浙江安吉毛竹林生态系统CO_2通量观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹为我国分布最广、面积最大、经济价值最高的竹种之一,具有生长快、周期短、产量高、用途广、效益大等诸多优点。本文利用涡度相关方法,采用开路式通量观测系统,同时辅以常规气象观测系统,对2010年12月至2011年11月安吉毛竹林生态系统与大气间二氧化碳交换及其环境因子进行了观测和研究,估算了一年中毛竹林的净碳吸收能力,为了解我国毛竹林生态系统的固碳能力及其影响因子提供了重要的基础数据。研究结果表明:
     毛竹林CO_2通量月平均日变化表现出明显的季节差异性,在11~2月份、5~6月份白天CO_2通量峰值在-0.303~-0.495mg·m~(-2)·s~(-1)之间;在3~4月份、7~10月份白天CO_2通量峰值在-0.521~-0.596mg·m~(-2)·s~(-1)之间。CO_2通量日累积通量在-14.9~11.2mg·m~(-2)·d~(-1)之间,平均值为-3.7±3.49mg·m~(-2)·d~(-1),一年中有315天日累积通量为负值,占总天数的86.3%。
     2010年12月到2011年11月间各月生态系统呼吸(Reco)变化范围为63.4~92.1gC·m~(-2)·mon~(-1),,平均77.7±10.4gC·m~(-2)·mon~(-1),最小值出现在1月份,最大值出现在7月份,2010年12月到2011年11月间各月总生态系统碳交换量(GEE)变化范围为-90.9636~-191.481gC·m~(-2)·mon~(-1),平均值-132.962±30.021gC·m~(-2)·mon~(-1)。逐月CO-12净生态系统交换NEE为-24.9~-99.3gC·m~(-2)·mon,平均值为-55.2±23.4gC·m~(-2)·mon~(-1),表现为双峰型,在3月份和7月份分别出现了峰值。毛竹林逐月CO_2净生态系统交换NEE在12个月中均表现为碳汇。
     光合有效辐射PAR是毛竹林生态系统NEE的重要驱动因子,NEE主要受到PAR的控制,白天NEE与PAR密切相关,利用Michaelis-Menten模型进行拟合,得到相关系数R2在0.333~0.606之间,随着光合有效辐射的增强,毛竹林的NEE也相应的增加,将一年分为前半年2010年12月至2011年5月和后半年2011年6月至2011年11月分别和PAR拟合曲线后发现,前半年的光能利用效率α和最大光合速率Nes都低于后半年的拟合值。对于夜间NEE,采用温度-水分连乘形式耦合呼吸模型进行拟合,比单独利用一个因子进行拟合提高了拟合率。
     月尺度上,GEE与气温、空气饱和差具有较强的相关性,相关系数R2分别为0.756、0.593,且随着气温升高,GEE绝对值增大,当空气饱和差小于8hPa时,GEE绝对值随饱和水汽压差的增加而增大,当空气饱和差超过8hPa时,GEE绝对值随饱和水汽压差的继续增加而减小。月尺度上NEE随气温和空气饱和差的变化趋势与GEE一致。月尺度上RE与气温呈现线性相关,相关系数R2为0.882,RE与空气饱和差、土壤含水量呈现二次曲线关系,R2分别为0.555和0.472。毛竹叶面积指数与GEE、NEE、RE均表现出较好的相关性。毛竹林生态系统2010年12月至2011年11月的NEE、RE、GEE总量分别为、-6.02tC·ha~(-1)·a~(-1)、9.32tC·ha~(-1)·a~(-1)、-15.95tC·ha~(-1)·a~(-1)。
With its remarkable advantages of rapid growth, high yield, wide application and goodeconomic returns, Phyllostachys edulis has been one of the most extensively distributed baboo inChina,especially in South China. In this paper,open path eddy covariance system and automatedobserving systems of gradient weather were used to determine the characteristics of CO_2flux and itsresponse mechanism to environmental factors in a ecosystem of Phyllostachys edulis stands in Anjifrom December2010to November2011. At the same time,the carbon absorption capacity of systemwas estimated. The study contributed to the research of carbon cycle of Phyllostachys edulis and theunderstanding of carbon sink of forests in China especially the bamboo forest.The results showed that:
     1.CO_2flux had obvious diurnal and yearly variations. First of all,the average diurnal variationwas basically the same in each month and the value of CO_2flux was negative in the daytime as well aspositive in other times. The variability of CO_2flux was large,which showed that the maximum ofnegative value was about-0.303to-0.495mg·m~(-2)·s~(-1)from November to June except March andApril,about-0.521to-0.596mg·m~(-2)·s~(-1)in the other months. Secondly,diurnal cumulative value of CO_2flux floated between~(-1)4.9to11.2mg·m~(-2)·d~(-1), mean as-3.7±3.49g mg·m~(-2)·d~(-1), diurnal cumulative valueof CO_2flux was negative at most of days in the year, The days about86.3%of a year were negativewith diurnal cumulative value of CO_2flux.
     2.The seasonal variation of GEE was basically consistent with NEE. The monthly NEE wereall negative,and the maximum is July(-99.3gC·m~(-2)·mon~(-1))while the minimum is January(-24.9gC·m~(-2)·mon~(-1)).Differently,the monthly RE varied as a“single peak”curve in the year and came tominimum in February (63.3671gC·m~(-2)·mon~(-1))whereas reached its maximum in July(92.15gC·m~(-2)·mon~(-1)).
     3.CO_2flux was mainly affected by photosynthetic active radiation(PAR)in the daytime andfitted the Michaelis-Menten model well.With the increase of PAR,the carbon sink was increased,Usedthe NEE in the daytime fitted the Michaelis-Menten model month by month,we got the correlationcoefficient between0.333and0.606. The response of CO_2flux to PAR was different at differentseasons,the second half year of2011got higher αand Nes than first half year. At nighttime,therespiration of ecosystem had correlation with soil temperature and soil water content(SWC).Night-timeCO_2flux showed an exponential relationship with soil temperature and SWC at5cm depth, amix-model with temperature and water is better fitted than model with only water or temperature. In themonth scale,the respiration of ecosystem was related to SWC as a quadratic parabola opening upward.
     4.NEE,RE and GEE were effected by air temperature、VPD and SWC obviously on month scale.On month scale,GEE has strong relationship with temperature and VPD, RE with air temperatureshowed significant linear correlation while NEE and air temperature related as a quadratic curve. The total amount of NEE, RE, GEE were respecti vely-6.02t C-m~(-2)a~(-1),9.32t C-m~(-2)a~(-1),-15.95t C-m~(-2)a~(-1).
引文
[1]于贵瑞与孙晓敏,陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006.
    [2]于贵瑞,李海涛与王绍強,全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003.
    [3]Parry, M.L., et al., IPCC,2007: climate change2007: impacts, adaptation and vulnerability.Contribution of working group II to the fourth assessment report of the intergovernmental panel onclimate change[M].2007, Cambridge University Press, Cambridge.
    [4]Liu, Q., J. Zheng and Q. Ge, Effects of global climate change on China s agriculture[J]. ChineseAgricultural Science,2008.24(12).
    [5]McCarthy, J.J., Climate change2001: impacts, adaptation, and vulnerability: contribution ofWorking Group II to the third assessment report of the Intergovernmental Panel on Climate Change[J].2001: Cambridge Univ Pr.
    [6]于贵瑞,李海涛与王绍強,全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003..
    [7]Houghton, R.A., The annual net flux of carbon to the atmosphere from changes in land use1850–1990*[J]. Tellus B,1999.51(2): p.298-313.
    [8]李海涛,于贵瑞与袁嘉祖,中国现代气候变化的规律及未来情景预测[J].中国农业气象,2004.24(4):第1-4页.
    [9]方精云等,1981~2000年中国陆地植被碳汇的估算[J].中国科学: D辑,2007.37(6):第804-812页.
    [10]周国模,毛竹林生态系统中碳储量,固定及其分配与分布的研究[D],2006,浙江大学博士学位论文.
    [11]肖复明等,毛竹(Phyllostachy pubescens),杉木(Cunninghamia lanceolata)人工林生态系统碳贮量及其分配特征[J].生态学报,2007.27(7).
    [12]于贵瑞等,亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学: D辑,2004.34(Ⅱ):第15-29页.
    [13]桑卫国,马克平与陈灵芝,暖温带落叶阔叶林碳循环的初步估算[J].植物生态学报,2002.26(5):第543-548页.
    [14]Reynolds, S.J.R., The Annual Address Delivered to the Royal College of Physicians[J], April8,1895.1895.
    [15]Swinbank, W.C. and A.J. Dyer, An experimental study in micro‐meteorology[J]. QuarterlyJournal of the Royal Meteorological Society,1967.93(398): p.494-500.
    [16]Kaimal, J.C., et al., Turbulence structure in the convective boundary layer[J]. Journal of theAtmospheric Sciences,1976.33(11): p.2152-2169.
    [17]Inoue, H., Descriptions and records of some Japanese Geometridae[J]. Tinea,1955.2(1/2): p.73-89.
    [18]Begg, J.E., et al., Diurnal energy and water exchanges in bulrush millet in an area of high solarradiation[J]. Agricultural Meteorology,1964.1(4): p.294-312.
    [19]Monteith, L.G., Influence of plants other than the food plants of their host on host-finding bytachinid parasites[J]. The Canadian Entomologist,1960.92(9): p.641-652.
    [20]Desjardins, R.L. and E.R. Lemon, Limitations of an eddy-correlation technique for thedetermination of the carbon dioxide and sensible heat fluxes[J]. Boundary-Layer Meteorology,1974.5(4): p.475-488.
    [21]Desjardins, R.E., et al., Quantitative assessment of antimalarial activity in vitro by a semiautomatedmicrodilution technique[J]. Antimicrobial agents and chemotherapy,1979.16(6): p.710-718.
    [22]Garratt, J.R., Limitations of the eddy-correlation technique for the determination of turbulent fluxesnear the surface[J]. Boundary-Layer Meteorology,1975.8(3): p.255-259.
    [23]Bingham, S., et al., Dietary fibre and regional large-bowel cancer mortality in Britain[J]. Britishjournal of cancer,1979.40(3): p.456.
    [24]Brach, E.J., R.L. Desjardins and G.T.S. Amour, Open path CO2analyser[J]. Journal of Physics E:Scientific Instruments,1981.14: p.1415.
    [25]Anderson, D.L. and J.D. Bass, Mineralogy and composition of the upper mantle[J]. GeophysicalResearch Letters,1984.11(7): p.637-640.
    [26]Verma, S.B., et al., Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest[J].Boundary-Layer Meteorology,1986.36(1): p.71-91.
    [27]Durrett, M.E., M. Otaki and P. Richards, Attachment and the mother's perception of support fromthe father[J]. International Journal of Behavioral Development,1984.7(2): p.167-176.
    [28]Rochette, P., et al., Instantaneous measurement of radiation and water use efficiencies of a maizecrop[J]. Agronomy Journal,1996.88(4): p.627-635.
    [29]Ronn, E.I. and A.K. Verma, Risk-based capital adequacy standards for a sample of43majorbanks[J]. Journal of Banking&Finance,1989.13(1): p.21-29.
    [30]Verma, R., R.K. Rajamani and C. Center, EFFECT OF MILLING ENVIRONMENT ON THEBREAKAGE RATES IN DRY AND WET GRINDING[J]. Comminution, theory and practice,1992: p.261.
    [31]Aubinet, M., et al., Estimates of the annual net carbon and water exchange of forests: theEUROFLUX methodology[J]. Advances in ecological research,1999.30: p.113-175.
    [32]Goulden, M.L., et al., Physiological responses of a black spruce forest to weather[J]. JOURNALOF GEOPHYSICAL RESEARCH-ALL SERIES-,1997.103: p.28-28.
    [33]GRECO, S. and D.D. BALDOCCHI, Seasonal variations of CO2and water vapour exchange ratesover a temperate deciduous forest[J]. Global Change Biology,1996.2(3): p.183-197.
    [34]Yamamoto, H., et al., A model of anisotropic swelling and shrinking process of wood[J]. Woodscience and technology,2001.35(1): p.167-181.
    [35]Aubinet, M., et al., Estimates of the annual net carbon and water exchange of forests: theEUROFLUX methodology[J]. Advances in ecological research,1999.30: p.113-175.
    [36]Aubinet, M., et al., Estimates of the annual net carbon and water exchange of forests: theEUROFLUX methodology[J]. Advances in ecological research,1999.30: p.113-175.
    [37]Valentini, R., et al., Respiration as the main determinant of carbon balance in European forests[J].Nature,2000.404(6780): p.861-865.
    [38]Nemani, R.R., et al., Climate-driven increases in global terrestrial net primary production from1982to1999[J]. Science,2003.300(5625): p.1560-1563.
    [39]Valentini, R., et al., Respiration as the main determinant of carbon balance in European forests[J].Nature,2000.404(6780): p.861-865.
    [40]Van Dijk, A.I.J.M. and A.J. Dolman, Estimates of CO2uptake and release among European forestsbased on eddy covariance data[J]. Global Change Biology,2004.10(9): p.1445-1459.
    [41]Luyssaert, S., et al., Old-growth forests as global carbon sinks[J]. Nature,2008.455(7210): p.213-215.
    [42]于贵瑞等,中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J].中国科学: D辑,2006.36(A01):第1-21页.
    [43]杨振等,西双版纳热带季节雨林树冠上生态边界层大气稳定度时间变化特征初探[J].热带气象学报,2007.23(4):第413-416页.
    [44]王秋凤等,长白山森林生态系统CO2和水热通量的模拟研究[J].中国科学: D辑,2004.34(A02):第131-140页.
    [45]邱尔发等,毛竹种源春笋生长规律[J].福建林学院学报,2001.21(3):第228-232页.
    [46]顾小平,吴晓丽与汪阳东,几种丛生竹根际联合固氮研究[J].林业科学研究,2001.14(1):第28-34页.
    [47]顾小平与吴晓丽,毛竹及浙江淡竹根际联合固氮的研究[J].林业科学研究,1994.7(6):第618-623页.
    [48]周本智与傅懋毅,竹林地下鞭根系统研究进展[J].林业科学研究,2004.17(4):第533-540页.
    [49]江泽慧,世界竹藤研究[M].沈阳:辽宁科学技术出版社,2006.
    [50]罗华河,毛竹生物学特性与栽培管理措施[J].中国林副特产,2004.6:第29-31页.
    [51]江泽慧,20021世界竹藤.[M]沈阳:辽宁科学技术出版社,2003.
    [52]Wilczak, J.M., S.P. Oncley and S.A. Stage, Sonic anemometer tilt correction algorithms[J].Boundary-Layer Meteorology,2001.99(1): p.127-150.
    [53]Baldocchi, D.D., B.B. Hincks and T.P. Meyers, Measuring biosphere-atmosphere exchanges ofbiologically related gases with micrometeorological methods[J]. Ecology,1988: p.1331-1340.
    [54]McMillen, R.T., An eddy correlation technique with extended applicability to non-simple terrain[J].Boundary-Layer Meteorology,1988.43(3): p.231-245.
    [55]Lee, X., On micrometeorological observations of surface-air exchange over tall vegetation[J].Agricultural and Forest Meteorology,1998.91(1-2): p.39-49.
    [56]Webb, E.K., G.I. Pearman and R. Leuning, Correction of flux measurements for density effects dueto heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society,1980.106(447): p.85-100.
    [57]Leuning, R., Measurements of trace gas fluxes in the atmosphere using eddy covariance: WPLcorrections revisited[J]. Handbook of micrometeorology,2005: p.119-132.
    [58]Carrara, A., et al., Net ecosystem CO2exchange of mixed forest in Belgium over5years[J].Agricultural and Forest Meteorology,2003.119(3-4): p.209-227.
    [59]GRECO, S. and D.D. BALDOCCHI, Seasonal variations of CO2and water vapour exchange ratesover a temperate deciduous forest[J]. Global Change Biology,1996.2(3): p.183-197.
    [60]Pilegaard, K., et al., Two years of continuous CO2eddy-flux measurements over a Danish beechforest[J]. Agricultural and Forest Meteorology,2001.107(1): p.29-41.
    [61]Aubinet, M., et al., Long term carbon dioxide exchange above a mixed forest in the BelgianArdennes[J]. Agricultural and Forest Meteorology,2001.108(4): p.293-315.
    [62]王春林等,鼎湖山常绿针阔叶混交林CO_2通量估算[J].中国科学(D辑:地球科学),2006.1.
    [63]Lindroth, A., A. Grelle and A.S. Morén, Long‐term measurements of boreal forest carbon balancereveal large temperature sensitivity[J]. Global Change Biology,1998.4(4): p.443-450.
    [64]Black, T.A., et al., Annual cycles of water vapour and carbon dioxide fluxes in and above a borealaspen forest[J]. Global Change Biology,1996.2(3): p.219-229.
    [65]Falge, E., et al., Gap filling strategies for defensible annual sums of net ecosystem exchange[J].Agricultural and forest meteorology,2001.107(1): p.43-69.
    [66]Baldocchi, D., E. Falge and K. Wilson, A spectral analysis of biosphere-atmosphere trace gas fluxdensities and meteorological variables across hour to multi-year time scales[J]. Agricultural and ForestMeteorology,2001.107(1): p.1-27.
    [67]于贵瑞与孙晓敏,陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006.
    [68]刘允芬等,千烟洲人工针叶林CO2通量季节变化及其环境因子的影响[J].中国科学: D辑,2004.34(A02):第109-117页.
    [69]吴家兵等,长白山阔叶红松林碳收支特征[J].北京林业大学学报,2007.29(1):第1-6页.
    [70]Lloyd, J. and J.A. Taylor, On the temperature dependence of soil respiration[J]. Functional ecology,1994: p.315-323.
    [71]刘允芬等,千烟洲中亚热带人工林生态系统CO2通量的季节变异特征[J].中国科学D辑:地球科学,2006.36:第91-102页.
    [72]刘国华等,4种地被竹光合作用日变化及光合光响应曲线[J].福建林学院学报,2009(003):第258-263页.
    [73]林琼影,毛竹气体交换特征[J].浙江林学院学报,2008.25(4):第522-526页.
    [74]Aubinet, M., et al., Comparing CO2storage and advection conditions at night at differentCARBOEUROFLUX sites[J]. Boundary-Layer Meteorology,2005.116(1): p.63-93.
    [75]黄浩与温国胜,毛竹爆发式生长机理的探究[J].科技资讯,2009(031):第218-219页.
    [76]BARR, A.G., et al., Climatic controls on the carbon and water balances of a boreal aspen forest,1994–2003[J]. Global Change Biology,2007.13(3): p.561-576.
    [77]Grant, R.F., et al., Net ecosystem productivity of boreal aspen forests under drought and climatechange: mathematical modelling with ecosys[J]. Agricultural and forest meteorology,2006.140(1-4): p.152-170.
    [78]Owen, K.E., et al., Linking flux network measurements to continental scale simulations: ecosystemcarbon dioxide exchange capacity under non‐water‐stressed conditions[J]. Global Change Biology,2007.13(4): p.734-760.
    [79]Barford, C.C., et al., Factors controlling long-and short-term sequestration of atmospheric CO2in amid-latitude forest[J]. Science,2001.294(5547): p.1688.
    [80]NAKAI, Y., et al., Year‐long carbon dioxide exchange above a broadleaf deciduous forest inSapporo, Northern Japan[J]. Tellus B,2003.55(2): p.305-312.
    [81]Cook, B.D., et al., Carbon exchange and venting anomalies in an upland deciduous forest innorthern Wisconsin, USA[J]. Agricultural and Forest Meteorology,2004.126(3-4): p.271-295.
    [82]Desai, A.R., et al., Comparing net ecosystem exchange of carbon dioxide between an old-growthand mature forest in the upper Midwest, USA. Agricultural and Forest Meteorology,2005.128(1-2): p.33-55.
    [83]Granier, A., et al., The carbon balance of a young beech forest[J]. Functional ecology,2000.14(3):p.312-325.
    [84]Hirano, T., et al., CO2and water vapor exchange of a larch forest in northern Japan[J]. Tellus B,2003.55(2): p.244-257.
    [85]周国模,毛竹林生态系统中碳储量,固定及其分配与分布的研究[M].浙江:浙江大学博士学位论文,2006.
    [86]Farquhar, G.D., Models of integrated photosynthesis of cells and leaves[J]. PhilosophicalTransactions of the Royal Society of London. B, Biological Sciences,1989.323(1216): p.357-367.
    [87]Tenhunen, J.D., J.D. Hesketh and D.M. Gates, Leaf photosynthesis models[J]. Predictingphotosynthesis for ecosystem models,1980.1: p.123-181.
    [88]Lommen, P.W., et al., A model describing photosynthesis in terms of gas diffusion and enzymekinetics[J]. Planta,1971.98(3): p.195-220.
    [89]Landsberg, J.J., Some useful equations for biological studies[J]. Exp. Agric,1977.13: p.273-286.
    [90]李伟成等,几种经验模型在丛生竹光响应曲线拟合中的应用[J].竹子研究汇刊,2009(003).
    [91]Fang, C. and J.B. Moncrieff, A model for soil CO2production and transport1::: Modeldevelopment[J]. Agricultural and Forest Meteorology,1999.95(4): p.225-236.
    [92]Van'T Hoff, J.H., Lectures on theoretical and physical chemistry[J].1899: E. Arnold.
    [93]Winkler, J.P., R.S. Cherry and W.H. Schlesinger, The Q10relationship of microbial respiration in atemperate forest soil[J]. Soil Biology and Biochemistry,1996.28(8): p.1067-1072.
    [94]Laurila, T., et al., Seasonal variations of net CO2exchange in European Arctic ecosystems[J].Theoretical and Applied Climatology,2001.70(1): p.183-201.
    [95]Richardson, A.D., et al., Environmental variation is directly responsible for short‐but not long‐term variation in forest‐atmosphere carbon exchange[J]. Global Change Biology,2007.13(4): p.788-803.
    [96]王春林等,鼎湖山针阔叶混交林冠层下方CO2通量及其环境响应[J].生态学报,2007.27(3):第846-854页.
    [97]孙晓敏等,中亚热带季节性干旱对千烟洲人工林生态系统碳吸收的影响[J].中国科学D辑:地球科学,2006.36:第103-110页.
    [98]关德新等,气象条件对长白山阔叶红松林CO2通量的影响[J].中国科学: D辑,2004.34(Ⅱ):第103-108页.
    [99]Loescher, H.W., et al., Environmental controls on net ecosystem‐level carbon exchange andproductivity in a Central American tropical wet forest[J]. Global Change Biology,2003.9(3): p.396-412.
    [100]DUNN, A.L., et al., A long‐term record of carbon exchange in a boreal black spruce forest:Means, responses to interannual variability, and decadal trends[J]. Global Change Biology,2007.13(3):p.577-590.
    [101]Aurela, M., Carbon dioxide exchange in subarctic ecosystems measured by a micrometeorologicaltechnique[J].2005, University of Helsinki.
    [102]Tanja, S., et al., Air temperature triggers the recovery of evergreen boreal forest photosynthesis inspring[J]. Global Change Biology,2003.9(10): p.1410-1426.
    [103]赵仲辉,湖南会同杉木人工林生态系统CO2通量特征[J].林业科学.47(11).
    [104]Van Dijk, A.I.J.M. and A.J. Dolman, Estimates of CO2uptake and release among European forestsbased on eddy covariance data[J]. Global Change Biology,2004.10(9): p.1445-1459.
    [105]王兴昌,王传宽与于贵瑞,基于全球涡度相关的森林碳交换的时空格局[J].中国科学D辑,2008.38(9):第1092-1102页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700