirae paradigm of copper homeostasis: Copper chaperone turnover, interactions, and transactions. Biometals, 16, 137-143.
    46. Cavet,J. S. , Borrelly,G. P. M. and Robinson,N. J. (2003) Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol. Rev. , 27, 165-181.
    47. Pennella,M. A. and Giedroc,D. P. (2005) Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators. BioMetals, 18, 413-428.
    48. Brown,N. L. , Stoyanov,J. V. , Kidd,S. P. and Hobman,J. L. (2003) The MerR family of transcriptional regulators. FEMS Microbiol. Rev. , 27, 145-163.
    49. Silver,S. (1996) Bacterial resistances to toxic metal ions - a review. Gene, 179, 9-19.
    50. Busenlehner,L. S. , Cosper,N. J. , Scott,R. A. , Rosen,B. P. , Wong,M. D. and Giedroc,D. P. (2001) Spectroscopic properties of the metalloregulatory Cd(II) and Pb(II) sites of S. aureuspI258 CadC. Biochemistry, 40,4426-4436.
    51. Van Zile,M. L. , Chen,X. and Giedroc,D. P. (2002) Allosteric negative regulation of smt O/P binding of the zinc sensor, SmtB, by metal ions: a coupled equilibrium analysis. Biochemistry, 41, 9776-9786.
    52. Busenlehner,L. S. , Pennella,M. A. and Giedroc,D. P. (2003) The SmtB/ ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol. Rev. , 27, 131-143.
    53. EscoIar,L. , Pe'rez-Martin,J. and de Lorenzo,V. (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. , 181, 6223-6229.
    54. Coy,M. and Neilands,J. B. (1991) Structural dynamics and functional domains of the Fur protein. Biochemistry, 30, 8201-8210.
    55. Bagg,A. and Neilands,J. B. (1987) Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli Biochemistry, 26, 5471-5477.
    56.Stojiljkovic,I.and Hantke,K.(1995)Functional domains of the Escherichia coli ferric uptake regulator protein(Fur).Mol.Gen.Genet.,247,199-205.
    57.De Luca,N.,Wexler,M.,Pereira,M.,Yeoman,K.H.and Johnston,A.W.(1998)Is the fur gene of Rhizobium leguminosarum essential? FEMS Microbiol.Lett.168,289-295.
    58.Le Cam,E.,Fre.chon,D.,Barray,M.,Fourcade,A.and Delain,E.(1994)Observation of binding and polymerization of Fur repressor onto operator-containing DNA with electron and atomic force microscopes.Proc.Natl.Acad.Sci.,91,11816-11820.
    59.Escolar,L.,Pe'rez-Martin,J.and de Lorenzo,V.(2000)Evidence of an unusually long operator for the Fur repressor in the aerobactin promoter of Escherichia coli J.Biol.Chem.,275,24709-24714.
    60.Stojiljkovic,I.,Baumler,A.J.and Hantke,K.(1994)Fur regulon in gram-negative bacteria.Identification and characterization of new iron-regulated Escherichia coli genes by a Fur titration assay.J.Mol.Biol.,236,531-545.
    61.Park,S.J.and Gunsalus,R.P.(1995)Oxygen,iron,carbon,and superoxide control of the fumarase fum A and fumC genes of Escherichia coli:Role of the arcA,fnr,and soxR gene products.J.Bacteriol.,177,6255-6262.
    62.Vassinova,N.and Kozyruv,D.(2000)A method for direct cloning of Fur-regulated genes:identification of seven new Fur-regulated loci in Escherichia coli.Microbiology,146,3171-3182.
    63.Touati,D.(1988)Transcriptional and posttranscriptional regulation of manganese superoxide dismutase biosynthesis in Escherichia coli,studied with operon and protein fusions.J.Bacteriol.,170,2511-2520.
    64.Delany,I.,Spohn,G.,Rappuoli,R.and Scarlato,V.(2001)The Fur repressor controls transcription of iron-activated and-repressed genes in Helicobacter pylori.Mol.Microbiol.,42,1297-1309.
    65.Masse.,E.and Gottesman,S.(2002)A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli.Proc.Natl.Acad.Sci.,99,4620-4625.
    66.Tseng,C.P.(1997)Regulation of fumarase(fumB)gene expression in Escherichia coli in response to oxygen,iron and heme availability:role of the arcA,fur,and hemA gene products.FEMS Microbiol.Lett.,157,67-72.
    67.Hantke,K.(2001)Iron and metal regulation in bacteria.Curr.Opin.Microbiol.,4,172-177.
    68.Crosa,J.H.(1997)Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria.Microbiol.Mol.Biol.Rev.,61,319-336.
    69.Ghassemian,M.and Straus,N.A.(1996)Fur regulates the expression of iron-stress genes in the Cyanobacterium Synechococcus sp.strain PCC 7942.Microbiology,142, 1469-1476.
    70.Diaz-Mireles,E.,Wexler,M.,Sawers,G,Bellini,D,Todd,J.D.and Johnston,A.W.(2004)The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator.Microbiology,150,1447-1456.
    71.Bellini,P.and Hemmings,A.M.(2006)In vitro characterization of a bacterial manganese uptake regulator of the fur superfamily.Biochemistry,45,2686-2698.
    72.Diaz-Mireles,E.,Wexler,M.,Todd,J.D.,Bellini,D.,Johnston,A.W.and Sawers,R.G.(2005)The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence.Microbiology,151,4071-4078.
    73.Lee,J.Wo and Helmann,J.D.(2007)Functional specialization within the Fur family of metalloregulators.Biometals,20,485-499.
    74.Ahn,B.E.,Cha,J.,Lee,E.J.,Han,A.R.,Thompson,C.J.and Roe,J.H.(2006)Nur,a nickel-responsive regulator of the Fur family,regulates superoxide dismutases and nickel transport in Streptomyces coelicolor.Mol.Microbiol.,59,1848-1858.
    75.Bsat,N.,Herbig,A.,Casillas-Martinez,L.,Setiow,P.and Helmann,J.D.(1998)Bacillus subtilis contains multiple Fur homologues;identification of the iron uptake(Fur)and peroxide regulon(PerR)repressors.Mol.Microbiol.,29,189-198.
    76.Mongkolsuk,S.and Helmann,J.D.(2002)Regulation of inducible peroxide stress responses.Mol.Microbiol.,45,9-15.
    77.Fuangthong,M.,Herbig,A.F.,Bsat,N.and Helmann,J.D.(2002)Regulation of the Bacillus subtilis fur and per R genes by PerR:not all members of the PerR regulon are peroxide inducible.J.Bacteriol.,184,3276-3286.
    78.Herbig,A.F.and Helmann,J.D.(2001)Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA.Mol.Microbiol.,41,849-859.
    79.Lee,J.W.and Helmann,J.D.(2006)Biochemical characterization of the structural Zn~(2+)site in the Bacillus subtilis peroxide sensor PerR.J.Biol.Chem.,281,23567-23578.
    80.Lee,J.W.and Helmann,J.D.(2006)The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation.Nature,440,363-367.
    81.Boyd,J.,Oza,M.N.and Murphy,J.R.(1990)Molecular cloning and DNA sequence analysis of a diphtheria toxin iron-dependent regulatory element(dtxR)from Corynebacterium diphtheriae.Proc.Natl.Acad.Sci.,87,5968-5972.
    82.Dussurget,O.,Rodriguez,M.and Smith,I.(1996)An IdeR mutant of Mycrobacterium smegmatis has derepressed siderophore production and altered oxidative stress response.Mol.Microbiol.,22,535-544.
    83.HilI,P.J.,Cockayne,A.,Landers,P.,Morrissey,J.A.,Sims,C.M.and Williams,P.(1998)SirR,a novel iron-dependent repressor in Staphylococcus epidermidis.Infect.Immun.,66,4123-4129.
    84.Schmitt,M.P.,Talley,B.G.and Holmes,R.K.(1997)Characterisation of lipoprotein IRP1 from Corynebacterium diphtheriae,which is regulated by the diphtheria toxin repressor(DtxR)and iron.Infect.Immun.,65,5364-5367.
    85.Rodriguez,G.M.,Voskuil,M.I.,Gold,B.,Schoolnik,G.K.and Smith,I.(2002)ideR,An essential gene in mycobacterium tuberculosis:role of IdeR in iron-dependent gene expression,iron metabolism,and oxidative stress response.Infect Immun.,70(7),3371-3381.
    86.Gold,B.,Rodriguez,G.M.,Marras,S.A.,Pentecost,M.and Smith,I.(2001)The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition,iron storage and survival in macrophages.Mol.Micrbiol.,42(3),851-865.
    87.Andrews,S.C.,Robinson,A.K.and Rodriguez-Quinones,F.(2003)Bacterial iron homeostasis.FEMS Microbiology Reviews,27,215-237.
    88.Glasfeld,A.,Guedon,E.,Helmann,J.D.and Brennan,R.G.(2003)Structure of the manganese-bound manganese transport regulator of Bacillus subtilis.Nat.Struct.Biol.,10,652-657.
    89.Kehres,D.G.and Maguire,M.E.(2003)Emerging themes in manganese transport,biochemistry and pathogenesis in bacteria.FEMS Microbiol.Rev.,27,263-290.
    90.Ikeda,J.S.,Janakiraman,A.,Kehres,D.G.,Maguire,M.E.and Slaueh,J.M.(2005)Transcriptional Regulation of sit ABCD of Salmonella enterica,Serovar Typhimurium by MntR and Fur.J.Bacteriol.,187,912-922.
    91.Navarro,C.,Wu,L.F.and Mandrand-Berthelot,M.A.(1993)The nik operon of Escherichia coli encodes a periplasmic binding protein-dependent transport system for nickel.Mol Microbiol.,9,1181-1191.
    92.De Pina,K.,Desjardin,V.,Mandrand-Berthelot,M.A.,Giordano,G.and Wu,L.F.(1999)Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli.J.Bacteriol.,181,670-674.
    93.Chivers,P.T.and Sauer,R.T.(1999)NikR is a ribbon-helix-helix DNA binding protein.Protein Sci.,8,2494-2500.
    94.Chivers,P.T.and Sauer,R.T.(2002)NikR repressor:high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA.Chem.Biol.,9,1141-1148.
    95.Chivers,P.T.and Sauer,R.T.(2000)Regulation of high affinity nickel uptake in bacteria.Ni~(2+)-Dependent interaction of NikR with wild-type and mutant operator sites.J.Biol. Chem.,275,19735-19741.
    96.Carrington,P.E.,Chivers,P.T.,Al-Mjeni,F.,Sauer,R.T.and Maroney,M.J.(2003)Nickel coordination is regulated by the DNAbound state of NikR.Nat.Struct.Biol.,10,126-130.
    97.Jubier-Maurin,V.,Rodrigue,A.,Ouahrani-Bettache,S.,et al.(2001)Identification of the nik gene cluster of Brucella suis:regulation and contribution to urease activity.J.Bacteriol.,183,426-434.
    98.Van-Vliet,A.H.,Ernst,F.D.and Kusters,J.G.(2004)NikR-mediated regulation of Helicobacter pylori acid adaptation.Trends Microbiol.,12,489-494.
    99.Choudhury,R.and Srivastava,S.(2001)Zinc resistance mechanisms in bacteria.Curr.Sci.,81,768-775.
    100.Vallee,B.L.and Auld,D.S.(1990)Zinc coordination,function,and structure of zinc enzymes and other proteins.Biochemistry,29,5647-5659.
    101.Coleman,J.E.(1992)Zinc proteins:enzymes,storage proteins,transcription factors,and replication proteins.Annu.Rev.Biochem.,61,897-946.
    102.Chou,A.Y.,Archdeacon,J.and Kado,C.I.(1998)Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt.Proc.Natl.Acad.Sci.,95,5293-5298.
    103.Bird,A.J.,Turner-Cavet,J.S.,Lakey,J.H.and Robinson,N.J.(1998)A carboxyl-terminal Cys_2/His_2-type zinc-finger motif in DNA primase influences DNA content in Synechococcus PCC 7942.J.Biol.Chem.,273,21246-21252.
    104.Daniel,H.and Adibi,S.A.(1995)Selective effect of zinc on the uphill transport of oligopeptides into kidney brush border membrane vesicles.FASEB J.,9,1112-1117.
    105.O'Halloran,T.V.(1993)Transition-metals in control of gene-expression.Science,261,715-725.
    106.Chvapil,M.(1973)New aspects in the biological role of zinc:a stabilizer of macromolecules and biological membranes.Life Sci.,13,1041-1049.
    107.Sugarman,B.(1983)Zinc and infection.Rev.Infect.Dis.,5,137-147.
    108.Shankar,A.H.and Prasad,A.S.(1998)Zinc and immune function:the biological basis of altered resistance to infection.Am.J.Clin.Nutr.,68,447S-463S.
    109.Auld,D.S.(2001)Zinc coordination sphere in biochemical zinc sites.Biometals,14,271-313.
    110.Hantke,K.(2001)Bacterial zinc transporters and regulators.Biometals.,14(3-4),239-49.
    111.Dintilhac,A.,Alloing,G.,Granadel,C.and Claverys,J.P.(1997)Competence and virulence of Streptococcus pneumoniae:adc and psaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases.Mol.Microbiol.,25,727-740.
    112.Lu D.,Boyd B.and Lingwood C.A.(1997)Identification of the key protein for zinc uptake in Haemophilus influenzae.J.Biol.Chem.,272,29033-29038.
    113.Lewis,D.A.,Klesney-Tait,J.,Lumbley,S.R.,Ward,C.K.,Latimer,J.L.,Ison,C.A.and Hansen,E.J.(1999)Identification of the znuA-encoded periplasmic zinc transport protein of Haemophilus ducreyi.Infect.Immun.,67,5060-5068.
    114.Gaballa,A.and Helmann,J.D.(1998)Identification of a zinc-specific metalloregulatory protein,Zur,controlling zinc transport operons in Bacillus subtilis.J.Bacteriol.,180,5815-5821.
    115.Dalet,K.,Gouin,E.,Cenatiempo,Y.,Cossart,P.and Hechard,Y.(1999)Characterisation of a new operon encoding a Zur-like protein and an associated ABC zinc permease in Listeria monocytogenes.FEMS Microbiol Lett.,174,111-116.
    116.Patzer,S.I.,and Hantke,K.(1998)The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli.Mol.Microbiol.,28,1199-1210.
    117.Chen,C.Y.and Morse,S.A.(2001)Identification and characterization of a high-affinity zinc uptake system in Neisseria gonorrhoeae.FEMS Microbiol.Lett.,202,67-71.
    118.Campoy,S.,Jara,M.,Busquets,N.,Perez De Rozas,A.M.,Badiola,I..and Barbe,J.(2002)Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence.Infect.Immun.,70,4721-4725.
    119.Garrido,M.E.,Bosch,M.,Medina,R,Llagostera,M.,Perez de Rozas,A.M.,Badiola,I.and Barbe,J.(2003)The high-affinity zinc-uptake system znuACB is under control of the iron-uptake regulator(fur)gene in the animal pathogen Pasteurella multocida.FEMS Microbiol.Lett.,221,31-37.
    120.Grass,G,Wong,M.D.,Rosen,B.P.,Smith,R.L.and Rensing,C.(2002)ZupT is a Zn(Ⅱ)uptake system in Escherichia coli.J.Bacteriol.,184,864-866.
    121.Krom,B.P.,Warner,J.B.,Konings,W.N.and Lolkema,J.S.(2000)Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis.J.Bacteriol.,182,6374-6381.
    122.Janulczyk,R.,Pallon,J.and Bjorck,L.(1999)Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations.Mol.Microbiol,34,596-606.
    123.Hazlett,K.R.,Rusnak,F.,Kehres,D.G.,et al.(2003)The Yreponema pallidum tro operon encodes a multiple metal transporter,a zinc-dependent transcriptional repressor,and a semiautonomously expressed phosphoglycerate mutase.J.Biol.Chem.,278,20687-20694.
    124.Xiong,A.and Jayaswal,R.K.(1998).Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus.J.Bacteriol.,180,4024-4029.
    125.Grass,G.and Rensing,C.(2001)Genes involved in copper homeostasis in Escherichia coli.J.Bacteriol.,183,2145-2147.
    126.Yoon,K.P.,Misra,T.K.and Silver,S.(1991)Regulation of the cadA cadmium resistance determinant of Staphlococcus aureus plasmid pi258.J.Bacteriol..173,7643-7649.
    127.Yoon,K.P.and Silver,S.(1991)A second gene in the Staphlococcus aureus cadA cadmium resistance determinant of plasmid pi258.J.Bacteriol.,173,7636-7642.
    128.Herrmann,L.,Schwan,D.,Garner,R.,Mobley,H.L.,Haas,R.,Schafer,K.P.and Melchers,K.(1999)Helicobacter priori cadA encodes an essential Cd(Ⅱ)-Zn(Ⅱ)-Co(Ⅱ)resistance factor influencing urease activity.Mol.Microbiol.,33,524-536.
    129.Rensing,C.,Mitra,B.and Rosen,B.P.(1997)The zntA gene of Escherichia coli encodes a Zn(Ⅱ)-translocating P-type ATPase.Proc.Natl.Acad.Sci.,94,14326-14331.
    130.Brocklehurst,K.R.,Hobman,J.L.,Lawley,B.,Blank,L,Marshali,S.J.,Brown,N.L.and Morby,A.P.(1999)ZntR is a Zn(Ⅱ)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli Mol.Microbiol.,31,893-902.
    131.Thelwell,C.,Robinson,N.J.and TurnerCavet,J.S.(1998)An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter.Proc.Natl.Acad.Sci.,95,10728-10733.
    132.Worlock,A.J.and Smith,R.L.(2002)ZntB is a novel Zn2t transporter in Salmonella enterica serovar Typhimurium.J.Bacteriol.,184,4369-4373.
    133.Rensing,C.,Sun,Y.,Mitra,B.and Rosen,B.P.(1998)Pb(Ⅱ)-translocating P-type ATPases.J.Biol.Chem.,273,32614-32617.
    134.Lindsay,J.A.and Foster,S.J.(2001)zur:a Zn(2+)-responsive regulatory element of Staphylococcus aureus.Microbiology,147,1259-1266.
    135.Tang,D.J.,Li,X.J.,He,Y.Q.,Feng,J.X.,Chen,B.and Tang,J.L.(2005)The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv.campestris.Mol.Plant Microbe Interac.,18,652-658.
    136.Yang,W.,Liu,Y.,Chen,L.,Gao,T.,Hu,B.,Zhang,D.and Liu,F.(2007)Zinc Uptake Regulator(zur)Gene Involved in Zinc Homeostasis and Virulence of Xanthomonas oryzae pv.oryzae in Rice.Curt Microbiol.,54(4),307-314.
    137.Maciag,A.,Dainese,E.,Rodriguez,G.M.,Milano,A.,Provvedi,R.,Pasca,M.R.,Smith,L,Palu,G.,Riccardi,G.and Manganelli,R.(2007)Global analysis of Mycobacterium tuberculosis Zur(FurB)regulon.J.Bacteriol.,189,730-740.
    138.Shin,J.H.,Oh,S.Y.,Kim,S.J.,Roe,J.H.(2007)The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2).J.Bacteriol.,189(11),4070-4077.
    139.Patzer,S.I.,and Hantke,K.(2000)The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli.J.Biol.Chem.,275,24321-24332.
    140.Outten,C.E.,and O'Halloran,T.V.(2001)Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis.Science,292,2488-2492.
    141.Gaballa,A.,Wang,T,Ye,R.W.and Helmann,J.D.(2002)Functional analysis of the Bacillus subtilis Zur regulon.J.Bacteriol.,184,6508-6514.
    142.Owen,G.A.,Pascoe,B.,Kallifidas,D.and Paget,M.S.(2007)Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves zur and sigmaR.J.Bacteriol.,189,4078-4086.
    143.Outten,C.E.,Tobin,D.A.,Penner-Hahn,J.E.and O'Halloran,T.V.(2001)Characterization of the metal receptor sites in Escherichia coli Zur,an ultrasensitive zinc(Ⅱ)metalloregulatory protein.Biochemistry(Moscow),40,10417-10423.
    144.Morby,A.P.,Turner,J.S.,Huckle,J.W.and Robinson,N.J.(1993)SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA:identification ofa Zn inhibited DNA-protein complex.Nucleic Acids Res.,21,921-925.
    145.Erbe,J.L.,Taylor,K.B.and HalI,L.M.(1995)Metalloregulation of the cyanobacterial smt locus:identification of SmtB binding sites and direct interaction with metals.Nucleic Acids Res.,23,2472-2478.
    146.Turner,J.S.,Glands,P.D.,Samson,A.C.R.and Robinson,N.J.(1996)Zn~(2+)-sensing by the cyanobacterial metallothionein repressor SmtB:different motifs mediate metal-induced protein-DNA dissociation.Nucleic Acids Res.,24,3714-3721.
    147.Hantke,K.(2005)Bacterial zinc uptake and regulators.Curr.Opin.Microbiol.,8,196-202.
    148.Marco,G.M.and Stall,R.E.(1983)Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv.vesicatoria that differ in sensitivity to copper.Plant Dis.,67,779-781.
    149.Voloudakis,A.E.,Bender,C.L.and Cooksey,D.A.(1993)Similarity between Copper Resistance Genes from Xanthomonas campestris and Pseudomonas syringae.Appl.Environ.Microbiol.,59(5),1627-1634.
    150.Adaskaveg,J.E.and Hine,R.B.(1985)Copper tolerance and zinc sensitivity of Mexican strains of Xanthomonas campestris pv.vesicatoria,causal agent of bacterial spot of pepper.Plant Dis.,69,993-996.
    151.Stall,R.E.,Loschke,D.C.and Jones,J.B.(1986)Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv.vesicatoria.Phytopathology,76,240-243.
    152.Mellano,M.A.and Cooksey,D.A.(1988)Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv.tomato.J.Bacteriol.,170,2879-2883.
    153.Cooksey,D.A.,Azad,H.R.,Cha,J.S.and Lim,C.K.(1990)Copper Resistance Gene Homologs in Pathogenic and Saprophytic Bacterial Species from Tomato.Appl.Environ.Microbiol.,56(2),431-435.
    154.Lee,Y.A.,Hendson,M.,Panopoulos,N.J.and Sehroth,M.N.(1994)Molecular cloning,chromosomal mapping,and sequence analysis of copper resistance genes from Xanthornonas campestris pv.juglandis:homology with small blue copper proteins and multicopper oxidase.J.Bacteriol.,176(1),173-88.
    155.Basim,H.,Minsavage,G.V.,Stall,R.E.,Wang,J.F.,Shanker,S.and Jones,J.B.(2005)Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv.vesicatoria.Appl.Environ.Microbiol.,71(12),8284-8291.
    156.Sanehez,P.,Alonso,A.and Martinez,J.L.(2002)Cloning and characterization of SmeT,a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF.Antimicrob.Agents Chemother,46(11),3386-3393.
    157.Alonso,A.and Martinez,J.L.(2000)Cloning and characterization of SmeDEF,a novel multidrug efflux pump from Stenotrophomonas maltophilia.Antimicrob Agents Chemother,44(11),3079-3086.
    158.Zhang,L.,Li,N.Z.and Poole,K.(2001)SmeDEF multidrug efflux pump contributes to intrinsic multidrug resistance in Stenotrophomonas maltophilia.Antimicrob.Agents Chemother.,45(12),3497-3503.
    159.Ryan,R.P.,Ryan,D.J.,Sun,Y.C.,Li,F.M.,Wang,Y.and Dowling,D.N.(2007)An acquired effiux system is responsible for copper resistance in Xanthomonas strain IG-8isolated from China.FEMS Microbiol.Lett.,268(1),40-46.
    160.da Silva et al.(2002)Comparison of the genomes of two Xanthomonas pathogens with differing host specificities.Nature,417,459-462.
    161.Simpson et al.,(2000)The genome sequence of the plant pathogen.Xylella.fastidiosa.,406,151-157.
    162.Voloudakis,A.E.,Reignier,T.M.and Cooksey,D.A.(2005)Regulation of resistance to copper in Xanthornonas axonopodis pv.vesicatoria.Appl.Environ.Microbiol.,71(2),782-789.
    163.Loprasert,S.,Sallabhan,R.,Atichartpongkul,S.and Mongkolsuk,S.(1999) Characterization of a ferric uptake regulator (fur) gene from Xanthomonas campestris pv. phaseoli with unusual primary structure, genome organization, and expression patterns. Gene, 239(2), 251-8.
    164. Barber,C. E. , Tang,J-L, Feng,J-X, Pan,M-Q, WiIson,T. J. G. , Slater,H. , Dow,J. M. , WiIliams,P. and Daniels,M. J. (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol. Microbiol. , 24, 555-566.
    165. Chatterjee,S. and Sonti,R. V. (2002) rpfF mutants of Xanthomonas oryzae pv. Oryzae are deficient for virulence and growth under low iron conditions. Mol. Plant Microbe Interact. , 15(5), 463-471.
    166. Grunden,A. M. and Shanmugam. K. T. (1997) Molybdate transport and regulation in bacteria, Arch. Microbiol. , 168, 345-354.
    167. Self,W. T. , Grunden,A. M. , Hasona,A. and Shanmugam,K. T. (2001) Molybdate transport. Res. Microbiol. , 152, 311-321.
    168. Maupin-Furlow,J. A. , Rosenthel,J. , Lee,J. H. , Deppenmeier,U. , Gunsalus,R. P. and Shanmugan,K. T. (1995) Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J. Bacteriol. , 177, 4851-4856.
    169. Balan,A. , Santacruz,C. P. , Moutran,A. , Ferreira,R. C. , Medrano,F. J. , Perez,C. A. , Ramos, C. H. and Ferreira,L. C. (2006) The molybdate-binding protein (ModA) of the plant pathogen Xanthomonas axonopodis pv. Citri. Protein Expr. Purif. , 50(2), 215-22.
    170. Liu,S. X. , Athar,M. , Lippai,I. , Waldren,C. and Hei,T. K. (2001) Induction of oxyradicals by arsenic: Implication for mechanism of genotoxicity. Proc. Natl. Acad. Sei. , 98,1643-1648.
    171. Shi,H. , Shi,X. and Liu,K. J. (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol. Cell Biochem. , 255, 67-78.
    172. Sukchawalit,R. , Prapagdee,B. , Charoenlap,N. , Vattanaviboon,P. and Mongkolsuk,S. (2005) Protection of Xanthomonas against arsenic toxicity involves the peroxide-sensing transcription regulator OxyR. Res. Microbiol, 156(1), 30-34.
    173. Kjemtrup,S. , Nimchuk,Z. and Dangl,J. L. (2000) Effector proteins of phytopathogenic bacteria: Bifunctional signals in virulence and host recognition. Curr. Opin. Microbiol, 3, 73-78.
    174. Kao,C. C. , Barlow,E. and Sequeira,L. (1992) Extracellular polysaccharide is required for wild-type virulence of Pseudomonas solanacearum. J Bacteriol, 174, 1068-1071.
    175. Katzen,F. , Ferreiro,D. U. , Oddo,C. G. , Ielmini,M. V. , Becker,A. , Puhler,A. and Ielpi, L. (1998) Xanthomonas campestris pv. campestris gum Mutants: effects on xanthan biosynthesis and plant virulence. J. Bacteriol. , 180,1607-1617.
    176.Wassenaar,T.M.and Gaastra,W.(2001)Bacterial virulence:can we draw the line?FEMS Microbiol.Lett.,201,1-7.
    177.Mole,B.M.,Baltrus,D.A.,Dangl,J.L.and Grant,S.R.(2007)Global virulence regulation networks in phytopathogenic bacteria.Trends Microbiol.,15,363-371.
    178.Galan,J.E.and Collmer,A.(1999)Type Ⅲ secretion machines:Bacterial devices for protein delivery into host cells.Science,284,1322-1328.
    179.Marlovits,T.C.,Kubori,T.,Sukhan,A.,Thomas,D.R.,Galan,J.E.and Unger,V.M.(2004)Structural insights into the assembly of the type Ⅲ secretion needle complex.Science,306,1040-1042.
    180.Weber,E.,Ojanen-Reuhs,T.,Huguet,E.,Hause,G.,Romantschuk,M.,Korhonen,T.K.,Bonas,U.and Koebnik,R.(2005)The type Ⅲ-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv.vesicatoria with pepper host plants.J.Bacteriol.,187,2458-2468.
    181.Lindgren,P.B.,Peet,R.C.and Panopoulos,N.J.(1986)Gene cluster of Pseudomonas syringae pv "phaseolicola" controls pathogenicity of bean plants and hypersensitivity on nonhost plants.J.Bacterio.,168,512- 522.
    182.Bonas,U.(1994)hrp genes of phytopathogenic bacteria.Curr.Top.Microbiol.Immunol.,192,79-98.
    183.Lindgren,P.B.(1997)The role of hrp Genes during plant-bacterial interactions.Annu.Rev.Phytopathol.,35,129-152.
    184.Bogdanove,A.,Beer,S.V.,Bonas,U.,Boucher,C.A.,Collmer,A.,Coplin,D.L.,Cornelis,G.R.,Huang,H.C.and Hutcheson,S.W.(1996)Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria.Mol.Microbiology.,20,681-683.
    185.Hueck,C.J.(1998)Type Ⅲ protein secretion systems in bacterial pathogens of animals and plants.Microbiology and Molecular Biology.Review,s,62,379-433.
    186.Kubori,T.,Matsushima,Y.,Nakamura,D.,Uralil,J.,Lara-Tejero,M.,Sukhan,A.,Galan,J.E.and Aizawa,S.I..(1998)Supramolecular structure of the Salmonella typhirnurium type Ⅲ protein secretion system.Science,280,602-605.
    187.Alfano,J.R.and Collmer,A.(1997)The type Ⅲ(Hrp)secretion pathway of plant pathogenic bacteria:Trafficking harpins,Avr proteins,and death.J.Bacteriol.,179,5655-5662.
    188.Fouts,D.E.,Abramovitch,R.B.,Alfano,J.R.,Baldo,A.M.,Buell,C.R.,Cartinhour,S.,Chatteriee,A.K.,D'Ascenzo,M.,Gwinn,M.L.,Lazarowitz,S.G.,Lin,N.C.,Martin,G.B.,Rehm,A.H.Sehneider,D.J.,van Diik,K.,Tang,X.Y.and Collmer,A.(2002)Genomewide identification of Pseudomonas syringae pv.tomato DC3000 promoters controlled by the HrpL altemative sigma factor.Proc.Natl.Acad.Sci.,99(4),2275-2280.
    189.Wei,W.,Plovanich-Jones,A.,Deng,W.L.,Jin,Q.L.,Collmer,A.,Huang,H.C.and He,S.Y.(2000)The gene coding for the Hrp pilus structural protein is required for type Ⅲ secretion of Hrp and Avr proteins in Pseudomonas syringae pv.tomato.Proc.Natl.Acad.Sci.,97(5),2247-2252.
    190.Xiao,Y.and Huteheson,S.W.(1994)A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae.J.Bacterial.,176(10),3089-3091.
    191.Tang,X.Y.,Xiao,Y.M.and Zhou,J.M.(2006)Regulation of the Type Ⅲ Secretion System in Phytopathogenic Bacteria.MPMI,19,1159-1166.
    192.Hikiehi,Y.,Yoshimoehi,T.,Tsujimoto,S.,Shinohara,R,Nakaho,K.,Kanda,A.,Kiba,A.and Ohnishi,K.(2007)Global regulation of pathogenicity mechanism of Ralstonia Solanacearum.Plant Biotechnology,24,149-154.
    193.Tsuge,S.,Nakayama,T.,Terashima,S.,Oehiai,H.,Furutani,A.,Oku,T.,Tsuno,K.,Kubo,Y.and Kaku,H.(2006)Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv.oryzae.J.Bacteriol.,188,4158-4162.
    194.Wengelnik,K.,Van den Ackerveken,G.and Bonas,U.(1996)HrpG,a key hrp regulatory protein of Xanthomonas campestris pv.vesicatoria,is homologous to two-component response regulators.Mol.Plant-Microbe Interact.,9:704-712.
    195.Schulte,R.and Bonas,U.(1992)Expression of the Xanthomonas campestris pv.vesicatoria hrp gene cluster,which determ ines pathogenicity and hypersensitivity on pepper and tomato,is plant inducible.J.bacterial.,174,815-823.
    196.Xiao,Y.,Lu,Y.,Heu,S.and Hutcheson,S.W.(1992)Organization and environmental regulation of the Pseudomonas syringae pv.syringae 61 hrp cluster,J.Bacteriol.,74,1734-1741.
    197.Rahme,L.G.,Mindrinos,M.N.and Panopoulos,N.J.(1992)Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv.phaseolicola.J.Bacteriol.,174(11),3499-3507.
    198.Wei,Z.M.,Sneath,B.J.and Beer,S.V.(1992)Expression of Erwinia amylovora hrp genes in response to environmental stimuli.J.Bacteriol.,174,1875-1882.
    199.Wengelnik,K.and Bonas,U.(1996)HrpXv,an MaC-type regulator,activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv.vesicatoria,J.Bacterial.,178(12),3462-3469.
    200.广西大学分子遗传研究所微生物基因组研究室编,野油菜黄单胞菌及其致病机理(试用本)。2003年2月。
    201. Schafer,A. , Tauch,A. , Jager,W. , Kalinowski,J. , Thierbach,G. and Puhler,A. (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145, 69-73.
    202. Huynh,T. V. , Dahlbeck,D. and Staskawicz,B. J. (1989) Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science, 245, 1374-1377.
    203. Staskawicz,B. J. , Dahlbeck,D. , Keen,N. and Napoli,C. (1987) Molecular characterization of cloned avirulence genes from race 0 and race1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169, 5789-5794.
    204. Leong,S. A. , Ditta,G. S. and Helinski,D. R. (1982) Heme biosynthesis in Rhizobium: Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. J. Biol. Chem. , 257,8724-8730.
    205. Yanisch-Perron,C, Vieira,J. and Messing,J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33,103-119.
    206. Daniels,M. J. , Barber,C. , Turner,E. P. C, Sawczyc,M. K. , Byrde,R. J. W. and Fielding,A. H. (1984) Clonging of genes involved inpathogenicity of Xanthomonas campestris pv. campestris using the broad-host-range cosmid pLAFR1. EMBO J. , 3, 3323-3328.
    207. Qian, W. , Jia,Y. , Ren,S. X. , He, Y. Q. , Feng,J. X. , Lu,L. F. , Sun,Q. , Ying,G, Tang,D. J. , Tang, H. , Wu,W. , Hao,P. , Wang,L. , Jiang,B. L. , Zeng,S. , Gu,W. Y. , Lu,G. , Rong,L. , Tian,Y, Yao,Z. , Fu,G. , Chen,B. , Fang,R. , Qiang,B. , Chen,Z. , Zhao,G. P. , and Tang,C. H. (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. , 15, 757-767.
    208. He,Y-Q. , Zhang,L. , Jiang,B-L. , Zhang,Z-C. , Xu,R-Q. , Tang,D-J. , Qin,J. , Jiang,W. , Zhang,X. and Liao,J. , et al. (2007) Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biol. , 8(10): R218.
    209. Yang,H. , Haddad,H. , Tomas,C. , AIsaker,K. and Papoutsakis,E. T. (2003) A segmental nearest neighbor normalization and gene identification method gives superior results for DNA-array analysis. Proc. Natl. Acad. Sci. USA. , 100,1122-1127.
    210. Nies,D. H. (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J. Bacteriol. , 174, 8102-8110.
    211.Paulsen,I.T.,Park,J.H.,Choi,P.S.and Saier,M.H.J.(1997)A family of Gram-negative bacterial outer membrane factors that function in the export of proteins,carbohydrates,drugs and heavy metals from Gram-negative bacteria.FEMS Microbiol.Lett.,156,1-8.
    212.Rost,B.,Fariselli,P.and Casadio,R.(1996)Topology prediction for helical transmembrane proteins at 86%accuracy.Protein Sci.,5,1704-1718.
    213.Windgassen,M.,Urban,A.and Jaeger,K.E.(2000)Rapid gene inactivation in Pseudomonas aeruginosa.FEMS Microbl Let.,193,201-205.
    214.Moore,C.M.and Helmann,J.D.(2005)Metal ion homeostasis in Bacillus subtilis.Curt.Opin.Microbiol.,8,188-195.
    215.Koebnik,R.,Kriiger,A.,Thieme,E,Urban,A.and Bonas,U.(2006)Specific binding of the Xanthomonas campestris pv.vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes.J.Bacteriol.,188,7652-7660.
    216.Wengelnik,K.,Marie,C,Russel,M.and Bonas,U.(1996)Expression and localization of Hrp A1,a protein of Xanthomonas campestris pv.vesicatoria essential for pathogenicity and induction of the hypersensitive reaction.J.Bacteriol.,178,1061-1069.
    217.Castaneda,A.,Reddy,J.D.,El-Yacoubi,B.and Gabriel,D.W.(2005)Mutagenesis of all eight avr genes in Xanthomonas campestris pv.campestris had no detected effect on pathogenicity,but one avr gene affected race specificity.Mol.Plant Microbe Interact.,18,1306-1317.
    218.Newman,M.A.,yon Roepenack-Lahaye,E.,Parr,A.,Daniels,M.J.and Dow,J.M.(2001)Induction of hydroxycinnamoyl-tyramine conjugates in pepper by Xanthomonas campestris,a plant defense response activated by hrp gene-dependent and hrp gene-independent mechanisms.Mol.Plant Microbe Interact.,14,785-792.
    219.Chan,J.W.and Goodwin,P.H.(1999)The molecular genetics of virulence of Xanthomonas campestris.Biotechnol.Adv.,17,489-508.
    220.Wang,J.,Mushegian,A.,Lory,S.and Jin,S.(1996)Large-scale isolation of candidate virulence genes of Pseudomonas aeruginosa by in vivo selection.Proc.Natl.Acad.Sci.,93,10434-10439.
    221.lyoda,S.,Kamidoi,T.,Hirose,K.,Kutsukake,K.and Watanabe,H.(2001)A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium.Microb.Pathog.,30,81-90.
    222.Ellermeier,J.R.and Slauch,J.M.(2008)Fur regulates expression of the Salmonella pathogenicity island 1 type Ⅲ secretion system through HilD.J.Bacteriol.,190,476-486.
    223.Arlat,M.,Gough,C.L.,Barber,C.E.,Bouche,C.R and Daniels,M.J.(1991) Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum.Mol.Plant Microbe Interact.,4,593-601.
    224.Arnold,D.L.,Pitman,A.and Jackson,R.W.(2003)Pathogenicity and other genomic islands in plant pathogenic bacteria.Mol.Plant Pathol.,4,407-420.
    225.Bonas,U.,Schulete,R.,Fenselau,S.,Minsavage,G.V.,Staskawicz,B.J.and StalI,R.E.(1991)Isolation of a gene cluster from Xanthomonas campestris pv.vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato.Mol.Plant-Microbe Interact.,4,81-88.
    226.Willis,D.K.,Rieh,J.J.and Hrabak,E.M.(1991)hrp genes of phytopathogenic bacteria.Mol.Plant-Microbe.Interact.,4,132-138.
    227.Wagegg,W.and Braun,V.(1981)Ferric citrate transport in Escherichia coli requires outer membrane receptor protein fecA.J.Bacteriol.,145,156-163.
    228.Beall,B.and Sanden,G.N.(1995)A Bordetella pertussis fepA homologue required for utilization of exogenous ferric enterobactin.Microbiology,141,3193-3205.
    229.Anraku,Y.(1988)Bacterial electron transport chains.Annu.Rev.Biochem.,57,101-132.
    230.Dow,J.M.,Crossman,L.,Findlay,K.,He,Y-Q.,Feng,J-X.,and Tang,J-L.(2003)Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants.Proc Natl Acad Sci USA 100:10995-11000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700