燃料电池电催化剂催化机理与可控制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池因具有高效能和环境友好等优点而成为最有发展前途的一种电池。但当前所使用的电极催化剂以Pt为主,价格昂贵,要真正实现燃料电池的商业化,设计和寻找有效的低Pt和非Pt催化剂势在必行。本文主要结合当前的研究现状,从揭示电极反应的机理入手,针对当前研究存在的不足,做了以下四方面的工作:1)利用DFT方法研究了不同介质中甲醇在Pd(111)面的催化反应机理;2)探究了H在Pd(111)面的吸附、迁移和渗透行为及H的亚层吸收对于催化剂本身性质的影响;3)解析了氧还原反应在MPt^双金属催化剂表面的反应机理;4)利用连续有机金属法制备了不同形貌的双金属PtRu催化剂。旨在于为催化剂的设计和合成提供一定的理论基础和实验指导,为推动燃料电池事业的发展贡献一点微薄之力。
     首先,针对当前甲醇氧化反应机理模拟主要限于理想真空体系的问题,建立了不同介质中甲醇分子在Pd/溶液界面的吸附和反应理论模型,利用DFT方法研究了Pd对甲醇分子的催化活性。结果表明:中性介质中,Pd对甲醇分子不具有催化活性,甲醇分子的OH与水分子形成稳定的界面六边形氢键体系,甲醇分子的吸附能因氢键的生成而增大28.20kJ mol-1。酸性介质中,由于H质子的引入,界面层内发生质子转移,形成水合H离子和局域强氢键;同时,六边形氢键体系由于Cl-的引入而遭到破坏,体系能量降低,但甲醇分子内部键长保持不变,Pd对甲醇氧化也不具有催化活性。碱性介质中,规则六边形氢键体系因甲醇活化而破坏,但会有新的紧缩六边形氢键体系生成;甲醇分子以伸长O-H键或甲氧基的形式存在,体系能量明显降低,Pd对甲醇表现出较好的催化活性。
     其次,针对阳极氧化反应中H在催化剂表面的吸附、跃迁和渗透行为,及其对催化剂性质的影响缺少系统理论解析的现状,利用DFT方法研究了不同覆盖度下H在Pd(111)表面吸附、亚层吸收和体相渗透等行为的热力学和动力学性质。结果表明:H覆盖度为0.25ML时,H原子优先形成表面三重空位FCC和HCP的吸附,并且可在表面top位及亚层OSS和TSS位稳定存在,但不能稳定吸附于bridge位。当H覆盖度低于1.00ML时,Pd(111)最外层Pd原子的皱褶效应较小,超过1.00ML时,皱褶效应明显增大,并在1.50ML时达到最大值0.087。PDOS研究表明Pd-H间的作用会使Pd(111)表面最外层Pd原子的d能带分裂,随着氢覆盖度的增加,Pd(111)最外层原子的d电子态密度火山峰值增大,而d带中心则降低,并导致相应的H-Pd作用减弱。H在Pd(111)面的亚层吸收会使Pd(111)的催化性能略微下降。
     再次,从低Pt催化剂设计和氧还原反应机理解析的角度出发,研究了元素周期表中以三个近Pt元素Ir、Pd和Au为基底金属,表面Pt单层覆盖的MPt^双金属的催化氧还原反应机理。利用DFT方法计算了ORR过程中O2的吸附与解离,以及两个中间物种O和OH在IrPt^、PdPt^和AuPt^(111)面的吸附情况,并与单金属Pt(111)面作了比较。发现O和OH的结合能都随着d带中心的增大而增大,IrPt^、PdPt^和AuPt^按照基底金属在元素周期表中的排布,对ORR催化过程中O2解离反应的活化能和中间产物O原子的吸附能的影响符合BEP关系,IrPt^、PdPt^和AuPt^对ORR的催化活性呈现出其在元素周期表中的火山关系。表面应力效应、电荷转移和PDOS对于d带中心影响的研究表明:表面压力导致d带中心远离费米能级,而表面张力则导致d带中心移向费米能级。对于IrPt^而言,电子自表层Pt流向基底金属Ir,表层Pt原子的d电子减少,使d电子平均密度降低,进而导致d带中心远离Fermi能级;而PdPt^和AuPt^则发生Pd、Au电子流向表层Pt的现象,使Pt的d带中心移向Fermi能级。表面应力效应跟电子配位效应同时影响d带中心的性质,但是表面应力效应起主要作用。Ir基底使表面单层Pt的d带展宽;Pd基底对表层Pt的d带宽度影响较小;Au基底则使表层Pt的d带略微收缩。PdPt^(111)可被认是潜在的ORR低Pt催化剂。
     最后,利用分步有机金属法制备了双金属Ru@Pt核壳纳米粒子和改性的T-PtRu (tuned-PtRu)纳米粒子。WAXS、TEM和HRTEM的表征及ICP-MS和EDS的分析证明:在温和反应条件下,分步有机金属法成功制备了高分散、窄尺寸粒径分布的核壳结构Ru@Pt纳米粒子,Ru@Pt/PPP的粒径尺寸在1.80nm左右,较共还原法制备的纳米粒子粒径尺寸小0.2nm左右。结合HRTEM和理论模型分析可知,Ru:Pt用量比为1:1时,壳层Pt原子不能形成有效单层覆盖,粒子表面为Ru(0001)晶面;Ru:Pt用量比为1:2时,刚好实现单层覆盖,晶型较好,呈现明显的截断八面体结构,粒子表面多为Ru(0001),粒子边缘原子排布间距略微减小,原子层间距介于Ru(0001)和Pt(111)面之间;Ru:Pt用量比为1:4时,晶粒表面会有明显的Pt(111)特征。通过连续还原Pt2(dba)3和Ru(COD)(COT)的方法,不能有效制备Pt@Ru/PPP催化剂,但可制备高分散、窄尺寸粒径分布的改性T-PtRu/PPP纳米粒子。
Fuel cells (FCs) are regarded as ideal candidates for stationary and mobile powergeneration due to their high energy conversion efficiency and environmental benefits.However, the high cost and low Pt utilization of electrocatalyst have been recentlyrecognized as the most important issues to be addressed before commercialization. Thusresearches on the effective low-Pt and non-Pt catalysts have attracted more and moreattention. In the present study, we did the following work:1) DFT study on themechanism of methanol reaction catalyzed by Pd(111);2) the behavior of H adsorption,migration and penetration on Pd(111) and the effect of absorbed H on the property ofcatalyst;3) the mechanism of oxygen reduction reaction (ORR) on monolayer platinumover substrate metal (MPt^);4) synthesis of shape-controlled bimetallic PtRunanoparticles with organometallic method.
     Firstly, a model reflecting the effect of different solution on methanol reactivity onPd(111) has been proposed. The DFT calculation based on the established model hasreached the following conclusions. Pd(111) does not show any activity toward methanoloxidation either in neutral or acid solution. In neutral solution, with the substitution ofone methanol molecule for one water molecule, puckered hexagonal network ofhydrogen bonds has few changes compared with the pure water system. The adsorptionenergy of methanol is28.20kJ mol-1more than that in vacuum. Such a decrease in theadsorption energy is attributed to the contribution of one hydrogen bond betweenmethanol and neighboring water molecules. In acid solution, methanol is stillmolecularly adsorbed on Pd(111) with a slight relaxation of O-C and O-H bonds. Theslight change in methanol structure suggests that methanol in acid solution is notactivated. Different from those in neutral and in acid solution, the reactivity of methanolcatalyzed by Pd(111) in alkaline solution can be categorized into three cases. Theactivation of methanol in every case is indisputable, which is symbolized by elongatedhydroxyl or methoxy formation.
     Secondly, the interaction of hydrogen atoms with Pd(111) surface is studied withdensity functional theory (DFT) method. Various coverages ranging from0.25to2.00monolayer (ML) are considered. Particular attention is paid to the thermodynamics andkinetics of the adsorption or absorption processes and to the structural and electronicproperties. The results show that the threefold hollow sites, face centered cubic (FCC) and hexaganol close packed (HCP) are most energetically favorable. The diffusionprocessed in the same layer is more preferential than the penetration processed in twodifferent layers. For the coverages more than1.00ML, it is predicted that the additionalhydrogen easily penetrates into subsurface. PDOS research shows that the interaction ofhydrogen atoms with Pd leads to a splitting of d electron density of the outmost Pd(111)and to a gradual decrease of d band center of surface Pd atoms with coveragesincreasing. The Pd(111) occupied by hydrogen atoms shows a little bit less activity thanthe clean Pd(111).
     Thirdly, DFT is used to calculate the energetics of oxygen reduction reaction (ORR)on MPt^catalysts over substrates including Ir, Pd and Au. The binding energy of bothatomic oxygen and hydroxyl radical is found to correlate well with the d band center ofsurface Pt^. The binding energy of both atomic oxygen and hydroxyl radical increasesas the d band center increases. The relationship between energy barrier of molecularoxygen dissociation and binding energy of oxygen atom on various MPt^bimetalliccatalysts meets the BEP rules. The effect of surface strain, charge transfer and PDOS onthe d band center are well studied, and it can be found that both the surface strain effectand electronic effect will affect the d band center of surface Pt^in bimetallic MPt^catalyst,while the strain effect plays the most important role for the d band center ofPt(111) over various bimetallic MPt^catalysts. Surface compressive strain whichcorresponds to expansive Pt-Pt bond and electrons delation of Pt^drives the d bandcenter of Pt^over Ir substrate downward away from the Fermi level. Surface tensionand surplus electrons of Pt^over Au substrate makes the d band center of Pt^movetowards to the Fermi level. However, Pd substrate makes the d band center of surfacemonolayer Pt of MPt^comparable with the monometallic Pt, bringing similar catalyticactivity to ORR. Their catalytic activities show the volcano relationship as theirpositions in the periodic table, and it can be deemed that the MPt^over Pd substrate willbe the most potential candidate for ORR catalysts.
     Finally, Ru@Pt core-shell nanoparticles and surfacre tuned T-PtRu bimetalliccatalysts are prepared through the two-step orgnometallic approach. The wide-angleX-ray scattering (WAXS), transmission electron microscope (TEM) and high resolutiontransmission electron microscope (HRTEM) are used to characterize the nanoparticles.It is found that in mild conditions, high dispersed Ru@Pt nanoparticles with a narrowsize distribution are synthesized successfully with two-step orgnometallic approach. Theaverage size diameters are around1.80nm which is about0.20nm smaller than the PtRu nanoparticles synthesized with one-step orgnometallic method. The analysisthrough inductively coupled plasma mass spectrometry (ICP-MS) and energy dispersivespectrum (EDS) further prove our results. HRTEM and the theoretical model analysisshow that the Pt atoms are insufficient to form one monolayer coverage over Ru(0001).Truncated octahedron can be observed obviously through HRTEM when the Ru:Pt ratiois1:2, and the nanoparticles own the character of HCP Ru. Meanwhile, the boundaryatoms among which the distances become smaller show the character of Pt(111). SomePt(111) islands can be determined when the Ru:Pt ratio is1:4. However, it can be foundthat Pt@Ru/PPP nanoparticles can not be synthesized through the two-steporgnometallic method with the precursor of Pt2(dba)3and Ru(COD)(COT), but the CALselective hydrogenation catalyzed by the nanoparticle shows that the surface tunedT-PtRu/PPP nanoparticles have been prepared.
引文
[1]衣宝廉.燃料电池:原理.技术.应用[M].化学工业出版社,2003.
    [2] X.W. Yu, S.Y. Ye. Recent advances in activity and durability enhancement of Pt/C catalyticcathode in PEMFC Part I. Physico-chemical and electronic interaction between Pt and carbonsupport, and activity enhancement of Pt/C catalyst [J]. Journal of Power Sources,2007,172:133-144.
    [3]隋智通,隋升,罗冬梅.燃料电池及其应用[M].冶金工业出版杜,2004.
    [4] K.B. Prater. Polymer Electrolyte Fuel Cell: a review of recent developments [J]. Journal ofPower Sources,1994,51:129-144.
    [5]衣宝廉.燃料电池:高效、环境友好的发电方式[M].化学工业出版社,2000.
    [6] J. Larminie, A. Dicks. Fuel Cell Systems Explained (Second Edtion)[M]. John Wiley&SonsLtd.,2003.
    [7] C. Bernaya, M. Marchanda, M. Cassir. Prospects of different fuel cell technologies for vehicleapplications [J]. Journal of Power Sources,2002,108:139-152.
    [8]黄倬,屠海令,张冀强.质子交换膜燃料电池的研究开发与应用[M].冶金工业出版社,2000.
    [9]林维明,马紫峰.燃料电池系统北京[M].化学工业出版社,1996.
    [10]陈延禧.聚合物电解质燃料电池的研究进展[J].电源技术.1996,20:21-27.
    [11] K. Prater. The renaissance of the solid polymer fuel cell [J]. Journal of Power Sources,1990,29:239-250.
    [12] J.M. Oliver, C. Alan, C. Eric. Low-cost light weight high power density PEM fuel cell stack [J].Electrochimica Acta,1998,43:3829-3840.
    [13] A.J. Appleby, F.R. Goulkes. Fuel Cell Hand book [M]. Van Nostrand Reinhold, New York,1989.
    [14] M. Kazim. Economical and environment assessments of proton exchange membrane fuel cell inpublic undertakings [J]. Int J Energy Convers Mgmt,2000,42:763-772.
    [15] A.C. Lioyd. The California fuel cell partnership: an avenue to clean air [J]. Journal of PowerSources,2000,86:57-60.
    [16] G. Cacciola, V. Autonucci, S. Freni. Technology update and new strategies on fuel cells [J].Journal of Power Sources,2001,100:67-79.
    [17] DOE’s office of transportation technologies. National program plan Fuel Cells inTransportation,1993.
    [18]毛宗强.氢能离我们还有多远-我国燃料电池现状、差距及对策[J].电源技术,27:179-182.
    [19]查全性.电极过程动力学导论[M].科学出版社,1992.
    [20]冉洪波,李兰兰,李莉等.质子交换膜燃料电池催化剂的研究进展[J].重庆大学学报(自然科学版),2005,28:119-123.
    [21]邵志刚,衣宝廉,韩明等.质子交换膜燃料电池电极的一种新的制备方法[J].电化学,2000,6:317-317.
    [22] S. Hirano, J. Kim, S. Srinivasan. High performance proton exchange membrane fuel cells withsputter-deposited Pt layer electrodes [J]. Electrochim. Acta,1997,42:1587-1593.
    [23] A. Biloul, P. Gouerec, M. Savy. Oxygen electrocatalysis under fuel cell conditions: behaviourof cobalt prophyrins and tetraazaan-nulene anabgues [J]. Journal of Applied Electrochemistry,1996,26:1139-1146.
    [24] G. Lalande, G. Faubert, R. Cote. Catalytic activity and stability of heat-treated ironphthalocyanines for the electroreduction of oxygen on PEFCs [J]. Journal of Power Sources,1996,61:227-237.
    [25] G.Q. Lu, C.Y. Wang, T.J. Yen. Development and characterization of a silicon-based microdirect methanol fuel cell [J]. Electrochim. Acta,2004,49:821-828.
    [26] L.J. hobson, Y. Nakano, H. Ozu, S. hayase. Targeting Improve DMFC Performance [J]. Journalof Power Sources,2002,104:79-84.
    [27] H.G. Haubold, T. Vad. Nano Structure of Nafion: A SAXS study [J]. Electrochim. Acta,2001,46:1559-1563.
    [28] S.M. Haile. Fuel cell materials and components [J]. Acta Materialia,2003,51:5981-6000.
    [29]李兰兰.甲醇氧化催化剂的量子化学研究[D].硕士学位论文,重庆:重庆大学,2003.
    [30]李兰兰,魏子栋,李莉,孙才新.铂催化甲醇氧化开始步骤的研究[J].化学学报,2006,64:1173-1178.
    [31] G.C. Wang, Y.H. Zhou, Y. Morikawa, J. Nakamura, Z.S. Cai, X.Z. Zhao. Kinetic mechanism ofmethanol decomposition on Ni(111) surface: A theoretical study [J]. Journal of PhysicalChemistry B,2005,109:12431-12442.
    [32] Y.H. Zhou, P.H. Lv, G.C. Wang. DFT studies of methanol decomposition on Ni(100)surface:Compared with Ni(111) surface [J]. Journal of Molecular Catalysis A: Chemical,2006,258:203-215.
    [33]刘书红,陈文凯,曹梅娟,许莹,邓昭浦.甲醇在Ru(0001)表面吸附的密度泛函研究[J].分子催化,2006,20:46-50.
    [34] W.K. Chen, S.H. Liu, M.J. Cao, Q.G. Yan, C.H. Lu. Adsorption and dissociation of methanolon Au(111) surface:A first-principles periodic density functional study [J]. Journal of MolecularStructure: THEOCHEM,2006,770:87-91.
    [35] J.P. Camplin, E.M. Mcash. A RAIRS study of methoxy and ethoxy on oxidised Cu(100)[J].Surface Science,1996,360:229-241.
    [36] V. Efstathiou, D.P. Woodruff. An infrared vibrational spectroscopic study of the interaction ofmethanol with oxygen-covered Cu(111)[J]. Surface Science,2003,526:19-32.
    [37] Y. Wang, W. Wang, K.N. Fan, J.F. Deng. The first-principle study of the iodine-modified silversurfaces [J]. Surface Science,2001,487:77-86.
    [38] Q. Sun, K.N. Fan, J.F. Deng. Roles of surface and subsurface oxygen in the dehydrogenation ofmethanol on silver surface [J]. Chem Phys Lett,2000,322:1-8.
    [39] R. Schennach, A. Eichler, K. D. Rendulic. Adsorption and desorption of methanol on Pd(111)and on a Pd/V surface alloy [J]. J Phys Chem,2003,107:2552-2558.
    [40] R. Brito de Barros, A. R. Garcia, L. M. Ilharco. Effect of Oxygen Precoverage on the Reactivityof Methanol on Ru(001) Surfaces [J]. J Phys Chem B,2004,108:4831-4839.
    [41] S. K. Desai, M. Neurock, K. Kourtakis. A Periodic Density Functional Theory Study of theDehydrogenation of Methanol over Pt(111)[J]. J Phys Chem B,2002,106:2559-2568.
    [42] J. Prakash, A.T. Donald. Kinetic investigation of oxygen reduction and evolution reaction onlead ruthenate catalysts [J]. J. Electrochem. Soc.,1999,146:4145-4151.
    [43] A.B. Anderson, T.V. Albu. Ab intio determination of reversible potentials and activationenergies for outer-sphere oxygen reduction to water and the reverse oxidation reaction [J]. J.Am. Chem. Soc.,1999,121:11855-11863.
    [44] A. B. Anderson, T. V. Albu. Ab intio approach to calculating activation energies as functions ofelectrode potential trial application to four-electron reduction of oxygen [J]. Electrochem.Comm.,1999,1:203-206.
    [45] T.V. Albu, A.B. Anderson. Studies of model dependence in an ab initio approach to uncatalyzedoxygen reduction and the calculation of transfer coefficients [J]. Electrochimica Acta,2001,46:3001-3013.
    [46] R.A. Sidik, A.B. Anderson. Density function theory study of O2electroreduction when bondedto a Pt dual site [J]. J. Electroanal. Chem.,2002,528:69-76.
    [47] A.B. Anderson, T.V. Albu. An ab initio model including dependence on the electrode potential[J]. J. Electrochem. Soc.,2000,147:4229-4238.
    [48] A.B. Anderson. Theory at the electrochemical interface: reversible potentials andpotential-dependent activation energies [J]. Electrochimica Acta,2003,48:3743-3749.
    [49] A.B. Anderson, Y. Cai, R.A. Sidik, D.B. Kang. Advancements in the local reaction centerelectron transfer theory and the transition state structure in the first step of oxygen reductionover platinum [J]. J. Electronanl. Chem.,2005,580:17-22.
    [50] M.J. Janik, C.D. Taylor, M. Neurock. A First Principles Analysis of the Initial ElectroreductionSteps of Oxygen over Pt(111)[J]. J. Electrochem. Soc.,2009,156: B126-B135.
    [51] M. Neurock, S.A. Wasileski, D. Mei. From first principles to catalytic performance: trackingmolecular transformations [J]. Chem Eng Sci,2004,59:4703-4714.
    [52] J. K. N rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson.Origin of the overpotential for oxygen reduction at a fuel-cell cathode [J]. J. Phys. Chem. B,2004,108:17886-17892.
    [53] G.S. Kalberg, J. Rossmeisl, J.K. Norskov. Estimations of electric field effects on the oxygenreduction reaction based on the density functional theory [J]. Phys. Chem. Chem. Phys.,2007,9:5158-5161
    [54] M.H. Shao, P. Liu, R.R. Adzic. Superoxide anion is the intermediate in the oxygen reductionreaction on platinum electrodes [J]. J. Am. Chem. Soc.,2006,128:7408-7409.
    [55] Y.X. Wang, P.B. Balbuena. Ab initio molecular dynamic simulations of the oxygen reduction ona Pt(111) surface in the presence of hydrated hydronium (H3O)+(H2O)2:direct or seriespathway [J]. J. Phys. Chem. B,2005,109:14896-14907.
    [56] Y.X. Wang, P.B. Balbuena. Potential energy surface profile of the oxygen reduction reaction ona Pt cluster: adsorption and decomposition of OOH and H2O2[J]. J. Chem. Theory Comput.,2005,1:935-943
    [57] C. Harting, M.T.M. Koper. Molecular dynamics simulation of the first electron transfer step inthe oxygen reduction reaction [J]. J. Electroanal. Chem.,2002,532:165-170.
    [58] R.I. Masel. Principles of Adsorption and Reaction on Solid Surfaces [M] Wiley, Canada,1996.
    [59] M.H. Shao, P. Liu, J.L. Zhang, R.R. Adzic. Origin of enhanced activity in palladium alloyelectrocatalysts for oxygen reduction reaction [J]. J. Phys. Chem. B,2007,111:6772-6775.
    [60] V.R. Stamenkovic, B. Fowler, B.J.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic.Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability [J].Science,2007,315:493-497.
    [61] V.R. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J.Greeley, J.K. N rskov. Changing the activity of electrocatalysts for oxygen reduction by tuningthe surface electronic structure [J]. Angew. Chem. Int. Ed.2006,45:2897-2901.
    [62] K. Kinoshita. Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum inAcid Electrolytes [J]. J. Electrochem Soc,1990,137:845-848.
    [63] N.M. Markovic, P.N. Ross. Surface science studies of model fuel cell electrocatalysts [J], Surf.Sci. Rep.,2002,45:117-229.
    [64] Z. Tian, Y. Zhou, S.G. Sun, Y.Ding, Z.L. Wang. Synthesis of tetrahexahedral platinumnanocrystals with high-index facets and high electro-oxidation activity [J]. Science,2007,316:732-735.
    [65] T. Yu, D.Y. Kim, H. Zhang, Y. Xia. Platinum concave nanocubes with high-index facets andtheir enhanced activity for oxygen reduction reaction [J]. Angew. Chem. Int. Ed.,2011,50:2773-2777.
    [66] Y.B. Sun, L. Zhuang, J.T. Lu, X.L. Hong, P.F. Liu. Collapse in Crystalline Structure andDecline in Catalytic Activity of Pt Nanoparticles on Reducing Particle Size to1nm [J]. J. Am.Chem. Soc.,2007,129:15465-15467.
    [67] M.H. Shao, A. Peles, K. Shoemaker. Electrocatalysis on platinum nanoparticles: particle sizeeffect on oxygen reduction reaction activity [J]. Nano Lett.,2011,11:3714-3719.
    [68] Z.D. Wei, H.T. Guo, Z.Y. Tang. Heat treatment of carbon-based powders carrying platinumalloy catalysts for oxygen reduction: influence on corrosion resistance and particle size [J].Journal of Power Sources,1996,62:233-236.
    [69] Z.D. Wei, F. Yin, L.L. Li, X.W. Wei, X.A. Liu. Study of Pt/C and Pt2Fe/C catalysts in the lightof quantum chemistry [J]. J. Electroanal. Chem.,2003,541:185-191.
    [70]魏子栋,郭鹤桐,唐致远.氧在Pt-Fe-Co/C合金催化剂上的还原[J].催化学报,1995,16:142-144.
    [71] J. Zhang, K. Sasaki, E. Sutter, R.R. Adzic. Stabilization of Platinum Oxygen-ReductionElectrocatalysts Using Gold Clusters [J]. Science,2007,315:220-222.
    [72] Y.T. Kim, T. Uruga, T. Mitani. Formation of Single Pt Atoms on Thiolated Carbon NanotubesUsing a Moderate and Large-Scale Chemical Approach [J]. Adv. Mater.,2006,18:2634-2638.
    [73] Y.G. Suo, L. Zhuang, J.T. Lu. First-Principles Considerations in the Design of Pd-AlloyCatalysts for Oxygen Reduction [J]. Angew. Chem. Int. Ed.,2007,46:2862-2864.
    [74] A. Rabis, P. Rodriguez, T.J. Schmidt. Electrocatalysis for Polymer Electrolyte Fuel Cells:Recent Achievements and Future Challenges [J]. ACS Catal.,2012,2:864-890.
    [75]俞红梅,衣宝廉.车用燃料电池现状与电催化[J].2012,42:480-494.
    [76] K.A. Kuttiyiel, K. Sasaki, Y.M. Choi, D. Su, P. Liu, R.R. Adzic. Bimetallic IrNi coreplatinum monolayer shell electrocatalysts for the oxygen reduction reaction [J]. Energy Environ.Sci.,2012,5:5297-5304.
    [77] J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic. Controlling the CatalyticActivity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with DifferentSubstrates [J]. Angew. Chem. Int. Ed.,2005,44:2132-2135.
    [78] Y.D. Jin, Y. Shen, S.J. Dong. Electrochemical Design of Ultrathin Platinum-Coated GoldNanoparticle Monolayer Films as a Novel Nanostructured Electrocatalyst for OxygenReduction [J]. J. Phys. Chem. B,2004,108:8142-8147.
    [79] N. Kristian, X. Wang. Ptshell–Aucore/C electrocatalyst with a controlled shell thickness andimproved Pt utilization for fuel cell reactions [J]. Electrochem. Soc.,2008,10:12-15.
    [80]王福兵. PEM燃料电池Pt/C电催化剂制备和性能研究[D].天津,天津大学,2003.
    [81] Gamez, D. Richard, P. Gallezot. Oxygen reduction on well-defined platinum nanoparticlesinside recast ionomers [J]. Electrochem. Acta,1996,41:2595-2600.
    [82] J. Pollmann, R. Franke, J. Hormes. An X-ray photoelectron spectroscopy investigation of anovel Pd-Pt colloid catalyst [J]. Journal of Electron Spectroscopy and Related Phenomena,1998,94:219-227.
    [83] H. Bonnemann, W. Brijoux, T. Brinkmann. Preparation, characterization and application of finemetal particles and metal colloids using hydrotriorganoborates [J]. Molecular catalysis,1994,86:129-177.
    [84] D. Zeng, M.J. Hampden-Smith. Synthesis and characterization of nanophase group6metal (M)and metal carbide (M2C) powders by chemical reduction methods [J]. Chem. Mater.,1993,5:681-689.
    [85] J. Fourmier, G. Foubert, J.Y. Tilquin. High-performance, low Pt cotents for the electroreductionof oxygen in polymer-electrolyte fuel cells [J]. Electrochem. Soc.,1997,144:145-154.
    [86] M. Uchida, Y. Fukuokam, Y. Sugawara. Effects of microstructure of carbon support in thecatalyst layer on the pergormance of polymer-electrolyte fuel cells [J]. Electrochem. Soc.,1996,143:2245-2252.
    [87] R. Ramkumar, S. Dheemadayalan, R. Pattabiraman. Development of porous carbon electrodesfor direct methanol fuel cells [J]. Journal of Power Sources,1997,144:90-95.
    [88] M.Watanabe, M. Rchida, S. Motoo. Preparation of highly dispersed Pt+Ru alloy clusters andthe activity for the electrooxidation of methanol [J]. J. Electroanal. Chem.,1987,229:395-406.
    [89] E.J. Taylor, E.B. Anderson, N.R.K. Vilambi. Preparation of High-Platinum-Utilization GasDiffusion Electrodes for Proton-Exchange-Membrane Fuel Cells [J]. J. Electrochem. Soc.1992,139: L45-L46.
    [90]蔡杭峰.直接电沉积法制备直接甲醇燃料电池催化电极[D].重庆:重庆大学,2004.
    [91] Z.D. Wei, S.H Chan. Electrochemical deposition of PtRu on an uncatalyzed carbon electrodefor methanol electrooxidation [J]. Journal of Electroanalytical Chemistry,2004,569:23-33.
    [92]刘勇.调制脉冲电沉积法制备质子交换膜燃料电池催化电极的研究[D].重庆:重庆大学,2006.
    [93]陈四国.脉冲电沉积法制备质子交换膜燃料电池催化电极的研究[D].重庆:重庆大学,2007.
    [94] K.H. Choi, H.S. Kim, T.H. Lee. Electrode fabrication for proton exchange membrane fuel cellsby pulse electrodeposition [J]. Journal of Power Sources,1998,75:230-235.
    [95] Z.D. Wei, S.H. Chan, L.L. Li, H.F. Cai, Z.T. Xia, C.X. Sun. Electrodepositing Pt on aNafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction [J].Electrochimica Acta,2005,50:2279-2287.
    [96] H.S. Kim, N.P. Subramanian, B.N. Popov. Preparation of PEM fuel cell electrodes using pulseelectrodeposition [J]. Journal of Power Sources,2004,138:14-24.
    [97] D.C. Yong. Computational chemistry: a practical guide for applying techniques to real-wordproblems [M]. John wiley&Sons, Inc,2001.
    [98] J.B. Foresman, A.E. Frisch. Exploring chemistry with electronic structure methods: a guide tousing Gaussian [M]. Gaussian, Inc, Pittsburge, PA.
    [99] R.G. Parr, W. Yang. Density functional theory of atoms and molecules [M]. New York, oxforduniversity press,1989.
    [100] A. Wieckowski, E.R. Savinova, C.G. Vayenas. Catalysis and electrocatalysis at nanoparticalesurfaces [M]. New York. Basel, Marcle dekker, Inc.,2003.
    [101] C.G. Vayenas, B.E. Conway, R.E. White. Modern aspects of electrochemistry No.36, Chapter2, Ab initio quantum-chemical calculations in electrochemistry [M]. Springer US,2003.
    [102] E.V. Stefanovich, T.N. Truonq. A simple method for incorporating Madelung field effcets intoab inito embedded cluster calculations of crystals and macromolecules [J]. J. Phys. Chem. B,1998,102:3018-3022.
    [103] T. Jacob, B. Fricke, J. Anton, S. Varga, T. Ba tu, S. Fritzsche, W.D. Sepp. Cluster-embeddingmethod to simulate large cluster and surface problems [J]. Eur. Phys. J. D,2001,16:257-260.
    [104] X.Y. Wu, K.R. Asork. A hybrid density functional cluster study of the bulk and surfaceelectronic structures of PuO2[J]. Physica B: Condensed Matter,2001,301:359-369.
    [105] Y.J. Xu, J.Q. Li, Y.F. Zhang, W.K. Chen. CO adsorption on MgO (001) surface with oxygenvacancy and its low-coordinated surface sites: embedded cluster model density functionalstudy employing charge self-consistent technique [J]. Surface Science,2003,525:13-23.
    [106] K.M. McGrath. Direct methanol fuel cells [J]. Ind. Eng. Chem.,2004,10:1063-1080.
    [107] S.G. Sun, Y.Y. Yang. Studies of kinetics of HCOOH oxidation on Pt(100), Pt(110), Pt(111),Pt(510) and Pt(911) single crystal electrodes [J]. J. Electroanal. Chem.,1999,467:121-131.
    [108] M. Islam, R. Basnayake, C. Korzeniewski, A study of formaldehyde formation duringmethanol oxidation over PtRu bulk alloys and nanometer scale catalyst [J]. J. Electroanal.Chem.,2007,599:31-40.
    [109] B. Habibi, M.H. Pournaghi-Azar, H. Abdolmohammad-Zadeh, H. Razmi. Electrocatalyticoxidation of methanol on mono and bimetallic composite films: Pt and Pt-M (M[Ru, Ir and Sn)nano-particles in poly(o-aminophenol)[J]. Int. J. Hydrogen Energy,2009,34:2880-2892.
    [110] S. Shiizaki, I. Nagashima, Y. Matsumura, M. Haruta. A kinetic study of methanoldecomposition catalyzed over plate-type palladium catalyst [J]. Catal. Lett.,1998,56:227-230.
    [111] Z.P. Sun, X.G. Zhang, Y.Y. Liang, H.L. Li. Highly dispersed Pd nanoparticles on covalentfunctional MWNT surfaces for methanol oxidation in alkaline solution.Electrochem.Commun.,2009,11:557-661.
    [112] Y.W. Lee, S.B. Han, K.W. Park. Electrochemical properties of Pd nanostructures in alkalinesolution [J]. Electrochem. Commun.,2009,11:1968-1971.
    [113] M. Borasio, O. Rodriguez de la Fuente, G. Rupprechter, H.J. Freund. In Situ Studies ofMethanol Decomposition and Oxidation on Pd(111) by PM-IRAS and XPS Spectroscopy [J].J. Phys.Chem. B,2005,109:17791-17794.
    [114] R.J. Levis, J. Zhicheng, N. Winograd. Thermal decomposition of methanol absorbed onpalladium{111}. A new reaction pathway involving methyl formation [J]. J. Am. Chem. Soc.,1989,111:4605-4612.
    [115] M. Rebholz, N. Kruse. Mechanisms of methanol decomposition on Pd {111}[J]. J. Chem.Phys.,1991,95:7745-7759.
    [116] J.S. Filhol, M. Neurock. Elucidation of the electrochemical activation of water over Pd byfirst principles [J]. Angew. Chem. Int. Ed.,2006,45:402-406.
    [117] Y. Okamoto, O. Sugino, Y. Mochizuki, T. Ikeshoji, Y. Morikawa. Comparative study ofdehydrogenation of methanol at Pt(111)/water and Pt(111)/vacuum interfaces [J]. ChemicalPhysics Letters,2003,377:236-242.
    [118] J. Cerdá, A. Michaelides, M.L. Bocquet, P.J. Feibelman, T. Mitsui, M. Rose, E. Fomin, M.Salmeron. Novel water overgrowth on Pd(111) characterized with scanning tunnelingmicroscopy and density functional theory [J]. Phys Rev Lett,2004,93:116101-1-116101-4.
    [119] P.J. Feibelman. Partial Dissociation of Water on Ru(0001)[J]. Science,2002,295:99-102.
    [120] M.A. Henderson. The interaction of water with solid surfaces: fundamental aspects revisited[J]. Surf. Sci. Rep.,2002,46:1-108.
    [121] H. Ogasawara, B. Brena, D. Nordlund, M. Nyberg, A. Pelmenschikov, L.G.M. Pettersson, A.Nilsson. Structure and bonding of water on Pt(111)[J]. Phys. Rev. Lett.,2002,89:276102-1-276102-4.
    [122] A. Michaelides, A. Alavi, D.A. King. Insight into H2O-ice adsorption and dissociation onmetal surfaces from first-principles simulations [J]. Phys. Rev. B,2004,69:113404-1-113404-4.
    [123] S. Meng, L.F. Xu, E.G. Wang, S.W. Gao. Vibrational recognition of hydrogen-bonded waternetworks on a metal surface [J]. Phys. Rev. Lett.,2002,89:176104-1-176104-4.
    [124] C.D. Taylor, M. Neurock. Theoretical insights into the structure and reactivity of theaqueous/metal interface [J]. Current Opinion in Solid State and Materials Science,2005,9:49-65.
    [125] P.A. Gravil, H. Toulhoat. Hydrogen, sulphur and chlorinecoadsorption on Pd(111): atheoretical study of poisoning and promotion [J]. Surf. Sci.,1999,430:176-191.
    [126] K. Christmann. Interaction of hydrogen with solid surfaces [J]. Surf. Sci. Rep.,1988,9:1-163.
    [127] C. Langhammer, I. Zoric, B. Kasemo, B.M. Clemens. Hydrogen storage in Pd nanodiskscharacterized with a novel nanoplasmonic sensing scheme [J]. Nano. Lett.,2007,7:3122-3127.
    [128] N. Watari, S. Ohnishi, Y. Ishii. Hydrogen storage in Pd clusters [J]. J. Phys.: Condens. Matter,2000,12:6799-6823.
    [129] G. La Manna, G. Barone, Z. Varga, D. Duca. Theoretical evaluation of structures andenergetics involved in the hydrogenation of hydrocarbons on palladium surfaces [J]. J. Mol.Struct.(THEOCHEM),2001,548:173-183.
    [130] H. Conrad, G. Ertl, E.E. Latta. Adsorption of hydrogen on palladium single crystal surfaces[J]. Surf. Sci.,1974,41:435-446.
    [131] M.G. Cattania, V. Penka, R.J. Behm, K. Christmann, G. Ertl. Interaction of hydrogen with apalladium (110) surface [J]. Surf. Sci.,1983,126:382-391.
    [132] M. Jo, Y. Kuwahara, M. Onchi, M. Nishijima. Adsorbed states of hydrogen on Pd(110):vibrational electron energy loss spectroscopy and low-energy electron diffraction studies [J].Solid State Commun.,1985,55:639-641.
    [133] C. Nyberg, C.G. Tengstal. Adsorption and reaction of water, oxygen, and hydrogen onPd(100): identification of adsorbed hydroxyl and implications for the catalytic H2-O2reaction [J]. J. Chem. Phys.,1984,80:3463-3468.
    [134] D. Farias, P. Schilbe, M. Patting, K.H. Rieder. The transition of chemisorbed hydrogen intosubsurface sites on Pd(311)[J]. J. Chem. Phys.,1999,110:559-566.
    [135] C.H. Hsu, B.E. Larson, M. Elbatanouny, C.R. Willis, K.M. Martini. Evidence of quantummotion of hydrogen on Pd(111) in helium-diffraction data [J]. Phys. Rev. Lett.,1991,66:3164-3170.
    [136] F. Besenbacher, I. Stensgaard, K. Mortensen. Adsorption position of deuterium on the Pd(100)surface determined with transmission channeling [J]. Surf. Sci.,1987,191:288-301.
    [137] W. Dong, V. Ledentu, P. Sautet, A. Eichler, J. Hafner. Hydrogen adsorption on palladium: acomparative theoretical study of different surfaces [J]. Surf. Sci.,1998,411:123-136.
    [138] D. Tomanek, Z. Sun, S.G. Louie. Ab initio calculation of chemisorption systems: H on Pd(001)and Pd(110)[J]. Phys. Rev. B,1991,43:4699-4707.
    [139] S. Wilke, D. Hennig, R. Lober, M. Methfessel, M. Scheffler. Ab initio study of hydrogenadsorption on Pd(100)[J]. Surf. Sci.,1994,307:76-81.
    [140] S. Wilke, D. Hennig, R. Lober. Ab initio calculations of hydrogen adsorption on (100)surfaces of palladium and rhodium [J]. Phys. Rev. B,1994,50:2548-2560.
    [141] W. Dong, V. Ledentu, P. Sautet, G. Kresse, J. Hafner. A theoretical study of the Hinducedreconstructions of the Pd(110) surface [J]. Surf. Sci.,1997,377:56-61.
    [142] J.F. Paul, P. Sautet. Comparison of the nature of the hydrogen-metal bond on Pd(111) andNi(111) by a periodic density functional method [J]. Surf. Sci.,1996,356: L403.
    [143] J.F. Paul, P. Sautet. Density-functional periodic study of the adsorption of hydrogen on apalladium (111) surface [J]. Phys. Rev. B,1996,53:8015-8027.
    [144] W. Dong, G. Kresse, J. Furthmüller, J. Hafner. Chemisorption of H on Pd(111): an ab initioapproach with ultrasoft pseudopotentials [J]. Phys. Rev. B,1996,54:2157-2160.
    [145] X.Q. Qi, Z.D. Wei, L.L. Li, L. Li, M.B. Ji, Y. Zhang, M.R. Xia, X.L. Ma. DFT studies of thepH dependence of the reactivity of methanol on a Pd(111) surface [J]. J. Mol. Struct.,2010,980:208-213.
    [146] J. Greeley, M. Mavrikakis. Surface and subsurface hydrogen: adsorption properties ontransition metals and near-surface alloys [J]. J. Phys. Chem. B,2005,109:3460-3471.
    [147] M. Ruda, E.A. Crespo, S. Ramos de Debiaggi. Atomistic modeling of H absorption in Pdnanoparticles [J]. J. Alloys Compd.,2010,495:471-475.
    [148] C.T. Chan, S.G. Louie. Hydrogen in subsurface sites of Pd(111): Self-consistent electronicstructure [J]. Phys. Rev. B,1984,30:4153-4156.
    [149] F.A. de Bruijn, V.A.T. Dam, G.J.M. Janssen. Durability and degradation issues of PEM fuelcell components [J]. Fuel Cells,2008,8:3-22.
    [150] N.M. Markovic, T.J. Schmidt, V. Stamenkovic, P.N. Ross. Oxygen Reduction Reaction on Ptand Pt Bimetallic Surfaces: A Selective Review [J]. Fuel Cells,2001,1:105-116.
    [151] S.M. Alia, K.O. Jensen, B.S. Pivovar, Yushan Yan. Platinum-Coated Palladium Nanotubes asOxygen Reduction Reaction Electrocatalysts [J]. ACS Catal.,2012,2:858-863.
    [152] N. Tian, Z.Y. Zhou, S.G. Sun. Platinum Metal Catalysts of High-Index Surfaces: FromSingle-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles [J]. J. Phys.Chem. C,2008,112:19801-19817.
    [153] M. Subhramannia, V.K. Pillai. Shape-dependent electrocatalytic activity of platinumnanostructures [J]. J. Mater. Chem.,2008,18:5858-5870.
    [154] H. Naohara, S.Ye, K. Uosaki. Electrocatalytic Reactivity for Oxygen Reduction at EpitaxiallyGrown Pd Thin Layers of Various Thickness on Au(111) and Au(100)[J]. Electrochim. Acta,2000,45:3305-3309.
    [155] R.R. Adzic in Encyclopedia of Electrochemistry, Vol.1(Eds.: A. Bard, M. Stratmann)[M].Wiley-VCH, New York,2002.
    [156] T.J. Schmidt, V. Stamenkovic, M. Arenz, N.M. Markovic, P.N. Ross. Oxygen electrocatalysisin alkaline electrolyte: Pt(hkl), Au(hkl) and the effect of Pd-modification [J]. Electrochim.Acta,2002,47:3765-3776.
    [157] J. Zhang, F.H.B. Lima, M.H. Shao, K. Sasaki, J.X. Wang, J. Hanson, R.R. Adzic. Platinummonolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2reduction [J]. J Phys Chem B.,2005,109:22701-22704.
    [158] V.R. Stamenkovic, B.S. Mun, M.Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross,N.M. Markovic. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloysurfaces [J]. Nat. Mater.,2007,6:241-247.
    [159] M. Gsell, P. Jakob, D. Menzel. Effect of Substrate Strain on Adsorption [J]. Science,1998,280:717-720.
    [160] J.A. Rodriguez. Physical and chemical properties of bimetallic surfaces [J]. Surf. Sci. Rep.,1996,24:223-287.
    [161] E. Kampshoff, E. Hahn, K. Kern. Correlation between surface stress and the vibrational shiftof CO chemisorbed on Cu surfaces [J]. Phys. Rev. Lett.,1994,73:704-707.
    [162] J.L. Fernández, D.A. Walsh, A.J. Bard. Thermodynamic Guidelines for the Design ofBimetallic Catalysts for Oxygen Electroreduction and Rapid Screening by ScanningElectrochemical Microscopy. M-Co (M: Pd, Ag, Au)[J]. J. Am. Chem. Soc.,2005,127:357-365.
    [163] W.P. Zhou, M. Vukmirovic, K. Sasaki, R.R. Adzic. Oxygen Reduction Reaction on a PtMonolayer on a Pd2Co(111) Single Crystal Surface [J]. ECS Trans.,2008,13:23-28.
    [164] C. Wang, N.M. Markovic, V.R. Stamenkovic. Advanced Platinum Alloy Electrocatalysts forthe Oxygen Reduction Reaction [J]. ACS Catal.,2012,2:891-898.
    [165] W. Tang, G. Henkelman. Charge redistribution in core-shell nanoparticles to promote oxygenreduction [J]. J. Chem. Phys.,2009,130:194504-194509.
    [166] T. Bligaard, J.K. N rskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested. TheBr ndsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J.Catal.,2004,224:206-217.
    [167] B. Hammer, J. K. N rskov. Electronic factors determining the reactivity of metal surfaces [J].Surf. Sci.1995,343:211-220.
    [168] A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, J.K. N rskov. Surface electronic structure andreactivity of transition and noble metals [J]. J. Mol. Catal. A,1997,115:421-429.
    [169] M. Mavrikakis, B. Hammer, J.K. N rskov. Effect of Strain on the Reactivity of MetalSurfaces [J]. Phys. Rev. Lett.,1998,81:2819-2822.
    [170] J. Greeley, J.K. N rskov, M. Mavrikakis. Electronic structure and catalysis on metal surfaces[J]. Annu. Rev. Phys. Chem.,2002,53:319-348.
    [171] J. Kitchin, J.K. N rskov, M.A. Barteau, J.G. Chen. Role of strain and ligand effects in themodification of the electronic and chemical properties of bimetallic surfaces [J]. Phys. Rev.Lett.,2004,93:156801-1-156801-4.
    [172] J. Kitchin, J.K. N rskov, M.A. Barteau, J.G. Chen. Modification of the surface electronic andchemical properties of Pt(111) by subsurface3d transition metals [J]. J. Chem. Phys.2004,120:10240-10246.
    [173]张海艳,曹春晖,赵健,林瑞,马建新.燃料电池Pt基核壳结构电催化剂的最新研究进[J].催化学报,2012,33:222-229.
    [174] J.L. Fernández, V. Raghuveer, A. Manthiram, A.J. Bard. Pd-Ti and Pd-Co-Au Electrocatalystsas a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane FuelCells [J]. J. Am. Chem. Soc.,2005,127:13100-13101.
    [175] M.H. Shao,K. Sasaki, R.R. Adzic. Pd-Fe nanoparticles as electrocatalysts for oxygenreduction [J]. J. Am. Chem. Soc.,2006,128:3526-3527.
    [176] K. Lee, L. Zhang, J. Zhang. Ternary non-noble metal chalcogenide (W–Co–Se) aselectrocatalyst for oxygen reduction reaction [J]. J. Electrochem. Commun.,2007,9:1704-1708.
    [177] X. Wang, Y. Tang, Y. Gao, Y.H. Lu. Carbon-supported Pd-Ir catalyst as anodic catalyst indirect formic acid fuel cell [J]. Journal of Power Sources,2008,175:784-788.
    [178] P.K. Shen, C.W. Xu. Alcohol oxidation on nanocrytalline oxide Pd/C promoted electrocatalys[J]. Electrochem. Commun.,2006,8:184-188.
    [179] M. Nie, H.L.Tang, Z. D.Wei, S.P. Jiang, P.K. Shen. Highly efficient AuPd-WC/Celectrocatalysts for ethanol oxidation [J]. Electrochem. Commun.,2007,9:2375-2379.
    [180] X.M. Sun, Y.D. Li. Colloidal carbon spheres and their Core/shell structures with noble metalnanoparticles [J]. Angew. Chem. Int. Edit.,2004,43:597-601,
    [181] W.J. Zhou, J.Y. Lee. Highly active core-shell Au@Pd catalyst for formic acidelectrooxidation. Electrochemistry Communications [J]. Electrochem. Commun.,2007.9:1725-1729.
    [182] R.R. Adzic, J.L. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U.Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe. Platinum monolayer fuel cell electrocatalysts[J]. Top Catal,2007,46:249-262.
    [183] J. Luo, L.Y. Wang, D. Mott, P. Njoki, Y. Lin, T. He, Z. Xu, B. Wanjana, S.I. Lim, C.J.Zhong. Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions [J].Adv. Mater.,2008,20:4342-4347.
    [184]李增喜,陈霄榕.贵金属铂对镍基催化剂上萘转化性能的影响[J].催化学报,2003,24:253-258.
    [185] B. Hammer, J. K. Norskov. Theoretical surface science and catalysis-calculations andconcepts [J]. Adv Catal,2000,45:71-129.
    [186]李兰兰,魏子栋,严灿,孙才新.甲醇在欠电位沉积Ru修饰Pt电极上的催化氧化[J].物理化学学报,2007,23:723-727.
    [187] X.Lu, J.P. Hu, J.S. Foord, Q. Wang. Electrochemical deposition of Pt-Ru on diamondelectrodes for the electrooxidation of methanol [J]. Journal of Electroanalytical Chemistry,2011,654:38-43.
    [188] J. Kua, W.A. Goddard. Oxidation of Methanol on2nd and3rd Row Group VIII TransitionMetals (Pt, Ir, Os, Pd, Rh and Ru): Application to Direct Methanol Fuel Cells [J]. J. Am.Chem. Soc.,1999,121:10928-10941.
    [189] R. Venkataraman, H.R. Kunz, J.M. Fenton. Development of new CO tolerant ternary anodecatalysts for proton exchange membrane fuel cells [J]. Journal of the Electrochemical Society,2003,150: A278-A284.
    [190] G.L. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher. Metal-nanocluster-filled carbon nanotubes:Catalytic properties andpossible applications in electrochemical energy storage andproduction [J]. Langmuir,1999,15:750-758.
    [191] V. Lordi, N. Yao, J. Wei. Method for supporting Platinum on single walled carbon nanotubesfor a selective hydrogenat ion catalyst [J]. Chemistry of Materials,2001,13:733-737.
    [192] W.Z. Li, C.H. Liang, J.S. Qiu, W.J. Zhou, H.M. Han, Z.B. Wei, G.Q. Sun, Q. Xin.Carbon nanotubes as support for cathode catalyst o f a direct methanol fuel cell[J]. Carbon,2002,40:791-794.
    [193]刘宾,廖世军,梁振兴.核壳结构:燃料电池中实现低铂电催化剂的最佳途径[J].化学进展,2011,23:852-859.
    [194] V. Radmilovic, H.A. Gasteiger, P.N. Ross. Structure and Chemical Composition of aSupported Pt-Ru Electrocatalyst for Methanol Oxidation [J]. J. Catal.,1995,154:98-104.
    [195] M.S. Nashner, A.I. Frenkel, D. Somerville, C.W. Hills, J.R. Shapley, R.G. Nuzzo. Core ShellInversion during Nucleation and Growth of Bimetallic Pt/Ru Nanoparticles [J]. J. Am. Chem.Soc.,1998,120:8093-8101.
    [196] G. Schmid. Clusters and colloids: from theory to applications [M]. Wiley-VCH, New York,1994.
    [197] B. Chaudret. Organometallic approach to nanoparticles synthesis and self-organization [J].Comptes Rendus Physique,2005,6:117-131.
    [198] K. Philippot, B. Chaudret. Organometallic approach to the synthesis and surface reactiving ofnoble metal nanoparticles [J]. Comptes Rendus Chimie,2003,6:1019-1034.
    [199] I. Favier, S. Massou, E. Teuma, K. Philippot, B. Chaudret, M. Gomez. A new and specificmode of stabilization of metallic nanoparticles [J]. Chem Commun.,2008,28:3296-3298.
    [200] A. Mosset, B. Chaudret, K. Philippot, T.O. Ely, M.J. Casanove, P. Lecante, C. Amiens, E.Snoeck, F. Dassenoy. Platinum nanoparticles stabilized by CO and octanethiol ligands orpolymers: FT-IR, NMR, HREM and WAXS studies [J]. New journal of chemistry,1998,22:703-712.
    [201] K. Moseley, P.M. Maitlis. Bis-and tris-(dibenzylideneacetone)platinum and the stabilizationof zerovalent complexes by an unsaturated ketone [J]. J. Chem. Soc. D,1971,982-983.
    [202] E. Castillejos, P.J. Debouttire, L. Roiban, A. Solhy, V. Martinez, Y. Kihn, O. Ersen, K.Philippot, B. Chaudret, P. Serp. An efficient strategy to drive nanoparticles into carbonnanotubes and the remarkable confinement effect on their catalytic activity [J]. Angew. Chem.Int. Ed.,2009,48:2529-2533.
    [203] H. Vu, F. Gon alves, R. Philippe, E. Lamouroux, M. Corrias, Y. Kihn, D. Plee, P. Kalck, P.Serp. Bimetallic catalysis on carbon nanotubes for the selective hydrogenation ofcinnamaldehyde [J]. Journal of Catalysis,2006,240:18-22.
    [204] M.R. Axet, K. Philippot, B. Chaudret, M. Cabie, S. Giorgio, C.R. Henry. TEM and HRTEMevidence for the role of ligands in the formation of shape-controlled Platinum nanoparticles[J]. Small,2011,7:235-241.
    [205] M.A. Vannice, B. Sen. Metal-Support Effects on the Intramolecular Selectivity ofCrotonaldehyde Hydrogenation over Pt [J]. J. Catal,1989,115:65-78.
    [206] P. Claus. Selective Hydrogenation of α,β-Unsaturated Aldehydes and Other C=O and C=CBonds Containing Compounds [J]. Top. Catal.,1998,5:51-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700