用户名: 密码: 验证码:
城市居住建筑能耗影响因素与预测模型构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑与工业、交通并列为能源消耗的三大领域,也是温室气体排放的重要来源。随着我国国民经济的发展,导致建筑能耗所占能源消耗的比重逐年提升,近年来人们物质生活的改善和对于生活品质的追求,居住建筑能耗的增长十分显著,其节能减排的空间更为广阔。因此开展居住建筑的能耗调研、研究居住建筑能耗的影响因素,并据此建立居住建筑的能耗预测模型,预测未来的发展趋势,并未雨绸缪制定相应能源规划和发展战略以及节能减排的政策措施就显得十分紧迫。
     但是居住建筑因为其鲜明的个体性,影响居住建筑能耗的因素不但与建筑本身有关,更与居住的人的行为、意识、经济社会发展和电器使用密切相关。因此其影响因素复杂、建立科学合理的预测模型预测难度较大。
     本研究首先综述了国内外关于建筑节能和建筑能耗影响因素的研究,在文献研究的基础上,采用问卷调查法、开放式访谈法和德尔菲法编制调研问卷。问卷涉及影响城市居住建筑能耗的人口特征、建筑特征、生活方式、节能意识、设备特征等5个方面29项指标;问卷经过实测分析,进行信度、信度和半结构分析,最终筛选出独立性强的有效题目,最后再经过专家分析讨论,形成了信度和效度较好的正式调研问卷。组织人员以典型抽样的方式对重庆市主城区的1500户家庭进行了抽样调查,剔除无效样本后得到的632户有效样本。同时,从供电部门采集到被调查住户一一匹配的实际电耗数据。在客观数据与主观问卷两两匹配的基础上,调查了影响居住建筑能耗的29个可能的影响因素,数据处理采用社会科学统计软件SPSS17.0处理。
     调研表明重庆市居住建筑的用能特点与现状为:住户80%为2—4口人,80%的家庭收入在4—8万元,60%的家庭居住面积在50—90m~2,建筑年代基本集中在2000年以后;户均拥有的空调、电脑、电视等生活必需的家用电器在一台以上,夏季降温以空调为主,冬季降温以取暖器为主,节能意识总体较好。重庆市居住建筑户均单位面积能耗26.4kWh/m2,总体而言老建筑比新建筑能耗要略微高一些,中间层的住宅的平均总能耗要低于位于建筑底层和顶层的住宅的平均总能耗,夏季开启空调的行为方式对于能耗的影响较大,夏季使用空调的数量对于能耗的影响十分显著。总体而言,夏季重庆室内居住舒适评价为比较凉爽的38%,60%的住户认为比较热和基本可以接受;冬季认为暖和的只有23%,77%的住户认为冬季的室内温度很冷和基本可以接受,说明重庆居住环境的室内环境并不乐观,居住品质并不理想。
     在调研的基础上,对重庆市居住建筑能耗进行相关分析和偏相关分析,从29个影响年能耗的调查变量中筛选出了具有显著线性关系的常住人口、建筑面积、建筑类型、夏季空调降温方式、夏季制冷空调台数、冬季采暖空调台数、冬季采暖其它设备台数、电脑台数、电视台数、电磁炉台数、其它信息类设备台数、电视每日开机时间等12个变量。根据基础调查数据初选简单相关变量和派生变量与年能耗的简单线性关系确定出影响年能耗的最终简单相关变量6个,包括:常住人口、人均建筑面积、建筑类型、夏季空调降温方式、制冷空调和电脑台数和、空调电脑电视日均使用时间和。由于简单相关分析有一定的局限性,主要是在计算相关系数时,不能消除其它变量的影响,因此有必要对年能耗简单相关变量进行偏相关分析。最后,偏相关分析结果表明,与年能耗有显著相关因素有4个,包括:常住人口、人均建筑面积、制冷空调和电脑台数和、夏季空调降温方式。年能耗与各变量的偏相关系数从大到小依次为:常住人口(0.307)、人均建筑面积(0.290)、制冷空调和电脑台数和(0.125)、夏季空调降温方式(0.124)。
     在分析和筛选出上述四个影响因素的基础上,建立了基于相关分析的多元线性回归预测模型:Y=-817.445+380.434X1+30.699X2+87.376X3+226.667X4。该模型与传统的线性多元回归分析建模不同,没有把可能影响建筑能耗的所有因素变量纳入模型,而是在通过相关分析和偏相关分析后剔除模型冗余变量,消除了共线性因素变量的影响,从而能在模型中更好反映建筑能耗的重要影响因素及影响程度,预测更为可靠和准确。为了与线性回归建模进行比较和检验,同时,选择了拟合精度更高、但拟合计算更为复杂的非线性回归分析建立模型。本文采用非线性最优化算法L—M(Levenberh—Marquardt)算法进行极值计算,进行了多参数非线性模拟多元回归分析,确定重庆市居住建筑能耗的非线性函数的拟合回归模型,多项式函数模型y=-10468.60+7148.6x10.14+1556.7x20.27+96x31.48+6.48x4215和指数函数模型
     y=3706.15-3471.9e-0.32x1-3181.5e-0.028x2+509.4e0238x3+192.76e0153x4。最后利用2008-2009年重庆市城市实际居住建筑能耗数据对建立的线性和非线性回归模型拟合效果进行检验,模型拟合数据与实际统计数据符合度为94%以上,模型拟合度较好。
     根据重庆市居住建筑能耗影响因素模型,结合重庆经济、社会、人口发展发展趋势,对重庆市“十二五”期间各能耗影响因素进行了情景分析,建立了重庆市居住建筑情景分布预测矩阵:E=∑E退休住户+∑E年轻住户+∑E基本家庭住户+∑E复合家庭住户=(c1j)*(bi1)T+(c2j)*(bi2)T+(c3j)*(bi3)T+(c4j)*(bi4)T(i,j=1,2,3)。根据该情景分析预测,重庆城市居住建筑能耗预测结果重庆市2012年总能耗为414527.7万kWh,2015年为507214.7万kWh。
     结合重庆市的实际情况,以及居民的可接受程度,针对性提出了制定可持续的市能源发展规划、建立城市居住建筑能耗管理体系、完善基于低碳的居民用能引导措施和健全基于低碳的居住建筑节能激励机制,为重庆市解决能源矛盾和建筑节能提供了系列对策措施和政策建议。
Construction, tied with the industrial and transportation for three areas of energyconsumption, is also an important source of greenhouse gas emissions. With thedevelopment of China's national economy in recent years, it results to the proportion ofbuilding energy consumption share of energy consumption increase year by year. Theimprovement of people's material life and the pursuit of quality of life, leads to thegrowth of energy consumption of residential building significantly, which provide muchwider energy saving space. Therefore, carrying out the investigation of the energyconsumption of residential buildings, researching the influencing factors for residentialbuildings energy consumption, and establishing the forecasting model for residentialbuilding energy consumption accordingly to predict the future development trends, andplan ahead to develop the appropriate energy planning and development strategies andenergy saving policy measures is extremely urgent.
     But because of residential building’s lively individuality, factors affecting theenergy consumption of residential buildings relate not only with architecture itself, butalso more closely relate to the behavior of people’s living and awareness, developmentof economic and social, and the use of electrical appliances. Owing to its impact factors,it is difficult to establish a scientific and rational prediction model.
     This study reviews the research on the factors of the impact of building energyefficiency and building energy consumption at home and abroad firstly. On the basis ofthe literature study, questionnaire, open interviews and the Delphi method were used toprepare the survey questionnaire. The questionnaire involve five aspects which arearchitectural features, lifestyle, awareness of energy conservation, equipmentcharacteristics, up to29indicators having impacts on the urban residential buildingenergy consumption. After measuring the questionnaire through the analysis ofreliability, reliability, and semi-structured analysis, the final screening effectiveindependent subject was selected. Finally it was analyzed and discussed by experts toform the formal survey questionnaire with reliability and validity. Organization staffsampling typically1500families of Chongqing city for sampling survey,632validsamples from families was gotten after eliminating invalid samples. At the same time,the actual consumption data matched with investigated households was collected fromthe power supply departments. Based on comparing both objective data and subjective questionnaire, the research do the investigation of29factor which may have influenceof residential building energy consumption, and use social science statistical softwareSPSS17.0for data processing.
     Research shows that the characteristics and present situation energy consumptionof residential building of Chongqing is that,80%of the residents are2-4people,80%of household income between4000and80000Yuan,60%of households’ area between50and90m2, and the age of the buildings basic focus on being late than2000. Thenecessaries living appliances every household has such as air conditioning, computer,TV and so on is more than1. Air conditioning gives priority to cooling in summer, andheater gives priority to a higher temperature in winter, the overall energy savingconsciousness is good. Per unit m~2area of Chongqing residential building’s energyconsumption is26.4kWh. On the whole, the old building’s energy consumption shouldbe a little higher than the new ones’, while the average total energy consumption of themiddle residence is lower than in the bottom’s average total energy consumption andtop’s, the behavior of open air conditioning in summer having bigger influence of theenergy consumption, and the number of using air conditioning for the influence of theenergy consumption in summer is very significant. Overall,38%of the household’sindoor comfortable living evaluation of Chongqing in summer is cool, and60%ofhouseholds think it is hot and can be accepted basically. Only23%of households thinkit is warm in winter, and77%of households think indoor temperature in winter is verycold and can be accepted basically. That also shows the indoor living environment ofChongqing is not optimistic, and the living quality is not ideal.
     On the basis of investigation, do the related analysis and partial correlation analysisof the energy consumption of the residential building. From29variables of the affectenergy consumption in the investigation,12variable having significant linearrelationship were selected, which are the resident population, the construction area,building types, summer air conditioning cooling mode, summer refrigeration and airconditioning sets, winter heating air conditioning sets, heating in winter otherequipment sets, computers, television sets, the number of induction cooker sets, otherinformation equipment sets, using time of TV every day. According to the basic surveydata primary related variables and simple derived variables between years of simplelinear relationship energy consumption to determine6final simple relevant variableseffects the yearly energy consumption,6final simple relevant variables including theresident population, per capita consumption of building area, building type, the summer air-conditioning cooling method, number of refrigeration and air conditioning and computer tables, air conditioning, the total number of air-conditioning, refrigeration and the computer, the average daily use time of air-conditioning, refrigeration and the computer. Due to simple correlation analysis has certain limitation, mainly when calculating correlation coefficient it cannot eliminate the influence of other variables. Therefore, it is necessary to do partial correlation analysis of simple related variables of energy consumption. After excluding irrelevant variable, four factors with significant linear correlation was gotten finally, and they are the resident population, and per capita floor space, the total number of air-conditioning, refrigeration and the computer, and the cooling air-conditioning way in summer. The partial correlation coefficient of the energy consumption and the variables is as follows sorting from big to little:the resident population (0.307), per capita building area (0.290), the total number of air-conditioning, refrigeration and the computer (0.125), and the cooling air-conditioning way in summer (0.124).
     Based on the analysis and filter out the four factors above, multiple regression analysis prediction models
     Y=-817.445+380.434X1+30.699X2+87.376X3+226.667X4was built. Different from the traditional multiple regression analysis modeling building energy consumption, the model do not bring into all factors that may affect building energy consumption variables, but excluding redundant variables of the model after correlation analysis and partial correlation analysis, which eliminates a total of line factors variables in the model so that it can better reflect the important influence factors and the impact of building energy consumption, making the model more reliable and accurate prediction. In order to compare and inspection with linear regression model, meanwhile, the higher fitting precision nonlinear regression model but with more complex calculation also be chosen. This article use the L—M(Levenberg—Marquardt) model to identify the parameter, and do the multiple regression analysis, then ascertain Index nonlinear function fitting regression model of residential building energy consumption of Chongqing, polynomial function model
     y=-10468.60+7148.6x10.14+1556.7x20.27+96x21.48+6.48x42.15and index function model y=3706.15-3471.9e-0.32X1-3181.5e-0.028x2+509.4e0.238x3+192.76e0.153x4Finally, comparing2008-2009Chongqing cities actual residential building energy consumption data with the data forecasted by using the linear and nonlinear regression model, resultshows that model fitting data and practical statistical data conformity degree is above94%, and means model fitting degree is better.
     After obtaining the residential building energy consumption factor model ofChongqing, combined with the economic, social, demographic situation anddevelopment trend of Chongqing to conduct scenario analysis on the base of energyconsumption influencing factors in the "12th Five-Year" period,(including the numberof urban households; the structure of urban households; value distribution of factorsaffecting energy consumption various types of households, etc.). According to theresults of analysis of Chongqing urban residents established distribution matrix and theenergy consumption factors distribution matrix, energy consumption was predicted. Thetotal energy consumption forecasting results of Chongqing urban residential building is414527.7kWh in2012and507214.7kWh in2015.
     Combined with the actual situation of Chongqing city and the residents’ acceptabledegree, authors put forward the sustainable development of the city for energy plan,establishing city residential building energy consumption management system, perfectthe residents energy consumption of low carbon based on guide measures and improvethe residential building based on low carbon energy saving excitation mechanism, andprovide a series of building energy efficiency measures and suggestions to solve theenergy contradiction of Chongqing.
引文
[1]核心撰写组, Pachauri R.K, Reisinger A.气候变化2007:综合报告.政府间气候变化专门委员会第四次评估报告[R].瑞士日内瓦: IPCC;2007.
    [2]联合国.全球环境展望年鉴(2006). http://www.un.org/chinese/esa/environment/outlook2006/global3. htm.
    [3] Houghton JT, H Ding Y, G Griggs D. Climate Chance2001:The Scientific Basis. Contributionof Working Third Assessment Report of International Panel on Climate Change [R].Cambridge: Cambridge University Press;2001.
    [4]人民网.今年节能减排目标难完成各地或掀起拉闸限电潮. http://finance.people.com.cn/GB/70846/16597140.html#.
    [5] UNEP SBCI. Buildings and Climate Change: a Summary for Decision-Makers[EB/OL].2009.http://www.unep.org/SBCI/pdfs/SBCI-BCC Summary.pdf.
    [6]世界能源情报署.国际能源展望[R];2010.
    [7]仇保兴.发展节能与绿色建筑刻不容缓[J].中国经济周刊.2005,(9):11.
    [8]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2010[R].北京:中国建筑工业出版社;2010.5.
    [9]武涌,梁境.中国能源发展战略与建筑节能[J].重庆建筑.2006,(3):6-19.
    [10]江亿,林波荣,曾剑龙,朱颖心.住宅节能[M]:中国建筑工业出版社;2006.
    [11]雷娅蓉.重庆市居住建筑能耗预测方法研究[D].重庆:重庆大学;2008.
    [12]土豆网.奥巴马对中国人民说:你们永远别想过我们的好日子[EB/OL].2005. http://www.tudou. com/programs/view/-qRW6nY_LZw/.
    [13] DOE2. eQuest: the quick energy simulation tool[EB/OL].2008. http://doe2.com.
    [14]西方的“奢侈排放”与中国的“生存排放”[N].环球时报2009年10月16日.
    [15] Office of Energy Markets, Use End. A Look at Residential Energy Consumption in2001[J].U.S. Department of Energy.2001.
    [16] Denmark Energy Agency. Finall Report for the long Energy End[J]. Use.1993.
    [17] B.Sohlberg. Grey box modelling for model predictive control of a heating process[J]. Journalof Process Control.2003,(13).
    [18]王素霞.国外建筑节能与保温材料一瞥[J].国外建材.2005,(5):57-59.
    [19]冼丹红.国外节能建筑发着的动向[J].广东建材.2005,(12):110-112.
    [20] Long Enshen. General descriptions of research method, buildings, analysis object,assumptions and weather conditions of background cities[J]. Building and Environment.2005,40(4):443-450.
    [21]朱业樵.关于联邦德国建筑节能经验的剖析及对寒冷地区建筑节能工作的建议[J].能源技术.1990,2:35-39.
    [22]杨维菊.法国建筑节能技术谈[J].世界建筑.2000,4:66-67.
    [23] M. Taheri, Shafie S. A case study on the reduction of energy use for the heating of buildings[J]. Renewable Energy.1995,6(7):673-678.
    [24]清华大学核能技术研究所能源系统研究室.能源规划与系统模型[M].北京:清华大学出版社;1986.
    [25]中华人民共和国建设部主编.公共建筑节能设计标准GB50189-2005[S].2005.
    [26] J. Haerl, Sparks R., Culp C. Exploring New Techniques for Displaying Complex BuildingEnergy Consumption Data[J]. Energy and Buildings.1996,24(1):27-38.
    [27] Alan S. Fung, Aulenback Adam, Ferguson Alex, Ugursal V. Ismet. Standby PowerRequirements of Household Appliances in Canada[J]. Energy and Buildings.2003,35(2):217-228.
    [28] Alan Meier, Lin Jiang, Liu Jimg, Li Tienan. Standby Power Use in Chinese Homes[J]. Energyand Buildings.2004,36(12):1211-1216.
    [29] M.Santamouris, K.Kapsis, Korres D., Livada I., Pavlou C., Assimakopoulos M. N. On theRelation between the Energy and Social Characteristics of the Residential Sector[J]. Energyand Buildings.2007,39(8):893-905.
    [30] Yasuto Takuma, Inoue Hiroyuki, Nagano Futoshi, Ozaki Akihito, Hirotol’akaguehian,Watanabe Toshiyuki. Detailed researeh for energy consumption of residences in NorthernKylshu, Japan[J]. Energy and Buildings.2006,38(11):1349-1355.
    [31] Kaoru Kawamoto, Shimoda Yoshiyuki, Mizunob Minoru. Energy Saving Potential of OfficeEquipment Power Management[J]. Energy and Buildings.2005,36(9):915-923.
    [32]渡边俊行谢光亚于航陈超.日本的建筑节能概念与政策[J].暖通空调.2002,(06).
    [33] Enedir Ghisi, Gosch Samuel, Lamberts Roberto. Electricity End-Uses in the ResidentialSector of Brazil[J]. Energy Poficy.2007,35(8):4107-4120.
    [34] Terrence G. Bensel, Remesio Elizabeth M. Residential Energy Use Patterns in Cebu[J]. City,Philippines. Energy.1995,20(3):193-187.
    [35] Ashwini Kulkarni, Sant Girish, Krishnayya J. G. Urbanization in Search of Energy in ThreeIndian Cities[J]. Energy.1994,19(5):549-560.
    [36] Mousa S. Mohsen, Akash Bilal A. Some Prospects of Energy Savings in Buildings[J]. EnergyConversion and Management.2001,42(11):1307-1315.
    [37] Haas R, P Biermayr, O Zoechling. Impacts on Electricity Consumption of HouseholdAppliances in Austria:a Comparison of Time Series and Cross-section Analyses[J]. EnergyPolicy.1998,26(13):1031-1040.
    [38] David A. Poyer, Henderson Lenneal, P Arvind, Teotia S. Residential energy consumptionacross different population groups: comparative analysis for Latino and non-Latinohouseholds in USA[J]. Energy Economics.1997,19(4):445-463.
    [39] Mady Olonscheck, Holsten Anne, P Jürgen, Kropp. Heating and cooling energy demand andrelated emissions of the German residential building stock under climate change[J]. EnergyPolicy.
    [40] Peter H. G., Berkhout, Ferrer-i-Carbonell Ada, Muskens Jos C. The expost impact of anenergy tax on household energy demand[J]. Energy Economics.2004,26(3):297-317.
    [41] Roger Fouquet. The impact of VAT introduction on UK residential energy demand: Aninvestigation using the cointegration approach[J]. Energy Economics.1995,17(3):237-247.
    [42] Runa Nesbakken. Price sensitivity of residential energy consumption in Norway[J]. EnergyEconomics.1999,21(6):493-515.
    [43] Bente Halvorsen, Larsen Bodil M. Norwegian Residential Electricity Demand-aMicroeconomic Assessment of the Growth from1976to1993[J]. Energy Poficy.2001,29(3):227-236.
    [44] Geun Young Yun, Steemers Koen. Behavioural, physical and socio-economic factors inhousehold cooling energy consumption[J]. Applied Energy.2011,88(6):2191-2200.
    [45]涂逢祥.21世纪初建筑节能展望[J].新型建筑材料.2001,(01).
    [46] Tuan N A, T Lefevre. Analysis of Household Energy Demand in Vietnam[J]. Energy Policy.1996,24(12):1089-1099.
    [47] Papakostas K T, B Sotiropoulos. Occupational and Energy Behaviour Patterns in GreekResidences[J]. Energy and Buildings.1997,26(2):207-213.
    [48]涂逢祥等.建筑节能经济技术政策研究[M].北京:中国建筑工业出版社;1991.
    [49]魏积义等.中国建筑能耗现状及节能潜力[J].沈阳建筑工程学院学报.1994,10(2):187-190.
    [50]胡平放,江章宁,冷御寒,向才旺.湖北地区住宅热环境与能耗调查[J].暖通空调.2004,34(6):21-22.
    [51]武海斌等.北京市城市居民家用空调器耗电量的调查研究[J].暖通空调新技术.2000,(2):52-56.
    [52]江亿,薛志峰.北京市大型公共建筑用能现状与节能潜力分析[J].暖通空调.2004,34(9):8-10.
    [53]江亿,薛志峰.北京市建筑用能现状与节能途径分析[J].暖通空调.2004,34(10):13-16.
    [54]涂逢祥.建筑节能[M].北京:中国建筑工业出版社;2001.
    [55]冯小平,邹昀,龙惟定.居住建筑耗能设备的相关调查和统计分析[J].节能技术.2006,24(1):28-32.
    [56]张英.商丘市城市居民住宅能耗调查与分析[J].建筑科学.2007,23(6):68-71.
    [57]王小林,于航,董奇.上海市松江区住宅建筑能耗调查与分析[J].建筑节能.2007,35(7):53-55.
    [58]李念平等.长沙市住宅建筑夏季能源使用结构的调查与分析[J].暖通空调.2004,34(5):14-17.
    [59]李念平,吉野博.我国主要城市住宅室内环境与能耗的冬季问卷调查结果分析[J].制冷空调与电力机械.2004.
    [60]李念平,潘尤贵,吉野博.长沙市住宅室内热湿环境的测试与分析研究[J].建筑热能通风空调.2004,23(1):94-98.
    [61]陈淑琴,李念平,关军等.长沙市住宅建筑冬季能源使用结构的调查与分析[J].暖通空调.2005,35(1):134-138.
    [62]陈淑琴等.长沙市住宅建筑冬季能源使用结构的调查与分析研究[J].暖通空调.2005,35(1):134-138.
    [63]王怡,刘加平.西安住宅环境现状调查及空调设备使用情况分析[J].暖通空调.2005,35(12):44-46.
    [64]赵辉,张声远,杨秀,江亿.中国六个典型城市休闲能耗的调研与分析[J].低碳生态城市.2011,(01).
    [65]赵辉,吕忠,钱渝.重庆地区典型居住建筑建造能耗分析[J].重庆建筑.2010,(08):5-7.
    [66]符佩佩.长江流域农村建筑能耗调查及节能对策研究[D].重庆:重庆大学;2011.
    [67]陈淑琴.基于统计学理论的城市住宅建筑能耗特征分析与节能评价[D].湖南:湖南大学;2008.
    [68]李楠.夏热冬冷地区人员行为对住宅建筑能耗的影响研究[D].重庆:重庆大学;2011.
    [69]任俊,刘加平.广州居住建筑空调能耗实测研究[J].暖通空调.2004,34(5):18-22.
    [70]任俊,孟庆林,刘娅.广州住宅空调能耗分析与研究[J].墙体革新与建筑节能.2003,(4):34-37.
    [71]梁珍.城市民用建筑能耗模拟和统计方案设计[D].哈尔滨:哈尔滨工业大学;2001.
    [72]余英鹤.哈尔滨市民用建筑物能耗统计方案的编制与数据库开发[D].哈尔滨:哈尔滨工业大学;2003.
    [73]叶红,潘玲阳,陈峰,汪凯,黄少鹏.城市家庭能耗直接碳排放影响因素―以厦门岛区为例[J].生态学报.2010,30(14):3802―3811.
    [74] Andy T, Vietor Chanand, C.H.Yeung. Implementing building energy codes in HongKong:Energy savings, environment alim Paetsande ost[J]. Energy and Buildings.2005,37(6):631-642.
    [75]国家计委节能.能源预测模型开发与应用[M].北京:国计划出版社;1988.
    [76] Lukas G. Swan, Ugursal V. Ismet. Modeling of end-use energy consumption in the residentialsector: A review of modeling techniques[J]. Renewable and Sustainable Energy Reviews13.2009:1819–1835.
    [77] USA Dept. of Energy (2008). EnergyPlus: energy simulation software[EB/OL].2008.http://www.eere.energy.gov/buildings/energyplus.
    [78] Saha GP, J Stephenson. A model of residential energy use in New Zealand[J]. Energy.1980,5(2):167–175.
    [79] Bentzen J, T Engsted. A revival of the autoregressive distributed lag model in estimatingenergy demand relationships[J]. Energy.2001,26(1):45–55.
    [80] Hirst E, W Lin, J Cope. A residential energy use model sensitive to demographic, economic,and technological factors[J]. Quarterly Review of Economics and Finance.1977,17(2):7–22.
    [81] O’Neal DL, E Hirst. An energy use model of the residential sector[J]. IEEE Transactions onSystems Man and Cybernetics.1980,10(11):749–755.
    [82] Hirst E. A model of residential energy use[J]. Simulation.1978,30(3):69–74.
    [83] S. Karatasou, Santamouris M., Geros. Modeling and predicting building’s energy use withartificial neural networks: Methods and results[J]. Energy and Buildings.2006,(38):949-958.
    [84] S.J. Kiartzis, Bakirtzis A.G., Petridis V. Short-term forecasting using NNs[J]. Electric PowerSystems Research.1995,(33):1–6.
    [85] R Khotanzad, Hwang R., Abaye A., Maratukulam D. An adaptive modular artificial neuralnetwork hourly load forecaster and its implementation at electric utilities[J]. IEEETransactions on Power System.1995,10(3):1716–1722.
    [86] Khotanzad, Afhkhami-Rohani R., Lu T.L., Abaye A., Davis M., Maratukulam D. ANNSTLF:a neural network-based electric load forecasting system[J]. IEEE Transactions on NeuralNetworks.1997,8(4):835–845.
    [87] Khotanzad, Afhkhami-Rohani R., Maratukulam D. ANNSTLF—artificial neural networkshort-term load forecaster—generation three[J]. IEEE Transactions on Neural Networks.1998,13(4):1413–1422.
    [88] K. Kalaitzakis, Stavrakakis G.S., Anagnostakis E.M. Short-term load forecasting based onartificial neural networks parallel implementation[J]. Electric Power Systems Research.2002,63:185–196.
    [89] Azadeh, S.F.Ghaderi, S.Tarverdian, M.Saberi. Integration of artificial neural networks andgenetic algorithm to predict electrical energy consumption[J]. Applied Mathematics andComputation.2007,(186):1731–1741.
    [90] D.E. Goldberg. Genetic Algorithm in Search, Optimization and Machine Learning[J].Addison-Wesley, Harlow.1989.
    [91] G.A. Darbellay, Slama M. Forecasting the short-term demand for electricity: do neuralnetworks stand a better chance?[M];2000.
    [92] Tofflese. A managers’ guide to neural networks[M]. NJ, USA: Z solution;2004.
    [93] F.J. Nogales, Contreras J., Conejo A.J. Forecasting next-day electricity prices by time seriesmodels[J]. IEEE Transactions on Power Systems.2002,(2):17.
    [94] F. Nielsen. Neural Networks-Algorithms and Application[D]: Niels Brock Business College;2001.
    [95] J. Bao. Short-Term Load Forecasting based on Neural Network and Moving Average[M]:Artificial Intelligence Laboratory, Department of Computer Science;2001.
    [96] Mohammed, Park D., Merchant R., Dinh T., Azeem A., Farah J., Drake C. Practicalexperiences with an adaptive neural network short-term load forecasting system[J]. IEEETransactions on Power Systems.2002,1(10):254–265.
    [97] Ramazan Sari, Soytas Ugur. The growth of income and energy consumption in six developingcountries[J]. Energy Policy.2007,(35):889–898.
    [98] Seryak J, K Kissock. Occupancy and behavioral affects on residential energy use. In:American Solar Energy Society, Solar conference. Austin, Texas;2003.
    [99] Lutzenhiser L. A cultural model of household energy consumption[J]. Energy.1992,17(1):47–60.
    [100] Emery AF, CJ Kippenhan. A long term study of residential home heating consumption andthe effect of occupant behavior on homes in the Pacific Northwest constructed according toimproved thermal standards[J]. Energy.2006,31(5):677–693.
    [101] Tonn BE, DL White. Residential electricity use, wood use, and indoor temperature: aneconometric model[J]. Energy Systems and Policy.1988,12(3):151–165.
    [102] Parti M, C Parti. The total and appliance-specific conditional demand for electricity in thehousehold sector[J]. The Bell Journal of Economics.1980,11(1):309–321.
    [103] Fiebig DG, R Bartels. A random coefficient approach to the estimation of residential end-useload profiles[J]. Journal of Econometrics.1991,50(3):297–327.
    [104] Bartels R, DG Fiebig. ntegrating direct metering and conditional demand analysis forestimating end-use loads[J]. Energy Journal.1990,11(4):79–98.
    [105] Aydinalp M, VI Ugursal, A Fung. Modeling of the appliance, lighting, and spacecoolingenergy consumptions in the residential sector using neural networks[J]. Applied Energy.2002,72(2):87–110.
    [106] Aydinalp M, VI Ugursal, A Fung. Effects of socioeconomic factors on household appliance,lighting, and space cooling electricity consumption[J]. International Journal of GlobalEnergy Issues.2003,20(3):302–315.
    [107] Statistics Canada. Microdata user's guide—the survey of household energy use[M]. Ottawa;1993.
    [108] Capaso A, W Grattieri, R Lamedica, A Prudenzi. A bottom-up approach to residential loadmodeling[J]. IEEE Transactions on Power Systems.1994,9(2):957–964.
    [109] Yao R, K Steemers. A method of formulating energy load profile for domestic buildings inthe UK[J]. Energy and Buildings.2005,37(6):663–671.
    [110] Clarke JA, JM Kim, S Ghauri, CM Johnstone, PG Tuohy. The EDEM methodology forhousing upgrade analysis, carbon and energy labelling and national policy development. In:IBPSA Canada, eSim conference. Quebec City, Canada;2008:135–142.
    [111] Energy Systems Research Unit. ESP-r version11.3. In. University of StrathclydeUniversity,Glasgow, Scotland.
    [112] Griffith B, D Crawley. Methodology for analyzing the technical potential for energyperformance in the U.S. commercial buildings sector with detailed energy modeling. In:IBPSA-USA, SimBuild conference. Cambridge, Massachusetts;2006.
    [113]陈淑琴,李念评,付祥钊,刘俊跃.住宅建筑能耗统计方法的研究[J].暖通空调.2007,37(3):44-48.
    [114]全国统计专业技术资格考试用书编写委员会.统计基础知识和实务[M].北京:中国统计出版社;2005.
    [115]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告[R].北京;2008.
    [116]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告[R].北京;2009.
    [117]白玮,龙惟定,刘仲.上海未来住宅能耗预测研究[J].建筑科学.2008,24(10):11-15.
    [118]雷娅蓉.重庆居住建筑能耗预测方法研究[D].重庆:重庆大学;2008.
    [119]李爱旗,白雪莲.居住建筑能耗预测分析方法的研究[J].建筑科学.2007,23(8):32-35.
    [120]张志涌.精通MATLAB6.5版[M].北京:北京航空航天大学出版社;2003.
    [121]王科俊,王克成.神经网络建模、预报与控制[M].哈尔滨:哈尔滨工程大学出版社;1996.
    [122]飞思科技产品研发中心. MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社;1999.
    [123]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社;1999.
    [124]黄素逸,高伟编.能源概论[M].北京:高等教育出版社;2004.
    [125]谢艳群.长沙市住宅能耗调查实测及其影响因素的统计分析研究[D].湖南:湖南大学;2007.
    [126] Ruey-Lung Hwang, Lin Tzu-Ping, Kuo Nai-Jung. Field experiments on thermal comfort incampus classrooms in Taiwan[J]. Energy and Buildings.2005,(38):53-62.
    [127]重庆市统计局.重庆统计年鉴2006-2010[M].北京:中国统计出版社.
    [128]岳珍,赖茂生.国外“情景分析”方法的进展[J].情报杂志.2006(7):59-61.
    [129] A. Fink, Schlake O. Scenario Management: An Approach for Strategic Foresight[J].Competitive Intelligence Review.2000,11(1):111-130.
    [130] Henry Neufeldt, Schafer Michael. Mitigation strategies for greenhouse gas emissions fromagriculture using a regional economic-ecosystem model[J]. Agriculture, Ecosystems&Environment.2008,123(4):305-316.
    [131] Shuichi Ashina, Nakata Toshihiko. Quantitative analysis of energy-efficiency strategy onCO2emissions in the residential sector in Japan-Case study of Iwate prefecture[J]. AppliedEnergy.2007,10.
    [132] Andrew Ford. Simulation scenarios for rapid reduction in carbon dioxide emissions inthewestern electricity system[J]. Energy Policy.2007,(5).
    [133] Jyoti Parikh, Gokarn. Subir. Climate change and India's energy policy options: Newperspectives on sectoral C02emissions and incremental costs[J]. Global EnvironmentalChange.1993,3(3):276-291.
    [134]韦保仁,八木田浩史.中国水泥业能源需求和CO2排放量情景分析[J].中国水泥.2007,(6):31-34.
    [135]何林,袁建华,许屹等.未来我国人口、经济、资源、环境与可持续发展的情景分析[J].系统工程理论与实践.2002,(7):131-133.
    [136]国家发展和改革委员会能源研究所“中国可持续发展能源暨碳排放情景分析”课题组.中国可持续发展能源暨碳排放情景分析综合报告[R][R];2003.5.
    [137]刘志平.钢铁工业中长期提高能效情景分析[J].中国能源..2003,25(8):37-41.
    [138]国家能源战略课题组.国家能源战略的基本构想[EB/OL].2011.11.10. http://www.people.com.cn/GB/jin}ji/.
    [139]周大地.2020中国可持续能源情景[M].北京:中国环境科学出版社.
    [140]白玮.民用建筑能源需求与环境负荷研究[D].上海:同济大学;2008.
    [141]清华大学建筑节能中心.中国建筑节能年度发展研究报告(2009)[M].北京:中国建筑工业出版社.
    [142]重庆市人民政府办公厅.重庆市国民经济和社会发展第十二个五年规划纲要[R].渝府发〔2011〕13号;2011.
    [143]付祥钊,杨李宁.夏热冬冷地区居住建筑空调能耗预测[J].暖通空调.2007,(11):1-5.
    [144]王跃生.当代中国家庭结构变动分析[J].社会.2006,26(3):12-15.
    [145]周福临.我国家庭结构的统计研究[J].经济经纬.2006,(2):26-29.
    [146]赵克斌,李培林,朱庆芳.中国小康社会[M].北京:社会科学文献出版社;2003.
    [147]重庆市统计局.重庆市2010年第六次全国人口普查主要数据公报[R];2012.
    [148]重庆市统计局.2011年重庆市1%人口抽样调查主要数据公报[R];2012.
    [149]张维庆.中国计划生育概论[M].北京:中国人口出版社;1998.
    [150]王海燕.新世纪中国人口问题概论[M].济南:济南出版社;2000.
    [151]俞振发,黄义龙.推进我国既有建筑节能的对策思路[J].安徽建筑.2008,(2):27-34.
    [152]马俊.重庆市建筑节能激励机制研究[D]:重庆工商大学;2009.
    [153]王洪波,刘长滨.基于博弈分析的新建建筑节能激励机制设计[J].建筑科学.2009,2(25):25-28.
    [154]王红兵,王淑嫱.政府在推进民用建筑节能实施中的作用[J].建筑经济.2006,(S1):243-245.
    [155]刘彦辉.武汉市既有建筑节能改造障碍及对策研究华中科技大学,2007.[D].武汉:华中科技大学;2007.
    [156]王肖芳.重庆既有住宅节能改造研究[D].重庆:重庆大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700