锶同位素分析技术在贾湖遗址人类迁移行为研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用同位素分析技术可以有效地揭示考古遗存中蕴含的“潜”信息,这是科技考古的重要组成部分,也是当前国际考古学研究的前沿和热点问题之一。自从1985年Ericson首次提出利用人类牙釉质和骨骼中的锶同位素比值来研究人类的迁移情况和外来人口的来源地之后,这个方法就受到了考古学家的重视。在过去的二十多年里,考古学家们利用锶同位素分析技术对一些考古遗址的人类迁移现象进行了研究,结果表明使用这一方法是完全可能和可行的。国外的考古工作者在这方面已经取得了一些有价值的研究成果,而在国内尚未见到相关的研究报道。
     本文主要以河南省舞阳县贾湖遗址发掘出土的人骨和动物骨骼为材料,利用锶同位素分析技术对贾湖遗址的人类迁移情况进行了研究。本次研究是对这一方法在中国考古学实践运用中的尝试和探索,同时也是对贾湖遗址的进一步研究。
     贾湖遗址是我国一处重要的新石器时代遗址,距今约7500~9000年。1983年至2001年期间,考古工作者先后对贾湖遗址进行了七次发掘。在发掘过程中出土了大量保存完好的动物和人类骨骼,这些为我们利用锶同位素分析技术研究贾湖遗址古人类的迁移情况提供了有利条件,也为研究新石器时代中原地区史前人类的迁徙和流动情况提供了可能性。在本次研究中,我们从遗址出土的第一至第三期的动物和人类骨骼遗存中选取了59个样品进行分析,整个实验过程是在中国科学技术大学壳幔物质与环境重点实验室完成的。研究结果表明:猪牙釉质中的锶含量明显的比人牙釉质中的锶含量要高,进一步证明了锶浓度在食物链中随着营养级的升高而降低的规律;在人体内,牙本质中的锶浓度明显高于牙釉质中的锶浓度,骨密质中的锶浓度稍高于牙本质中的锶浓度;在对个体迁移行为的研究中,根据9个猪牙釉质样品~(87)Sr/~(86)Sr平均值±2倍的标准偏差确定的贾湖遗址当地锶同位素比值,与50个人类样品的锶同位素比值进行了比较,发现在所分析的32个人类个体中有12个是外来迁入的,占所分析个体的37.5%,表明贾湖遗址中的个体有着较高的迁移率,并且按照时间的顺序,迁移率从第一期到第三期有明显增加的趋势,同时也表明在7000 B.C.~5500 B.C.年间,中原地区的贾湖聚落与周围同时期的其他聚落间有着密切的经济和文化联系,尤其是在贾湖文化的后期。
     这是迄今为止国内首次利用锶同位素分析技术对古人类的迁移行为进行研究,研究结果表明这种方法可以很好的判断贾湖遗址古人类的迁移行为。当然,研究中还有许多需要进一步完善与改进之外,特别是由于本次工作在国内考古研究中尚属首次,样品来源地比较单一,我们只能对贾湖遗址古人类的迁移情况有所了解,认识到“贾湖遗址中的个体有着较高迁移率”。由于没有相关的资料进行比较,暂时还无法得知这些外来人口的来源地以及贾湖聚落与哪些聚落存在着人口的交往和联系。这些问题均有待于今后进一步的工作,在对该地区锶同位素分布状况以及相关遗址人类的迁移情况有所了解的基础之上得以解决。
Isotope analysis technology could reveal the latent information of archaeological remains effectively, which is an important tool for archaeometry. It is also the frontier of current international archaeology. Ericson (1985) first proposed strontium isotope ratio in human tooth enamel and bone to identify migration and the geologic origins of immigrants. Since then, the method has been thought highly by many archaeologists. Over the last two decades, archaeologists have used this method to investigate migration of some archaeological sites and the results have demonstrated both the possibility and the practicality. Archaeologists abroad have achieved some good results in this field, but in China there is still no report.
     In this article, we used strontium isotope analysis technology to investigate migration of Jiahu human by analyzing the bones of human and animal. This research is the exploration of this method in practice of Chinese archeology and the further study of Jiahu relics.
     Jiahu relics is a famous Neolithic site occupied from 9000 BP to 75000BP. From 1983 to 2001, seven excavation campaigns were performed. The richness of bones and teeth of both human beings and animals excavated in Jiahu relics presents us a good opportunity to probe the prehistoric Chinese human mobility during the Neolithic period in central China. In this study, a total of 59 animal and human samples from three cultural layers have been analyzed. The experiment is finished at the Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Chinese Academy of Sciences. The results show that strontium concentration in pig enamel is significantly higher than in human enamel. This result is in accord with the relation between strontium concentration and the trophic position of organism. Higher strontium concentration indicates lower trophic levels. There are the highest strontium concentration in compact bones, the middle level in dentine samples, and the lowest in tooth enamel samples in human skeletons. For the human migration, 12 of 32 individuals (37.5%) from Jiahu relics were identified as immigrants according to the criterion determined by the average ~(87)Sr/~(86)Sr ratios±2 s. d. of 9 pig enamel samples. It shows that there is a high rate of human migration in Jiahu relics. With respect of time span, it is obviously that the rates of immigrants are increasing from Period I to Period III. Our results also show the close cultural and economic ties between different human groups of Jiahu relics and around relics in central China from 7000 B.C. to 5500 B.C., especially in late period of Jiahu relics.
     This is the first attempt to apply strontium isotope analysis to Chinese archaeology, which shows a powerful method identifying prehistoric population mobility in Jiahu relics. Of course, there are many shortages in this article which need to be further strudy in the future. Especially, because it is the first time to use this method in Chinese archeology research and the source of samples is single, we only get the migration information about prehistoric human in Jiahu relics and recognize that "there is a high rate of human migration in Jiahu relics". Without any other related information to compare with, we don't know where the immigrants came from and which settlements the human beings in Jiahu contacted with. These problems will be settled after we realize the distribution of strontium isotope in this area and the migration information about the related relics.
引文
[1] Zhang J, Harbottle G., Wang C, Kong Z. Oldest playable musical instruments found at Jiahu early Neolithic site in China. Nature, 1999, 401: 366—368
    [2] Zhang J, Xiao X, Lee Y. The early development of music: analysis of the Jiahu bone flutes. Antiquity, 2004, 78(302): 769-778
    [3] Li X, Harbottle G, Zhang J et al. The earliest writing? Sign use in the seventh millennium BC at Jiahu, Henan Province, China. Antiquity, 2003, 77: 31—44
    [4] Zhang J, Wang X. Notes on the recent discovery of ancient cultivated rice at Jiahu, Henan Province: a new theory concerning the origin of Oryza japonica in China. Antiquity, 1998, 72: 897-901
    [5] McGovern P E, Zhang J, Tang J et al. Fermented beverages of pre- and proto-historic China. PNAS, 2004,101(51): 17593-17598
    [6] http://culture.people.com.cn/GB/22219/6808416.html
    [1]魏菊英,王关玉.同位素地球化学.北京,地质出版社,1988
    [2]郑永飞,陈江峰.稳定同位素地球化学.科学出版社,2000
    [3]李玉平,江小清,刘苑秋.碳、氮同位素示踪法在农林业中的应用.江西科学,2007,25:582-587
    [4]郭波莉,魏益民,潘家荣.同位素指纹分析技术在食品产地溯源中的应用进展.农业工程学报,2007,23:284-289
    [5]葛源,贺纪正,郑袁明等.稳定同位素探测技术在微生物生态学研究中的应用.生态学报,2006,26:1574-1582
    [6]白志鹏,张利文,朱坦等.稳定同位素在环境科学研究中的应用进展.同位素,2007,20:57-64
    [7]张巽,陈江峰,马林等.铅和锶同位素组成在古陶产地判别中的联合应用.核技术,2004,24:210-206
    [8]李法军,金海燕,朱泓等.姜家梁新石器时代遗址古人类的食谱.吉林大学学报,2006,44:1001-1007
    [9]尹若春,张居中,杨晓勇.贾湖史前人类迁移行为的初步研究--锶同位素分析技术在考古学中的运用.第四纪研究,2008,2:50-57
    [10]Balasse M.Reconstructing dietary and environmental history from enamel isotopic analysis:time resolution of intra-tooth sequential sampling.International Journal of Osteoarchaeology,2002,12:155-165
    [11]Passey B H,Cerling T E.Tooth enamel mineralization in ungulates:implications for recovering a primary isotopic time-series.Geochirnica et Cosmochirnica Acta,2002,66:3225-3234
    [12]Wang Y,Cerling T E.A model of fossil tooth and bone diagenesis:implications for paleodiet reconstruction from stable isotopes.Palaeogeography,Palaeoclimatology,Palaeoecology,1994,107:281-289
    [13]Odum H T.Biogeochemical deposition of strontium.Institute of marine science publications,1957,4:38-114
    [14]Burton J H,Price T D.The ratio of barium to strontium as a paleodietary indicator of consumption of marine resources.Journal of Archaeological Science, 1990,17:547-557
    [15]Wessen G, Ruddy F H, Gustafson C E, Irwin H. Characterization of archaeological bone by neutron activation analysis. Archaeology, 1977, 19: 200-205
    [16] Burton J H, Price T D. The ratio of barium to strontium as a paleodietary indicator of consumption of marine resources. Journal of Archaeological Science, 1990,17: 547-557
    [17]Elias R W, Hirao Y, Patterson C C. The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochimica et Cosmochimica Acta, 1982, 46: 2561 ~2580
    [18]Hoppe K A, Koch P L, Carlson R W, Webb S D. Tracking mammoths and mastodons: reconstruction of migratory behavior using strontium isotope ratios. Geology, 1999,25:439-442
    [19]Hoppe K A. Late Pleistocene mammoth herd structure, migration patterns, and Clovis hunting strategies inferred from isotopic analyses of multiple death assemblages. Palaeobiology, 2004,30:129—145
    [20] Ingram B L, Weber P K. Salmon origin in California's Sacramento-San Joaquin river system as determined by otolith strontium isotopic composition. Geology, 1999,27:851-854
    [21]Kennedy B P, Folt C L, Blum J D, Chamberlain C P. Natural isotope markers in salmon. Nature, 1997,387: 766-767
    [22] Hall-Martin A J , van der Merwe N J, Lee-Thorp J A, Armstrong R A, Mehl C H, Struben S, Tykot R. Determination of species and geographic origin of rhinoceros horn by isotopic analysis and its possible application to trade control. In Rhinoceros Biology and Conservation. Proceedings of the International Rhino Conference, San Diego 1991 (ed.), Ryder O A. San Diego: Zoological Society of San Diego, 1993
    [23] van der Merwe N J, Lee-Thorp J A, Thackeray J F, Hall-Martin A, Kruger F J, Coetzee H, Bell R H V, Lindeque M. Source-area determination of elephant ivory by isotopic analysis. Nature, 1990, 346: 744—746
    [24]Vogel J C, Eglington B, Auret J M. Isotope fingerprints in elephant bone and ivory. Nature 1990,346:747—749
    [25]Aberg G. The use of natural strontium isotopes as tracers in environmental studies. Water, Air and Soil Pollution, 1995, 79: 309-322
    [26] Capo R C, Stewart B W, Chadwick O A. Strontium isotopes as tracers of ecosystems processes: theory and methods. Geoderma, 1998, 82: 197—225
    [27]Barbaste M, Robinson K, Guilfoyle S, Medina B, Lobinski R. Precise determination of the strontium isotope ratios in wine by inductively coupled plasma sector field multicollector mass spectrometry (ICP-SF-MC-MS). Journal of Analytical Atomic Spectrometry, 2002,17: 135 —-137
    [28]Fortunato G, Minnic K, Wunderli S, Pillonel L, Bosset J O, Gremaud G. Application of Strontium Isotope Abundance Ratios Measured by MC-ICP-MS for Food Authentication. Journal of Analytical Atomic Spectrometry. 2004, 19: 227-234
    [29]Curran J M, Meighan I G, Simpson D D A, Rogers G, Fallick A E. ~(87)Sr/~(86)Sr: a new discriminant for provenancing neolithic porcellanite artifacts from Ireland. Journal of Archaeological Science, 2001,28: 713-720
    [30]Freestone I C, Leslie K A, Thirlwall M, Gorin-Rosen Y. Strontium isotopes in the investigation of early glass production: Byzantine and early Islamic glass from the Near East. Archaeometry, 2003, 45: 19—32
    [31] Benson L, Cordell L, Vincent K, Taylor H, Stein J, Farmer G L, Futa K. Ancient maize from Chacoan great houses: Where was it grown? Proceedings of the National Academy of Sciences, 2003,100: 13111 -13115
    [32]English N B, Betancourt J L, Dean J S, Quade J. Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, Mexico. Proceedings of the National Academy of Sciences, 2001,98: 11891 -11896
    
    [33] 方辉.研究人口迁移的新方法——锶同位素分析技术中国文物报.2004年11月5日
    
    [34]Ericson J E. Strontium isotope characterization in the study of prehistoric human ecology. Journal of Human Evolution, 1985,14: 503—514
    [35]Hodell D A Quinn R L, Brenner M, Kamenov G. Spatial variation of strontium isotopes (~(87)Sr/~(86)Sr) in the Maya region: a tool for tracking ancient human migration. Journal of Archaeological Science, 2004,31: 585—601
    [36] Wright L E. Identifying immigrants to Tikal, Guatemala: defining local variability in strontium isotope ratios of human tooth enamel. Journal of Archaeological Science, 2005a, 32: 555—566
    [37] Wright L E. In search of Yax Nuun Ayiin I: revisiting the Tikal project's burial 10. Ancient Mesoamerica, 2005b, 16: 89-100
    [38] Price D T, Manzanilla L, Middleton W D. Immigration and the ancient city of Teotihuacan in Mexico: a study using isotope ratios in human bone and teeth. Journal of Archaeological Science, 2000,27: 903—913
    [39] Price T D, Tiesler V, Burton J H. Early African diaspora in colonial Campeche, Mexico: strontium isotopic evidence. American Journal of Physical Anthropology, 2006,130: 485-490
    [40] Price T D, Johnson C, Ezzo J, Ericson J, Burton J. Residential mobility in the prehistoric southwest United States: a preliminary study using strontium isotope analysis. Journal of Archaeological Science, 1994, 21: 315—330
    [41] Ezzo J A, Johnson C M, Price T D. Analytical perspectives on prehistoric migration: a case study from east-central Arizona. Journal of Archaeological Science, 1997,24:447-466
    [42] Ezzo J A, Price T D. Migration, regional reorganization, and spatial group composition at Grasshopper Pueblo, Arizona. Journal of Archaeological Science, 2002,29:499-520
    [43]Knudson K J, Price T D, Buikstra J E, Blom D E. The use of strontium isotope analysis to investigate Tiwanaku migration and mortuary ritual in Bolivia and Peru. Archaeometry, 2004, 46: 5—18
    [44]Knudson K J, Tung T A, Nystrom K C, Price T D, Fullagar P D. The origin of the Juch'uypampa Cave mummies: strontium isotope analysis of archaeological human remains from Bolivia. Journal of Archaeological Science, 2005, 32: 903-913
    [45] Sherman S. Central Europe in the 3rd millennium BC: an evolutionary trajectory for the beginning of the Europe Bronze Age. Journal of anthropological Archaeology, 1986,5: 115-146
    [46]Graustein W C. ~(87)Sr/~(86)Sr ratios measure the sources and flow of strontium in terrestrial ecosystems. In: Rundel P W, Ehleringer J R and Nagy K A, Editors, Stable Isotopes in Ecological Research, Springer, New York, 1989: 491—512
    [47] Sangmeister E. Sozial-okonomische Aspekte der Glockenbecherkultur. Homo, 1972,23:188-203
    [48] Price T D, Grupe G, Schrorter P. Reconstruction of migration patterns in the Bell Beaker period by stable strontium isotope analysis. Applied Geochemistry, 1994, 9:413-417
    [49] Grupe G, Price T D, Schroter P et al. Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: A study of southern Bavarian skeletal remains. Applied Geochemistry, 1997,12: 517—525
    [50] Price T D, Grupe G, Schroter P. Migration in the Bell Beaker period of central Europe. Antiquity, 1998, 72(276): 405-411
    [51]Price T D, Knipper C, Grupe G, Smrcka V. Strontium isotopes and prehistoric human migration: the Bell Beaker period in central Europe. European Journal of Archaeology, 2004, 7: 9-40
    [52]Gronenborn D. A variation on a basic theme: the transition to farming in southern central Europe. Journal of World Prehistory, 1999,13(2): 123-210
    [53]Price T D, Bentley R A, Luning J, Gronenborn D, Wahl J. Prehistoric human migration in the Linearbandkeramik of Central Europe. Antiquity, 2001, 75: 593-603
    [54]Bentley R A, Krause R, Price T D, Kaufmann B. Human mobility at the early Neolithic settlement of Vahingen, Germany: evidence from strontium isotope analysis. Archaeometry, 2003,44: 471—486
    [55]Menghin W, Fruhgeschichte Bayerns: Romer und Germanen—Baiern und Schwaben—Franken und Slawen, Theiβ Verlag, Stuttgart, 1990
    [56] Schweissing M M, Grupe G. Stable strontium isotopes in human teeth and bone: a key to migration events of the late Roman period in Bavaria. Journal of archaeological science, 2003,30: 1373—1383
    [57]Budd P, Millard A, Chenery C, Lucy S, Charlotte R. Investigating population movement by stable isotope analysis: a report from Britain. Antiquity, 2004, 78 (299):127~141
    [58] Montgomery J, Evans J, Powlesland D, Roberts C A. Continuity or colonization in Anglo-Saxon England? Isotope evidence for mobility, subsistence practice, and status in West Heslerton. American Journal of Physical Anthropology, 2005, 126:123-138
    [59] Evans J, Chenery C A. Bronze Age childhood migration of individuals near Stonehenge, revealed by strontium and oxygen isotope tooth enamel analysis. Archaeometry, 2006, 48(2): 309-321
    [60] Montgomery J, Evans J, Neighbour T. Sr isotope evidence for population movement within the Hebridean Norse community of NW Scotland. Journal of the Geological Society, 2003,160: 649-653
    [61] Evans J, Stoodley N, Chenery C. A strontium and oxygen isotope assessment of a possible fourth century immigrant population in a Hampshire cemetery, southern England. Journal of Archaeological Science, 2006,33: 265—272
    [62]Buzon M R, Simonetti A, Creaser R A. Migration in the Nile Valley during the New Kingdom period: a preliminary strontium isotope study. Journal of Archaeological Science, 2007,34(9): 1391 -1401
    [63] Singer R. Artificial deformation of teeth: A preliminary report. South African Journal of Science, 1953,50: 116-122
    [64] Cox G, Sealy J. Investigating identity and life histories: isotopic analysis and historical documentation of slave skeletons found on the Cape Town foreshore, South Africa. International Journal of Historical Archaeology, 1997, 1: 207— 224
    [65]Sillen A, Hall G, Richardson S, Armstrong R. ~(87)Sr/~(86)Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: implications for early hominid habitat preferences. Geochimica et Cosmochimica Acta, 1998,62: 2463—2473
    [1]河南省文物考古研究所.舞阳贾湖.科学出版社,1999
    [2]中国科学技术大学科技史与科技考古系,河南省文物考古研究所,舞阳县博物馆.河南舞阳贾湖遗址2001年春发掘简报.华夏考古,2002,2:14-30
    [3]Zhang J,Xiao X,Lee Y.The early development of music:analysis of the Jiahu bone flutes.Antiquity,2004,78(302):769-778
    [4]Zhang J,Lee R.The magic flutes.Natural History,2005,114(7):42-47
    [5]Li X,Harbottle G,Zhang J et al.The earliest writing? Sign use in the seventh millennium BC at Jiahu,Henan Province,China.Antiquity,2003,77:31-44
    [6]蔡运章,张居中,中华文明的绚丽曙光--论舞阳贾湖发现的卦象文字.中原文物,2003,3:17-22
    [7]Zhang Juzhong,Wang Xiangkun.Notes on the recent discovery of ancient cultivated rice at Jiahu,Henan Province:a new theory concerning the origin of Oryzajaponica in China.Antiquity,1998,72:897-901
    [8]McGovern P E,Zhang Juzhong,Tang Jigen,Zhang Zhiqing,Hall G R,Moreau R A,Nunez A,Butrym E D,Richards M P,Wang Chenshan,Cheng Guangsheng,Zhao Zhijun,Wang Changsui.Fermented beverages of pre-and proto-historic China.PNAS,2004,101(51):17593-17598
    [9]http://baike.baidu.com/view/304404.htm
    [10]http://news.sc001.com.cn/info/01/2004515/39545.shtml
    [11]Yang Xiaoyong,Kadereit A,Wagner G A,Wagner I,Zhang Juzhong.TL and IRSL dating of Jiahu relics and sediments:clue of 7th millennium BC civilization in central China.Journal of Archaeological Science,2005,32:1045-1051
    [12]赵子剑主编.裴李岗.香港国际版社.2007
    [13]张居中.试论贾湖类型的特征及与周围文化的关系.文物,1989,1:18-20
    [14]中国社科院考古所河南一队.1979年裴李岗遗址发掘报告.考古学报,1984,1:23-52
    [15]中国社会科学院考古研究所河南一队.河南汝州中山寨遗址发掘报告,考古学报,1991,1:57-90
    [1]Faure G.Principles of Isotope Geology.New York:John Wiley,1986
    [2]Farmer G L,Depaolo D J.Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure Ⅱ.Journal of Geophysical Research,1984,89:10141-10160
    [3]朱泓主编.体质人类学.高等教育出版社,2004
    [4]丁士海和韩棣.人体解剖学.上海科学普及出版社,1990
    [5]Boyde A.Carbonate concentration,crystal centers,core dissolution,caries,cross striations,circadian rhythms and compositional contrast in the SEM.Journal of Dental Research,1979,58:981-983
    [6]Dean M C.Incremental markings in enamel and dentine:what they cal tell us about the way teeth grow.In Development,Function and Evolution of Teeth,edited by Mark F.Teaford,Moya Meredith Smith and Mark W J F.Cambridge University Press,Cambridge,2000
    [7]FitzGerald C M.Do enamel microstructures have regular time dependency?Conclusions from the literature and a large-scale study? Journal of Human Evolution,1998,35:371-386
    [8]Hillson S.Teeth.Cambridge University press,Cambridge,1986
    [9]Hillson S.Dental Anthropology.Cambridge University press,Cambridge,1996
    [10]Shellis R P.Utilization of periodic markings in enamel to obtain information on tooth growth.Journal of Human Evolution,1998,35:387-400
    [11]Dean M C,Beynon A D.Histological reconstruction of crown formation times and initial root formation times in a modem human child.American Journal of Physical Anthropology,1991,86:215-228
    [12]Liversidge H M.Crown formation times of permanent dentition and root extension rate im humans.In Aspects of dental biology:paleontology,anthropology and evolution,edited by Jacopo Moggi-Cecchi.Institute for the Study of Man,1995
    [13]Gong J K,Burgess E,Bacalao P.Accretion and exchange of strontium 85 in trabecular bone.Radiation Research,1966,28:753-768
    [14]Parfitt A M. The physiologic and clinical signigicance of bone histomorphometric data. In bone histomorphmetry: Techniques and Interpretation, edited by Robert R. Recker. CRC Press, Inc, Boca Raton, Flrida, 1983
    [15]Rabinowitz M B. Toxicokineticx of bone lead. Environmental Health Perspectives, 1991, 91: 33-37
    [16]Mulhearn D M. Rib remodeling dynamics in a skeletal population from Kulubnarti, Nubia. American Journal of Physical Anthropology, 2000, 111: 519-530
    [17]Mulhearn D M, Van Gerven D P. Patterns of Femoral bone rimideling dynamicxi in a Medieval Nubian population. American Journal of Physical Anthropology, 1997,104:133-146
    [18]Wastney M E, Ng J, Smith D, Martin B R, Peacock M, Weaver C M. Differences in calcium kimetics between adolescent girls and young women. American Journal of Physiology: Regulatory. Integrative & Comparative Physiology, 1996, 40:208-216
    [19] Jones G, Riley M D, Dwyer T. Maternal diet during pregnancy is associated with bone mineral density in children: Alogitudinal study. Journal of Clinical Nutrition, 2000,54: 749-758
    [20]Medeiros D M, Plattner A, Jennings D, Stoecker B. Bone morphology , strength and density are Compromised in iron-deficient rats and exacerbated by calcium restriction. Journal of Nutrition, 2002,132: 3135—3142
    [21]Taaffe D R, Lang T F, Fuerst T, Cauley J A, Nevitt M C, Harris. Sex-and Race-Related differences in cross-sectional geometry and bone density of the femoral -mid-shaft in older adults. Annals of Human Biology, 2003, 30: 329— 347
    [22]Dibba B, Prentice A, Laskey M A, Stirling D M, Cole T J. An investigation fo ethnic differences in bone mineral, hip axis length, calcium metabolism and bone turnover between west African and Caucasian adults living in United Kingdom. Annals of Human Biology, 1999, 26: 229-343
    [23]Buchowski M S and De La Fuente F A. Increased bone turnover is associated with protein and energy metabolism in adolescents with sickle cell anemia. American Journal of Physiology: Endocrinology and Metabolism, 2001, 280: 518-527
    [24]Branca F, Robins S P. Bone turnover in malnourished children. Lancet, 1992,340: 1493-1497
    [25] Cooper C, Eastell R. Bone gain and loss in premenopausal women. British Medical Journal, 1993,306: 1357-1359
    [26]Couteix D, Lespessailles E, Jaffre C, Obert P, Benhamou C L. Bone mineral acquisition and somatic development in highly trained girl gymnasts. Acta Paediatrica, 1999. 88: 803-809
    [27]Nelson B K, DeNiro M J, Schoeninger M J, DePaolo D J, Hare P E. Effects of diagenesis on strontium, carbon ,nitrogen and oxygen concentration and isotopic concentration of bone. Geochimica et Cosmochimica Acta, 1986, 50: 1941 — 1949
    [28]Schroeder H H., Tipton 1 H, Nason A P. Trace metals in man: strontium and barium. Journal of Chronic Diseases, 1972, 25: 491 —517
    [29]Kohn M J, Schoeninger M J, Barker W W. Altered states: effects of diagenesis of fossil tooth chemistry. Geochimica el Cosmochimica Acta, 1999, 63: 2737—2747
    [30]Shellis R P, Dibdin G H. Enamel microporosity and its functional implications. In Development, Function and Evolution of Teeth, edited by Mark F. Teaford, Moya Meredith Smith and Mark W J Ferguson. Cambridge University Press, Cambridge, 2000
    [31] White C D, Spence M W, Longstaffe F J, Law K R. Testing the nature of Teotihuacan imperialism at Kaminaljuyu using phosphate oxygen-isotope ratios. Journal of Anthropological Research, 2000, 56: 535—558
    [32]Grupe G. Impact of the choice of bone samples on trace element data in excavated human skeletons. Journal of Archaeological Science, 1988, 15: 123— 129
    [33]Aufderheide A C. Allison M J. Strontium patterns in infancy can validate retention of biogenic signal im human archaeological bone. In Proceedings of the First World Congress on Mummy Studies (February 3-6, 1992), 1995b: 443— 450
    [34]Burton J H. Trace elements in bones as paleodietary indicators. In :Orna MV ed. Archaeological Chemistry American Chemical Society Symposium Series No 625, Washington D. C. : ACA , 1995. 625: 327-333
    [35] Burton J H, Wright L E. Nonlimearity in the relationship between bone Sr/Ca and diet: paleodietary implications. American Journal of Physical Anthropology, 1995,96:273-282
    [36]Price T D, Bentley R A, Luning J, Gronenborn D, Wahl J. Prehistoric human migration in the Linearbandkeramik of Central Europe. Antiquity, 2001, 75: 593-603
    [37] Beard B L, Johnson C M. Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. Journal of Forensic Sciences, 2000, 45: 1049-1061
    [1] Budd P, Montgomery J, Barreiro B, Thomas R G. Differential diagenesis of strontium in archaeological human tissues. Applied Geochemistry, 2000, 15: 687-694
    [2] Ezzo J A. A test of diet versus diagenesis at Ventana Cave, Arizona. Journal of Forensic Sciences, 1992,19:23~37
    [3] Nelson B K, DeNiro M J, Schoeninger M J, DePaolo D J, Hare P E. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone. Geochimica et Cosmochimica Acta, 1986,50:1941 — 1949
    [4] Nielsen-Marsh C M, Hedges R E. Patterns of diagenesis in bone I: The effects of site environments. Journal of Archaeological Science, 2000a, 27:1139— 1151
    [5] Nielsen-Marsh C M, Hedges R E. Patterns of diagenesis in bone II: Effects of acetic acid treatments on and the Removal of Diagenetic CO_3~(2-). Journal of Archaeological Science, 2000b, 27(12): 1151 -1159
    [6] Price T D, Blitz J, Burton J H, Ezzo J A. Diagenesis in prehistoric bone: Problems and solutions. Journal of Archaeological Science, 1992,19: 513~529
    [7] Stuart-Williams H Le Q, Schwarcz H P, White C D, Spence M W. The isotopic composition and diagenesis of human bone from Teotihuacan and Oaxaca, Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996,126: 1 —14
    [8] Hillson S. Dental anthropology. Cambridge University press, Cambridge, 1996
    [9] Kohn M J, Schoeninger M L, William W B. Altered states: effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta, 1999, 63: 2737— 2747
    [10] Budd P, Montgomery J, Cox A, Krause P, Barreiro B, Thomas R G. The distribution of lead within ancient and modern human teeth: implications for longterm and historical exposure modeling. The Science of the Total Environment, 1998,220:121-136
    [11]Chiaradia M, Gallay A, Todt W. Different contamination styles of prehistoric human teeth at a swiss Necropolis (Sion, Valais) inferred from lead and strontium isotopes. Applied Geochemistry, 2003,18: 353—370
    [12] Montgomery J, Budd P, Cox A, Krause P, Barreiro B, Thomas R G. LA-ICP-MS evidence for the distribution of lead and strontium in Romano-British, Medieval and modern human teeth: implications for life history and exposure reconstruction. In Metals in Antiquity, edited by Suzanne M, Young M, Pollard A M, Budd P and Robert A 1,290-296. BAR International Series, Oxford, 1999
    [13]Lee-Thorp J, Matt Sponheimer. Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. Journal of Anthropological Archaeology, 2003,22:208-216
    [14]Grupe G, Price T D, Schroter P, Sollner F, Johnson C M, Beard B L. Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains. Applied Geochemistry, 1997, 12: 517-525
    [15] Price T D, Grupe G, Schrorter P. Reconstruction of migration patterns in the Bell Beaker period by stable strontium isotope analysis. Applied Geochemistry, 1994a, 9:413-417
    [16]Price T D, Johnson C.M, Ezzo J A, Ericson J, Burton J H. Residential mobility in the prehistoric Southwest United States: a preliminary study using strontium isotope analysis. Journal of Archaeological Science, 1994b, 24: 315—330
    [17] Lambert J B, Weydert J M, Williams S R, Buikstra J E. Inorganic analysis of excavated human bone after surface removal. Journal of Archaeological Science, 1991,18:363-383
    [18]Waldron H A. Postmortem absorption of lead by the skeleton. American Journal of Physical Anthropology, 1981, 55: 395-398
    [19]Waldron H A. On the post-mortem accumulation of lead by skeletal tissues. Journal of Archaeological Science, 1983,10: 35—40
    [20] Waldron H A, Khera A, Walker G, Wibberly G, Green C J S. Lead concentrations in bones and soil. Journal of Archaeological Science, 1979,6: 295—298
    [21]Sillen A. Diagenesis of the inorganic phase of cortical bone. In The Chemistry of Prehistoric Human Bone, edited by Price T D, 211—228. Cambridge University Press, Cambridge, 1989
    [22] Williams C T, Marlowe C A. Uranium and thorium distributions im fossil bones from Olduvai Gorge, Tanzania and Kanam, Kenya. Journal of Archaeological Science, 1987,14:297-309
    [23]Price T D, Burton J H, Bentley R A. The characterisation of biologically-available strontium isotope ratios for investigation of prehistoric migration. Archaeometry, 2002, 44: 117— 135
    [24]Faure G. Principles of Isotope Geology, 2nded. New York: John Wiley and Sons, 1986
    [25] Hurst R W, Davis T E. Strontium isotopes as tracers of airborne fly ash from coal-fired plants. Environmental Geology, 1981,3: 363—397
    [26] Miller E K, Blum J A, Friedland A J. Determination of soil exchagable-cation loss and weathering rates using Sr isotopes. Nature, 1993,362: 438—441
    
    [27] Graustein W C, Armstrong R. The use of ~(87)Sr/~(86)Sr ratios to measure atmospheric transport into forested watersheds. Science, 1983,219: 289~292
    [28]Chadwick O A, Deny L A, Vitousek P M, Huebert B J, Hedin L O. Changing sources of nutrients during four million years of ecosystem development. Nature, 1999,397:491-497
    [29]Fullagar P D, Lemmon R C, Ragland P C. Petrochemical and geochronological stuies of plutonic rocks in the southern Appalachians: part I. The Salisbury Pluton, Geological Society of America Bulletin, 1971,82: 409-416
    [30]J(?)rgensen N O, Morthorst J, Holm P M. Strontium isotope studies of 'brown water' (organic-rich groundwater) from Denmark. Hydrogeology Journal, 1999, 7: 533-539
    [31]Sillen A, Sealy J C. Diagenesis of strontium in fossil bone: a reconsideration of Nelson et al. (1986). Journal of Archaeological Science, 1995,22: 313-320
    [32]Sillen A, Hall G, Armstrong R. ~(87)Sr/~(86)Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: implications for early hominid habitat preference. Geochimica et Cosmochimica Acta, 1998,62:2463—2478
    [33]Blum J D, Taliaferro H, Weisse M T, Holmes R T. Changes in Sr/Ca,Ba/Ca and ~(87)Sr/~(86)Sr ratios between trophic levels in two forest ecosystems in the northeastern USA. Biogeochemistry, 2000,49:87—101
    [34]Bentley R A, Price T D, Stephan E. Determining the 'local' ~(87)Sr/~(86)Sr range for archaeological skeletons: a case study from Neolithic Europe. Journal of Archaeological Science, 2004,31:365—375
    [1]Budd P,Momgomery J,Barreiro B,Thomas R G Differential diagenesis of strontium in archaeological human tissues.Applied Geochemistry,2000,15:687-694
    [2]河南省文物考古研究所.舞阳贾湖.科学出版社,1999
    [3]河南省文物考古研究所.舞阳贾湖遗址的试掘.华夏考古,1988,2:1-21
    [4]Price T D,Grupe G,Schrorter P.Reconstruction of migration patterns in the Bell Beaker period by stable strontium isotope analysis.Applied Geochemistry,1994a,9:413-417
    [5]Price T D,Manzanilla L,Middleton W D.Immigration and the ancient city of Teotihuacan in Mexico:a study using strontium isotope ratios in human bone and teeth.Journal of Archaeological Science,2000,27:903-913
    [6]Beard B L,Johnson C M.Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals.Journal of Forensic Sciences,2000,45:1049-1061
    [1] Katzenberg M A, Saunders S R. Biological Anthropology of the Human Skeleton. Toronto, Canada: Wiley-Liss, 2000.
    [2] Aufderheide A C, Marvin J A. Strontium patterns in infancy can validate retention of biogenic signal in human archaeological bone. In proceedings of the first world congress on mummy studies (February 3 ~6, 1992), 1995b
    [3] Grupe G, Price T D, Schroter P, Sollner F, Johnson C M and Beard B L. Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains. Applied Geochemistry, 1997, 12: 517-525
    [4] Price T D, Grape G, Schrorter P. Reconstruction of migration patterns in the Bell Beaker period by stable strontium isotope analysis. Applied Geochemistry, 1994a, 9:413-417
    [5] Price T D, Johnson C.M, Ezzo J A, Ericson J, Burton J H. Residential mobility in the prehistoric Southwest United States: a preliminary study using strontium isotope analysis. Journal of Archaeological Science, 1994b, 24: 315—330
    [6] Price T D, Burton J H, Bentley R A. The characterisation of biologically-available strontium isotope ratios for investigation of prehistoric migration. Archaeometry, 2002, 44: 117— 135
    [7] Bentley R A, Price T D, Stephan E. Determining the 'local' ~(87)Sr/~(86)Sr range for archaeological skeletons: a case study from Neolithic Europe. Journal of Archaeological Science, 2004,31: 365—375

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700