半滑舌鳎性别相关基因P450芳香化酶、FTZ-F1和DMRT1基因克隆及表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传基因作为性别分化的基础,提供了两性分化的可能性,而性分化则是在各种遗传基因和外部环境因子的相互作用下实现的。在本研究中通过外源激素甲基睾酮(MT)和温度处理半滑舌鳎获得性逆转个体,分析其中性别相关基因的表达变化情况有助于了解性别分化的作用机理。半滑舌鳎是近年来新开发的一种理想的增养殖对象,雌性个体生长速度比雄性快2-3倍。探索温度和MT对该鱼的性别决定和性别分化的影响,获得性逆转亲本,用于培育全雌后代,具有重要的应用前景和经济效益。
     1温度和MT对半滑舌鳎性腺分化的影响
     通过石蜡组织切片,对半滑舌鳎早期性腺分化进行组织学观察发现:在24℃饲养条件下,孵化后30d半滑舌鳎性腺开始分化,其中具有裂隙的性腺原基未来发育为卵巢,而不具裂隙的原基未来发育为精巢。在孵化后25-100d对半滑舌鳎进行不同温度(16℃、20℃、24℃、28℃、32℃)处理以及采用不同浓度梯度(20μg/L·H2O、30μg/L·H2O、50μg/L·H2O、80μg/L·H2O、100μg/L·H2O)的雄激素甲基睾酮(MT)浸浴处理,在9月龄时利用石蜡组织切片鉴定表型性别,观察温度和MT对性腺分化的影响,结果表明:28℃和32℃高温能显著提高群体中的雄性比例,分别达到69.2%(0.010.05)、57.1%(P>0.05);24℃处理群体中雌雄个体比例接近1∶1。在20μg/L·H2O、30μg/L·H2O、50μg/L·H2O、80μg/L·H2O、100μg/L·H2O的MT浸浴处理都能显著提高群体中的雄性比例,分别达到100%(P<0.01)、97.7%(P<0.01)、100%(P<0.01)、97.4%(P<0.01)、100%(P<0.01)。半滑舌鳎雌性特异的遗传性别鉴定技术也检测到高温处理组及MT处理出现了性逆转的雄性个体,这些结果表明在孵化后25-100d采用20-100μg/L·H2O浓度的甲基睾酮浸浴处理和28℃、32℃高温处理半滑舌鳎鱼苗,都能有效的诱导半滑舌鳎发生由雌性向雄性的性别逆转。
     2半滑舌鳎性腺型芳香化酶(tsP450aromA)基因和脑型芳香化酶(tsP450aromB)基因的克隆及表达分析
     采用同源克隆策略和RACE的方法,分别从半滑舌鳎卵巢和脑中分离了性腺型芳香化酶(tsP450aromA)和脑型芳香化酶(tsP450aromB)。tsP450aromA cDNA全长2266bp,该基因编码了526个氨基酸。氨基酸序列和系统发生分析表明,tsP450aromA属于卵巢型P450aromA,tsP450aromA的氨基酸序列与其它鱼类P450aromA的同源性较高(59%~77%),与脑型P450aromB的同源性较低(56%~60.7%)。Genome walking获得的启动子序列分析发现具TATA框和潜在的转录调节因子,包括半个雌激素应答元件(ERE half),两个Ad4-binding motifs。RT-PCR分析表明:tsP450aromA的表达具有明显组织特异性,tsP450aromA只在性腺中表达,且卵巢中表达量远高于精巢,而在雌雄鱼的其它组织中都不表达。在性腺发育过程中,精巢和卵巢中的芳香化酶的表达都逐渐增强,但卵巢中的表达量始终高于精巢。经过甲基睾酮浸浴处理和高温诱导半滑舌鳎由雌性性逆转为雄性后,性腺中芳香化酶的表达量降低。这些结果表明tsP450aromA参与了半滑舌鳎的性腺发育和性别决定过程。(tsP450aromB)cDNA全长2184 bp,该基因编码了498个氨基酸。氨基酸序列和系统发生分析表明,tsP450aromB属于脑型P450arom,tsP450aromB的氨基酸序列与其它硬骨鱼类的脑型P450aromB的同源性较高(48.3%~66.1%),与性腺型P450aromA的同源性较低(34.2%~49.9%),与自身的性腺型芳香化酶同源性为45.1%。RT-PCR分析表明:tsP450aromB mRNA的表达具有明显组织特异性,tsP450aromB只在性腺、脑、鳃、皮肤中表达,且脑中表达量远高于性腺,而在雌雄鱼的其它组织中都不表达。经过甲基睾酮浸浴处理和高温诱导半滑舌鳎由雌性性反转为雄性后,脑中tsP450aromB的表达量降低,这些结果表明tsP450aromB参与了半滑舌鳎的性腺分化和性别决定过程。
     3半滑舌鳎FTZ-F1(tsFTZ-F1)基因的克隆及表达分析
     采用同源克隆策略和RACE的方法,从半滑舌鳎精巢分离了3143 bp长的半滑舌鳎FTZ-F1(tsFTZ-F1)的全长cDNA,该序列包含1458bp开放阅读框(ORF),66 bp长的5’末端非编码区(UTR), 1619 bp长的3’末端UTR。mRNA的组织分布、氨基酸序列、功能分析和系统发生分析表明:tsFTZ-F1属于SF-1/Ad4BP类群。RT-PCR分析表明:tsFTZ-F1 mRNA的分布广泛,几乎在所有组织都有表达,但在性腺、肾脏、脑、头肾组织中表达最强,其他组织表达较弱,雌鱼脑和头肾中的表达量明显高于雄性。胚胎发育过程中表达量都高于孵化后仔鱼的表达量,表明tsFTZ-F1参与了半滑舌鳎的器官形成过程。经过甲基睾酮浸浴处理后,由雌性转变为雄性的性逆转雄性个体中,性腺中tsFTZ-F1和tsP450aromA的表达量降低。这些结果表明,tsFTZ-F1参与了半滑舌鳎的性别逆转过程,它的作用途径可能是作为转录调节因子,结合于芳香化酶的启动子实现对芳香化酶的表达调控。
     4半滑舌鳎DMRT1(tsDMRT1)基因的克隆及表达分析
     采用同源克隆策略和5’-RACE,从半滑舌鳎精巢分离了608 bp长的tsDMRT1基因cDNA的部分序列,含45 bp的5’-UTR和起始密码子,该片断包含了187个氨基酸残基,其中包括DMRT1基因保守的DM结构域。RT-PCR分析表明:tsDMRT1只在精巢中表达,其它组织中都不表达。经过甲基睾酮浸浴处理和高温诱导半滑舌鳎由雌性性逆转为雄性后,精巢中tsDMRT1也有表达。这些结果表明tsDMRT1参与了半滑舌鳎的精巢分化过程。
The sex related genes as the foundation of sex differentiation provide the possibility of sex differentiation, but the sex differentiation is the reciprocity of sex related genes and the environmental factors. With the sex reversal obtained by MT immersion and temperature treatment during sex differentiation, it will be helpful to understand the mechanism of sex determination to analyze the sex-related gene expression in sex reversal. Half-smooth tongue-sole (Cynoglossus semilaevis) is a newly exploited and commercially important cultured marine flatfish, in which females grow 2-3 times faster than males. Thus, the development of all-female tongue sole stock with temperatures and MT would be of significant benefit for aquaculture. 1 Gonadal differentiation and effects of temperature and MT on sex determination in C. semilaevis
     Gonadal differentiation of C. semilaevis was observed by histological sectioning. The histological differentiation occurred firstly in 30 days post hatching(dph). There were two types of gonad. The one with cavity will develop into ovary, and the other one without cavity will develop into testis. By histological sectioning to distinguish the phenotypic sex and by female-specific marker to determination the genetic sex, effects of temperature and MT on gonad differentiation in tongue sole was addressed in a separate experiment. Juvenile tongue sole were grown at 16℃, 20℃, 24℃,28℃or 32℃from 25 to 100dph, respectively. High temperatures(28 or 32℃) induced phenotypic sex reversal in juvenile tongue sole producing a higher proportion of males ( 69.2% males at 28℃, 0.01

males at 32℃, 0.01

mperature(16℃, 20℃) induced phenotypic sex reversal and produced a slightly high proportion of males(56.5% males at 16℃,P>0.05; 57.1% males at 20℃, P>0.05). Raising tongue sole at the temperature(24℃) held sex ratios close to 1:1. Juvenile tongue sole were immersed with MT of 20μg/L·H2O、30μg/L·H2O、50μg/L·H2O、80μg/L·H2O、100μg/L·H2O from 25 to 100dph, respectively. High and low concentration of MT induced phenotypic sex reversal in juvenile tongue sole producing a significantly higher proportion of males (100%(P<0.01)、97.7%(P<0.01)、100%(P<0.01)、97.4%(P<0.01)、100%(P<0.01), respectively). The female-specific marker also suggested that high temperature and MT immersion induced the sex reversal from the female to male. These findings indicate that sex differentiation in tongue sole are affected by temperature and MT.
     2 Molecular cloning, characterization and expression analysis of ovarian P450arom(tsP450aromA) and brain P450arom(tsP450aromB) in C. semilaevis The 2266 bp full-length ovarian P450 aromatase (termed tsP450aromA) cDNA encoding a deduced protein of 526 residues was isolated from the ovary of the C. semilaevis by using homologous cloning and RACE. Sequence and phylogenic analyses showed that the tongue sole P450aromA belonged to ovarian P450arom subfamilies. The putative tsP450aromA amino acid residues shared 59~77% sequence identify with other fish ovarian P450arom, and shared 56~60.7% sequence identify with brain P450arom of other fish. The promoter region (5'- flanking region) of tsP450aromA gene was cloned from tongue sole containing two Ad4 binding motifs and a half site of the palindrome sequences of estrogen-responsive element (ERE half). The RT-PCR analysis reveals that tsP450aromA mRNA was expressed highly in the ovary and weakly in the testis, but not other tissues. The P450aromA mRNA increased with the gonad development, but it is less abundant in testis in all phase. However, the tsP450aromA decreased in sex reversal male treatment by MT or high temperature. These results suggested that the tsP450aromA is involved in course of the gonad development and sex determination in tongue sole.
     The 2184 bp full-length brain P450 aromatase (termed tsP450aromB) cDNA encoding a protein of 498 amino acid residues was isolated from the brain of the C. semilaevis by using homologous cloning and RACE. Sequence and phylogenic analyses showed that the tsP450aromB belonged to brain P450arom subfamilies. The putative tsP450aromB amino acid residues shared 48.3~66.1% sequence identify with other fish brain P450arom, and shared 34.2~49.9% sequence identify with ovarian P450arom of other fish. The sequence identify between the tsP450aromA and tsP450aromB is 45.1%. The RT-PCR analysis reveals that tsP450aromB mRNA was expressed highly in the brain and gill and weakly in the gonad, but not in other tissues. The tsP450aromB decreased in sex-reversed male treatment by MT or high temperature. These results suggested that the tsP450aromB is involved in course of the gonad development and sex determination in tongue sole.
     3 Molecular cloning, characterization and expression analysis of FTZ-F1 homologue(tsFTZ-F1) in C. semilaevis
     The full-length cDNA of the C. semilaevis FTZ-F1 homologue (tsFTZ-F1) was isolated from the testis by using homologous cloning, and the cDNA is 3143 bp in length, including the 5’terminal UTR of 66 bp, the encoding region of 1458 bp and the 3’terminal UTR of 1619 bp. Sequence, tissue distribution, function and phylogenic analyses of the FTZ-F1 showed that tsFTZ-F1belonged to SF-1/Ad4BP group. The RT-PCR analysis reveals that tsFTZ-F1 mRNA was highly expressed in the gonad, kidney, brain, head kidney and weakly in other tissues. However, the expression level in the brain and head kidney of female was much higher than those of male. It suggested that the tsFTZ-F1 involve in the organogenesis for the tsFTZ-F1 expression in embryo of different phase was higher aboundantly than that of larvae from hatching to 25 days post hatching. The expression of tsFTZ-F1 and tsP450aromA in the testis of sex-reversal decreased significantly in response to MT immersion, and it suggested the tsFTZ-F1 involve in the course of sex reversal. The tsFTZ-F1 probably acts as a transcriptional modulator by binding to the promoter of tsP450aromA to implement the expression of tsP450aromA.
     4 Molecular cloning, characterization and expression analysis of DMRT1 (tsDMRT1) in C. semilaevis
     The 608 bp cDNA of the partial C. semilaevis DMRT1 homologue (tsDMRT1) was isolated from the testis by using homologous cloning and 5’-RACE, and including the 5’terminal UTR of 45 bp and starting coden. It code a deduced protein of 187 residues, including DM dormain. The RT-PCR analysis reveals that tsDMRT1 was only expressed in the testis, but not in other tissues. The DMRT1 also expressed in sex-reversed male treatment by MT or high temperature. These results suggested that the DMRT1 is involved in course of the gonad development and testis differentiation in tongue sole.

引文
1. Sinclair, Andrew H. Human sex determination. J Exp Zool, 1998, 281:501-505
    2. Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 1990, 346: 240-244
    3. Matsuda M, Nagahama Y,Shinomiya A, Sato T,Matsuda C, Kobayashi T,Morrey C E, Shibata N,Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M, DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 2002, 417:559-563.
    4. Charnier,M. Action de la temperature sur la sex-ratio chex I19embryon d19Agama agama, Saurien, Agamidae. Soc. Biol., 1966,157:1470-1472
    5. Lang, Jeffrey W. and Andrews, Harry V. Temperature-dependent sex determination in crocodilians. J Exp Zool. 1994,270:28-44
    6. Yamamoto, T. Artificial induction of functional sex-reversal in genotypic females of the medaka (Oryzias latipes). J. Exp. Zool. 1958,137: 227-262.
    7. Nakamura, M, Morphological and experimental studies on sex differentiation of the gonad in several teleost fishes. 1978, Ph.D thesis. Hokkaido University, Hokkaido Japan
    8. Nakamura, M,Nagahama, Y, Steroid producing cells during ovarian differentiation of the tilapia, Sarotherodon niloticus. Dev. Growth Differ. 1985, 27, 701-708
    9. Hiroi O, Yamamoto K, Studies on the maturation of salmonid fish. II. Changes in the testis of the Masu salmon, Oncorhynchus masou, during anadromous migration. Bull Fac Fish, Hokkaido Univ. 1970,5: 225-249
    10. Nakamura M, Takahashi H,Gonadal sex differentiation in Tilapia mossambica with special regard to the time of estrogen treatment effective in inducing feminization of genetic fishes. Bull Fac Fish, Hokkaido Univ. 1973,24: 1-13.
    11. Nakamura M,Nagahama Y, Differentiation and development of leydig cells, and change of testosterone levels during testicular diferentiation in tilapia Oreochromis niloticus. Fish Physiol Biochem. 1989,7: 211-219
    12. Kanamori A, Nagahama Y, Egami N, Development of the tissue architecture in the gonadsof the medaka Oryzias latipes. Zool Sci. 1985,2:696-70
    13. 山本时男著,张玉书译,雍文岳校.鱼类性分化的遗传学和发生生理学研究.淡水渔业,1979,(4):32~35.
    14. Goudie C A, Liu Q,Simco B A, et al, Genetic relationship of growth, sex and glucosephosphate isomerase-B Phenotypes in channel catfish(Ictalucus punctatus). Aquaculture, 1995,138:119~124
    15. Liu Q, Goundiec CA, Simco B A, et al, Sex-linkage of glucosephosphate isomerase-B band mapping of the sex-determining gene in channel catfish(Ictalucus punctatus) Cyptogenet cell genet.1996,73:282~285.
    16. 楼允东.人工雌核发育及其在遗传学和水产养殖上的应用.水产学报,1986,10(1):111~123.
    17. Yamatoto, Kajishima T, Sex hormone induction of sex-reversal in the gold fish and evidence for male heterogamety. J Exp Zoo,1968,168:215-222
    18. Trombka D,Avtalion R,sex determination in Tilapia, A Review.The Israeli Journa of Aquaculture Bamidgeh,1993,45(1):25-37
    19. Marin I,Baker B S,The evolutionary dynamics of sex determination. Science, 1998, 281: 1990-1994
    20. Koopman P, Lofller K A, Sex determination: the fishy table of DMRT1. Current Biol. 2003,13: 177-179.
    21. Koopman P, Gubbay J, Vivian N, Goodfellow P. Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature, 1991,351: 117-121.
    22. Devlin R H, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences[J]. Aquaculture, 2002, 208: 191–364.
    23. Konda M., Nanda L, Hornung U, Asakawa S, Shimizu N, Mitani H, Schmid M, Shima A, Schart M, Absence of the candidate male sex-determining gene dmrtl b(Y)of medaka from other fish species. Current Biol. 2003,13: 416-420
    24. Matsuda M, Sato Y, Toyazaki Y,Nagahama Y, Hamaguchi S, Sakaizumi M, Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes. Zoolog Sci. 2003,20:159-161.
    25. 林浩然,鱼类生理学一广州:广东东高教出版社,1999, 181-196
    26. Piferrer F. Endocrine sex controls strategies for the feminization of teleost fish. Aquaculmre. 2001, 197 (14): 229-281.
    27. Lephart E D. A review of brain aromatase cytochrome P450. Brain Res Brain Res Rev. 1996, 22(1): 1-26.
    28. Nagahama Y. The functional morphology of teleost gonads. In: Fish Physiology, Vol, IXA, W. S. Hoar and D. J. Randall (eds). Academic Press, 1983:97-135
    29. Conley A and Hinshelwood M. Mammalian aromatases. Reproduction. 2001, 121(5): 685-95.
    30. Simpson ER, Merrill J C, Hollub A J, Graham-Lorence S, and Mendelson C R. Regulation of estrogen biosynthesis by human adipose cells. Endocrine Rev. 1989, 10:136-148.
    31Bulun S E, Sebastian S, Takayama K, Suzuki T, Sasano H, Shozu M. The human CYP19 (aromatase P450) gene: update on physiologic roles and genomic organization of promoters. J Steroid Biochem Mot Biol. 2003, 86(35): 219-24.
    32. Tchoudakova A, and Callard G V. Identification of multiple CYP19 genes encoding diferent cytochrome P450 aromatase isozymes in brain and ovary. Endocrinology 1998,139 (4): 2179-2189.
    33. Tong S K, Chung B C. Analysis of zebrafish cyp19 promoters. J Steroid Biochem Mot Biol. 2003, 86(3-5): 381-386.
    34. Kishida M, Callard G. Distinct cytochrome P450 aromatase isoforms in zebrafish (Denio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology, 2001,142:740-749.
    35. Trant J M, Gavasso S, Ackers J, Chung B C, Place A R. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry (Danio rerio), J Exp Zool. 2001, 290(5): 475-483.
    36. Kwon J Y,McAndrew B J, Penman D J. Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual diferentiation in genetic male and female Nile tilapia Oreochromis nilodcus. Mot Reprod Dev. 2001, 59(4): 359-370
    37. Callard G V,Tchoudakova A V, Kishida M, Wood E. Diferential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. J Steroid Biochem Mot Biol. 2001, 79(15): 305-14
    38. Corbin J C, Graham-Lorence S, McPhaul M J, Mason J I, Mendelson C R and Simpson E R. Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P-450 and its expression in non-steroidogenic cells. Proc Natl Acad Sci, USA, 1988, 85: 8948-8953.
    39. Hickey G J, Krasnow J S, Beattie Wqand Richards J S. Hormonal regulation, tissue distribution, and content of aromatase cytochrome P450 messenger ribonucleic acid and enzyme in the rat ovarian follicles and corpora lutea: relationship to estradiol biosynthesis, Mol Endocrinol. 1990, 4: 3-12.
    40. Lephart ED, Peterson K G, Noble J F, George F W, and McPhaul M J. The structure of cDNA clones encoding the aromatase P-450 isolated from a rat Leydig cell tumor line demonstrates diferential processing of aromatase mRNA in rat ovary and a neoplastic cell line, Mol Cel Endocrinol. 1990, 70: 31-40.
    41. Tershima M, Toda K, Kawamoto T, Kuribayashi 1, Ogawa Y, Maeda T, and Shizuta Y. Isolation of a ful-length cDNA encoding mouse aromatase P-450, Arch. Biochem Biophys. 1991, 285: 231-237.
    42. Shen P, Campagnoni C W Kampf K, Schlinger B A, Arnold AP, and Campagnom AT. Isolation and characterization of a zebra finch aromatase cDNA: in situ hybridization reveals high aromatase expression in brain. Mol Brain Res. 1994, 24: 227-237.
    43. Murdock C, Wibbels T. Cloning and expression of aromstase in a turtle with temperature-dependent sex determination. Gen Comp Endocrinol. 2003, 130(2): 109-119
    44. Trant J M. Isolation and characterization of the cDNA encoding the channel catfish (Ictalurus punctatus) farm of cytochrome P450arom. Gen. Comp. Endocrinol. 1994, 95:155-168.
    45. Tanaka M, Telecky T M, Fukada S, Adachi S, Chen S, Nagahama Y, Cloning and sequence analysis of the cDNA encoding P-450 aromatase (P450arom) from a rainbow trout (Oncorhynchus mykiss) ovary, relationship between the amount of P450arom mRNA and the production of oestradiol-178 in the ovary. J Mol Endocrinol. 1992, 8(1): 53-61.
    46. Fukada S, Tanaka M, Matsuyama M, ObayashiD K, NagahamaY. Characterization and expression of cDNA encoding the medaka (Oryzias laripes) ovarian follicle cytochrome P-450 aomatase. Mol Repord Dev. 1996,45(3): 285-290.
    47. Chang X T, Kobayashi D, Kobayashi, Kajiura H, Nakamura M, Nagahama Y. Isolation and characterization of the cDNA encoding the tilapia (Oreochromis nilotius) cytochromeP-450 aromatase (P450arom): changes in P450arom mRNA protein and enzyme activity in ovarian folicles during oogenesis. J. Mol Endocrinol. 1997, 189(1): 57-66.
    48. Guigen Y, Ricordel M J, and Foster A. Involvement of estrogens in the process of sex differentiation in rainbow trout, Oncorhynchus mykiss: in vivo treatment, aromatase activity, and aromatase gene expression. In: Proceedings l" International Symposium on the Biology of Vertebrate Sex Determination”. Honolulu, Hawaii. 1997: 7-11
    49. Morohashi K I. Gonadal and extragonadal function of Ad4BP/SF-1: Development aspects. Trends Endorinol. Metab. 1999, 10: 169-173
    50. Ijiri S, Kazeto Y, Takeda N, et al. Changes in serum steroid hormones and steroidogenic ability of ovarian follicles during artificial maturation of cultivated Japanese eel, Anguilla japonica. Aquac. 1995. 135(1-3): 3-16
    51. Pasmanik M, Schlinger B A, Callard G V. In vivo steroid regulation of aromatase and 5α reductase in goldfish brain and pituitary. Gen Comp Endocrinol. 1988, 71: 175-182
    52. Barry T P. Induced fina loocyte maturation and spawning in walleye (Stizostedion vitreum). USA World Aquac Soc, 1992,3
    53. Yong G, Kagawa H, Nagahama Y. Evidence for a decrease in aromatase activity in the ovarian granulose cell of amago salmon (Oncorhynchus rhadurus) associated with final oocyte maturation. Biol Repord. 1983, 29(2): 310-315.
    54. Guiguen Y, Baroiller J F, Ricordel M J, et al. Involvement of estrogens in the process of sex diferentiation in two fish species: The rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus). Mol. Reprod., 1999,54(2):154-162.
    55. Callard G V, Petro Z, Ryan K J. Phylogenetic distribution of aromatase and other androgen-converting enzymes in the central nervous system. Endocrinology. 1978, 103: 2283-2290
    56. Ijiri S, Berard C, and Trant J M. Characterization of gonadal and extra-gonadal forms of the cDNA encoding the Atlantic syingray (Dasyatis Sabina) cytochromeP-450 aromatase (CYP19), Molecular and Celular Endocrinology. 2000, 164:169-181.
    57. Callard G V Autocrine and paracrine role of steroids during spermatogenesis: studies insqualus acanthias and Necturus maculosus.J Exp Zoo1, 1992,261:132-14
    58. Naftolin F, Ryan K J, and Petro Z. Aromatization of androstenedione by limbic system tissue from human foetuses, J. Endocrino1.1971, 51: 795-796.
    59. Galland G V, Peter Z, Ryan K J. Estrogen synthesis in virto and in vivo in the brain of a marine teleost (Myoxocephalus). Gen Comp Endocrinology. 1981, 29:14-20.
    60. Pasmanik M, Canard DV, Aromatase and 5 a reductase in the teleost brain, spinal cord and pituitary gland. Gen Comp Endocrinol. 1985, 60:244-25
    61. Lambertj G D, Van Den Hurk R. Localization of aromatase activity in the brain of the rainbow trout (Salmo gairdneri). In: Ridher C J J, Goos H J T, eds, Reproductive physiology of fish. PudocWageningen, 1982, 57-70
    62. Timmers R J M. Location of aromatase in the brain of the male African catfish, Clarias gariepinus, by microdissection and biochemical identification. J comp Neurol, 1987, 258: 368-37
    63. Olivereal M, Callard G, Distribution of cel types and aromatase activity in the sculpin (Myoxocephalus) pituitary. Gen Comp Endocrinol. 1985,58:280-29
    64. Anderson E, Borg B, Lambert J G D. Aromatase activity in brain and pituitary of immature and mature Atlantic salmon (Salmosalar L.) part. Gen Comp Endocrinol. 1988, 72: 364-40
    65. Mayer G A, Borg B, Berglund I, et al. Effects of castration and androgen treatment on aromatase activity in the brain of mature Atlantic salmon (Salmo salar L) part. Gen. Comp. Endocrinol., 1991, 82:86-92
    66. Borg B, Timmers R J M, Lambert J G D. Aromatase activity in the brain of the three spined sticklebacks, Gasterosteus aculeatus: 1. Distribution and efects of season and photoperiod. Exp Biol, 1987,47:63-68
    67. Ijiri S, Kazeto Y, Lokman P M, Adachi S, and Yamauchi K. Characterization of a cDNA encoding P-450 aromatase (CYP19) from Japanese eel ovary and its expression in ovarian follicles during induced ovarian development, General and Comparative Endocrinology. 2003, 130:193-203.
    68. Vale L D, Lunardi L, Colombo L, Belvedere P. European sea bass (Dicentrarchus labrax L.) CytochromeP450arom: cDNA encoding, expression and genomic organization. Journal of Steroid Biochemistry & Molecular Biology. 2002, 80: 25-34
    69. Assisi L, Fiore M M Di, Lamanna C, Botte V. Relationships between liver testosterone receptor isoforms and aromatase activity in female green frog. Rana esculenta, Life Sci. 2000, 67:373-382.
    70. Leguen I, Carlsson C, Perdurand E, Pruner P, Part P, Crdvedi J P.Xenobiotic andsteroid biotransformation activities in rainbow trout gill epithelia cells in culture. Aquat. Toxicol..2000,48(213): 165-176.
    71. Rogers S A, Llewelyn L, Wigham T, Sweeney G E. Cloning of Atlantic salmon (Salmosalar) estrogen recepter-a gene, Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2000. 125(3): 379-385.
    72. Ackland J F, Schwartz N B, Mayo K E, and Dodson R E. Nonsteroidal signals originating in the gonads. Physiol. Rev. 1992, 72: 731-787
    73. Hayes T B. Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanism. J. Exp. Zool. 1998, 281: 373-399
    74. Pandian T J, and Sheela S G. Hormonal induction of sex reversal in fish, Aquaculture, 1995, 138:1-22.
    75. 李英文,林浩然.鱼类性转变研究进展.水产学报,1994,18(4):344-352
    76. 方永强,林秋明,齐襄.17α一甲基睾酮对赤点石斑鱼性逆转的影响.水产学报,1992,16 (2):171-174.
    77. Piferrer F, Zanuy S, Carrillo M, et al. Brief treatment with an aromatase inhibitor during sex diferentiation causes chromosomally female salmon to develop as normal functional males. J. EXP. Zool. 1994. 270:255-262.
    78. Elbrecht A, Smith R G, Aromatase enzyme activity and sex determination in chicken. Science. 1992, 1255: 467-470.
    79. Afonso L O B, Wassermann G J and Olivera R T D. Sex reversal in Nile Tilapia (Oreochromis niloticus) using a nonsteroidal aromatase inhibitor. J Exp Zool. 2001, 290: 177-181.
    80. Kwon J Y, Haghpanah V, Kogson-Hurtado L M, et al. Masculinization of genetic female note tilapia (Oreohromis niloticus) by dietary administration of an aromatase inhibitor during sexual diferentiation. J Exp Zool 2000, 287: 46-53
    81. Lee Y H, Lee F Y, Yueh W S,et al. Profiles of gonadal development, sex steroids,aromatase activity and gonadotropin II in the controlled sex change of protandrous black porgy, Acanthopagrus schlegeli Bleeker. Gen Comp Endocrinol, 2000, 119:111-120.
    82. Kroon F J and Liley N R. The role of steroid hormones in Protogynous sex change in the Blackeye Goby, Coryphopeterus nicholsii (teleostei: Gobiid). Gen Comp Endocrinology, 2000, 118: 273-283.
    83. Harvey S C, Kwon J Y, and Penman D J. Physical mapping of the brain and ovarian aromatase genes in the Nile Tilapia, Oreochromis niloticus, by fluorescence in situ hybridization. International Society for Animal Genetics, Animal Genetics, 2003, 34, 62-64
    84. Mahendroo M S, Means G D, Mendelson C R, and Simpson E R. Tissue-specific expression of human P-450AROM. The promoter responsible for expression in adipose tissue is different from that utilized in placenta. J. Biol. Chem. 1991, 266: 11276-11281
    85. Honda S, Harada N and Takagi Y. The alternative exons 1 of the mouse aromatase cytochrome P-450 gene. Biochim Biophys Acta, 1996, 1305: 145-150.
    86. Yong E L, Hillier S G, Turner M, Baird D T, Ng S C, Bongso A, and Ratnam S S. Differential regulation of cholesterol side-chain cleavage (P450scc) and aromatase (P450arom)enzyme mRNA expression by gonadotrophins and cyclic AMP in human granulosa cells. J Mol Endocrinol. 1994, 12: 239-249.
    87. Hinshelwood M M, Smith M E, Murry B A, and Mendelson C R A 278 by region just upstream of the human CYP19 (aromatase) gene mediates ovary-specific expression in transgenic mice. Endocrinology. 2000, 141: 2050-2053.
    88. Biason-Lauber A, and Schoenle E J. Apparently normal ovarian diferentiation in a prepubertal girl with transcriptionally inactive steroidogenic factor 1 (NR5A1/SF-1) and adrenocortical insufficiency. Am J Hum Genet, 2000, 67: 1563-1568
    89. Clyne C D, Kovacic A, Speed C J, Zhou J, Pezzi V, Simpson E R. Regulation of aromatase expression by the nuclear receptor LRH-1 in adipose tissue. Mol Cell Endocrinol.2004, 215(1-2):39-44,
    90. Clyne C D, Speed C J, Zhou J, Simpson E R. Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem. 2002, 277(23):20591-7.
    91. Ramachandran B, Schlinger B A, Arnold A P, and Campagnoni A T. Zebra finch aromatase gene expression is regulated in the brain through an alternate promoter. Gene. 1999,240:209-216.
    92. Roselli C E, andResko J A. Sex diferences in androgen-regulated expression of cytochrome P450 aromatase in the rat brain. J. Steroid Biochem. Mol. Biol. 1997, 61: 365-374
    93. Resko J A, Pereyra-Martinez A C, Stadelman H L, and Roselli C E. Region-specific regulation of cytochrome P450 aromatase messenger ribonucleic acid by androgen in brains of male rhesus monkeys. Biol. Reprod. 2000, 62: 1818-1822.
    94. Wats M, Pankhurst N W, King H R. Maintenance of Atlantic salmon (Salmo salar) at elevated temperature inhibits cytochrome P450 aromatase activity in isolated ovarian follicles. Gen Comp Endocrinol. 2004, 135(3): 381-90.
    95. Tanaka M, Fukada S, Matsuyama M, Nagahama Y. Structure and promoter analysis of the cytochrome P-450 aromatase gene of the teleost fish, medaka (Oryzias latipes). Biochem (Tokyo). 1995, 117(4): 719-25
    96. Tchoudakova A, Kishida M, Wood E, Calard G V. Promoter characteristics of two cyp19 genes diferentially expressed in the brain and ovary of teleost fish. J Steroid Biochem Mot Biol. 2001, 78(5): 427-39.
    97. Giguere V, Orphan nuclear receptors:from gene to function.Endocr. Rev, 1999,20: 689-725
    98. Carlone D.L Richards J S, Evidence that function interaction of CREB and SF-1 mediate hormone regulated expression of the aromatase gene in granulose cells and constitutive expression in R2C cells. J Steroid Biochem Biol, 1997,61:223-231
    99. Lavorgna G, Ueda H, Clos J et al. FTZ-F1, a steroid hormone receptor-like protein implicated in the activation of fushi tarazu. Science ,1991, 252:848–851.
    100. Galarneau L, Pare J F, Allard D. The alpha1-feto protein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Mol Cell Biol,1996,16(7):3853~386
    101. Nitta M,Ku S,Brown C,Okamoto A Y,Shan B.CPF:An orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene.Proc Natl Acad Sci USA,1999,96(12):6660~6665.
    102. Kuhl A J., Steve M, Marius B. Brain aromatase in Japanese medaka (Oryzias latipes): Molecular characterization and role in xenoestrogen-induced sex reversal. Journal of Steroid Biochemistry & Molecular Biology, 2005, 96: 67–77
    103. Watanabe M, Tanaka M, Kobayashi D et al. Medaka (Oryzias latipes) FTZ-F1 potentiallyregulates the transcription of P–450 aromatase in ovarian follicles: cDNA cloning and functional characterization. Mol Cell Endocrinol, 1999, 149:221–228.
    104. Yoshiura Y, Senthilkumaran B, Watanabe M, et al. Synergistic Expression of Ad4BP/SF-1 and Cytochrome P-450 Aromatase (OvarianType) in the Ovary of Nile Tilapia, Oreochromis niloticus, During Vitellogenesis Suggests Transcriptional Interaction1 Biology of Reproduction, 2003,68: 1545–1553
    105. Shen M M, Hodgkin J, Mab-3, a gene required for sex-specific yolk protein expression and a male-specific lineage in C. elegans. Cell, 1988,54:1019-1031
    106. Burtus K C, Baker B S, Drosophila doublesex gene controls somatic sexual differentiation by producing alteratively spliced mRNAs encoding related sex-specific polypeptides. Cell, 1989,56:997-101
    107. Raymond C S, Shamu C E, Shen M M,Seifert K J, Hirsch B, Hodgkin J, Zarkower D, Evidence for evolutionary conservation of sex-determining genes. Nature, 1998,391: 691-695
    108. Grandi A D, Calvari V, Bertini V, Bulfone A, Peverali G, Camerino G, Borsani G, Guioli S, The expression pattern of a mouse doublesex-related gene is consistent with a role in gonadal differentiation. Mech Dev, 2000,90:323-326
    109. Guan G, Kobayashi T, Nagahama Y, Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a teleost fish, the tilapia (Oreochromis niloticus). Biochem Biophys Res Commun. 2000, 272:662-666
    110. Marchand O, Gororoun M, D'Cotta H, McMeel O, Lareyre JJ, Bernot A, Laudet V,Guiguen Y, DMRTI expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorchynchus Biophys Acta, 2000,1493:180-187.
    111. Brunner B, Homung U, Shan Z, Nanda I, Kondo M, Zend-Ajusch E, Haaf T, Ropers H H, Shima A, Schmid M, Kalscheuer VM,Schard M, Genomic organization and expression of the Doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics, 2001,77: 8一7
    112. Nanda I, Shan Z., Schard, M., Burt, D.W., Koehler, M., Nothwang, H., Grutzner, F., Paton, I.R., Windsor, D., Dunn, I., Engel, W., Staeheli, P., Mizuno, S., Haaf, T., Schmid, M., 1999.
    300 million years of conserved synteny between chicken Z and human chromosome 9. Nat.Genet. 21, 258-259
    113. Kettlewell J.R., Raymond C.S., Zarkower D., Temperaturedependent expression of turtle Dmrt1 prior to sexual differentiation, Genesis 2000,26:174-178.
    114. . Shibata K, Takase M, Nakamura M. The Dmrt1 expression in sex-reversed gonads of amphibians. Gen Comp Endocrinol, 2002,127:232–241.
    115Raymond C.S., Parker E.D., Kettlewell J.R, et al, A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators, Hum. Mol. Genet. 1999a ,8:989–996.
    116. Smith CA, McClive PJ, Western PS, Reed KJ, Sinclair AH. Conservation of a sex-determining gene. Nature, 1999, 402: 601–602.
    117. Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversed caused by mutations in an SRY-related gene. Nature, 1994, 372:525-530
    118. Harley VR, Lovell-Badge R, Goodfellow PN. Definition of a consensus DNA binding site for SRY. Nucleic Acids Research, 1994, 22: 1500-1501
    119. Wrigbt E M, et al, Seven new members of the Sox gene family expressed during development.Nucleic Acids Research,1993, 21:744
    120. Osaki E et al. Identification of a novel Sry related gene and is germ cell-specific expression.Nucleic Acids Research.1999,27(12):2503
    121. Wegner M. From head to toes:the multiple facets of Sox proteins. Nucleic Acids Research, 1999, 27:1409-1420
    122. Akiyama H, M C Chaboissier, R R Behringer, D H Rowitch, A Schedl,J A Epstein, & B de Crombrngghe, 2004, Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proc.Nat1.Acad.Sci.USA,101(17): 6502-6507.
    123. Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene Sox9, Cell, 1994, 79: 1111-1120
    124. Kent J, Wheatley SC, Andrews JE, et al. A male-specific role for Sox9 in verterbrate sex determination. Development, 1996, 122:2813-2822
    125. Camern FJ, Sinclair AH, Mutations in SRY and Sox9: Testis-determining genes Hum.Mutat, 1997, 9: 388-395
    126. Bardoni, B.,Zanaria, E.,Guioli, S.,Floridia, G.,Worley, K. C.,Tonini, G,Ferrante, E.,Chiumello, G,et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal.Nat Genet.,1994,7(4):497-501.
    127. Palmer, M. S.,Sinclair, A. H.,Berta, P. et al. Genetic evidence that ZFY is not the testis-determining factor, Nature, 1989, 342 (6252):937-939.
    128. 常重杰,周荣家,余其兴.Sox基因家族的研究现状.遗传,2000,22(l):51-53.
    129. Connor, F.,Wright, E.,Denny, P.,Koopman, P.,Ashworth, A. The Sry-related HMG box-containing gene Sox6 is expressed system of in the adult testis and developing nervous the mouse. Nucleic Acids Res, 1995, 23(17): 3365-72.
    130. Frojdman, K.,Harley, V. R.,Pelliniemi, L. J. Sox9 protein in rat sertoli cells is age and stage dependent[J].Histochem Cell Biol, 2000, 113(1):31-36.
    131. Bergstrom, D. E.,Young, M.,Albrecht, K. H,et al. Related function of mouse Sox3, Sox9, and Sry HMG domains assayed by male sex determination [J]. Genesis, 2000, 28 (3-4):111一124
    132. Cohen-Barak, O.,Hagiwara, N.,Arlt, M. F.,et al. Cloning, characterization and chromosome mapping of the human Sox6 gene[J].Gene, 2001, 265 (1-2):157-165
    133. Chiang EF-L,Pai CI,Wyatt M,et al.Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Developmental biology, 2001, 231:149-163
    134. 俞菊华,李建林,曹丽萍,吴婷婷,杨弘. 黄颡鱼Sox9基因的分离及分析.农业生物技术学报,2005,13(5):620-623
    135. 杜启艳,常重杰,王凤羽,华慧颖.鲤鱼中Sox9b基因的克隆和表达。实验生物学报,2005,38(5):397-403
    136. Zhou R, L Liu, Y, Guo, H, Yu,H Cheng, X, Huang, T. IL, Tiersch, & P Beta, Similar gene structure of two Sox9a genes and their expression patterns during gonad differentiation in a teleost fish,rice field eel (Monopterus albus). Mo1. Reprod. 2003, 66(3):211-217.
    137. Swain A., E. Zanaria, A. Hacker, R. Lovell-Badge, G. Camerino, Mouse DAX1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function, Nat Genet. 1996,12: 404-409.
    138. Smith C.A., V.C. Clifford, P.S. Western, S.A. Wilcox, K.S. Bell, A.H. Sinclair, Cloning andexpressio n of a DAX1 homologue in the chicken embryo, J. Mol. Endocrinol. 2000,24:23-32.
    139. Western P.S., J.L. Harry, J.A.M. Graves, A.H. Sinclair, Temperature-dependent sex determination in the American alligator: expression of SF-1, WT-1, and DAX1 during gonadogenesis, Gene 2000,241: 223-232.
    140. Sugita J., M. Takaseb, M. Nakamura, Expression of DAX1 during gonadal development of the frog, Gene 2001,280: 67-74.
    141. Wang De-Shou, Tohru Kobayashi, Balasubramanian Senthilkumaran, Fumie Sakai, Cheni Chery Sudhakumari, Taiga Suzuki, Michiyasu Yoshikuni, Masaru Matsuda, Ken-ichirou Morohashi, andYoshitaka Nagahama Molecular cloning of DAX1 and SHP cDNAs and their expression patterns in the Nile tilapia, Oreochromis niloticus. Biochemical and Biophysical Research Communications,2002 297:632 640
    142. Vigier B., F. Watrin, S. Magre, D. Tran, N. Josso, Purified bovine AMH induces a characteristic freemartin effect in fetal rat prospective ovaries exposed to it in vitro, Development 1987,100 : 43-55.
    143. Cate R.L., R.J. Mattaliano, C. Hession, R. Tizard, N.M. Farber, A. Cheung, E.G. Ninfa, A.Z. Frey, D.J. Gash, E.P. Chow, R.A. Fisher, J.M. Bertonis, G. Torres, B.P. Wallner, K.L. Ramachandran, R.C. Ragin, T.F. Manganaro, D.T. MacLaughlin, P.K. Donahoe, Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells, Cell, 198645 : 685-698.
    144. Münsterberg A., R. Lovell-Badge, Expression of the mouse anti-Müllerian hormone gene suggests a role in both male and female sexual differentiation, 1991, 133 :613-624.
    145. Durlinger A.L., M.J. Gruijters, P. Kramer, B. Karels, H.A. Ingraham, M.W. Nachtigal, J.T. Uilenbroek, J.A. Grootegoed, A.P. Themmen, Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary, Endocrinology 143 (2002) 1076 1084.
    146. Miura T., C. Miura, Y. Konda, K. Yamauchi, Spermatogenesispreventing substance in Japanese eel, Development, 2002,129:2689-2697.
    147. Norifumi Yoshinaga, Eri Shiraishi, Takashi Yamamoto, Taisen Iguchi, Shin-ichi Abe and Takeshi Kitano,Sexually dimorphic expression of a teleost homologue of Müllerian inhibiting substance during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus,Biochemical and Biophysical Research Communications, 2004,322(2):508-513
    148. Eusèbe D.C., N. di Clemente, R. Rey, C. Pieau, B. Vigier, N. Josso, J.Y. Picard, Cloning and expression of the chick antiMüllerian hormone gene, J Biol Chem, 1996271: 4798 4804.
    149. Western P.S., J.L. Harry, J.A.M. Graves, A.H. Sinclair, Temperature dependent sex determination in the American alligator: AMH precedes SOX9 expression, Dev. Dyn. 1999,216: 411-419.
    150. Giuili, G., Shen, W. H., and Ingraham, H. A. The nuclear receptor SF-1 mediates sexually dimorphic expression of Müllerian inhibiting substance, in vivo. Development, 1997, 124: 1799–1807.
    151. Strüssmann C A, Patiňo R. Temperature manipulation of sex differentiation in fish. In: Goetz F W, Thomas, P. (Eds.), Proceedings of the Fifth International Symposium on Reproductive Physiology of Fish, University of Texas at Austin, July 7 –12. Fish Symposium 95[A], Austin, 1995, 153–157.
    152. Conover, D.O., Kynard, B.E., Environmental sex determination: interaction of temperature and genotype in a fish. Science, 1981, 213:577-579.
    153. Arslan Tulin, Ronald P. Phelps, Production of monosex male black crappie, Pomoxis nigromaculatus, populations by multiple androgen immersion, Aquaculture 2004,234: 561–573
    154. Baroiller, J.F., Chourrout, D., Fostier, A., Jalabert, B, Temperature and sex chromosomes govern sex ratios of the mouthbrooding cichlid fish Oreochromis niloticus. J. Exp. Zool. 1995,273: 216– 223.
    155. Strüssmann, C.A., Saito, T., Takashima, F., Heat-induced germ cell deficiency in the teleosts Odontesthes bonariensis and Patagonina hatcheri. Comp. Biochem. Physiol. 1998.119: 637–644.
    156. Baroiller J F, Guiguen Y, and Fostier A. Endocrine and environmental aspects of sex differentiation in fish. CMLS. Cell. Mol. Life Sci., 1999, 55:910-931
    157. Fenske M, Segner H. Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquat. Toxicol. 2004, 67: 105–126.
    158. Nakamura M, Kobayashi T, Chang X T, et al. Gonadal sex differentiation in teleost fish. J. Exp. Biol., 1998, 281: 362-372.
    159. Hunter G A, and Donaldson E M. Hormonal sex control and its application to fish culture. Fish Physiol., 1983, 9:223-303
    160. Yamazaki F. Application of hormones in fish culture. J. Fish. Res. Board Can 1976, 33: 948-958.
    161. Takahashi H. Masculinization of the gonad of juvenile guppy, Poecilia reticulata, induced by
    11-ketotestosterone. Bull. Fac. Fish., Hokkaido Univ. 1975, 26: 223-234.
    162. Kavumpurath S, Pandian T J. Masculinization of Poecilia reticulata by dietary administration of synthetic or natural androgen to gravid females. Aquaculture, 1993, 116: 83- 89.
    163. Cochran R C and Grier H J. Regulation of sexual succession in the protogynous black sea bass, Centropristis striatus(Osteichthyes: Serranidae).Gen.Comp.Endocrinol.,1991, 82:69-77
    164. Cardwell J R.&Liley N R. Hormonal control of sex and color change in the stoplight parrotfish, Sparisoma viride. Gen. Comp. Endocrinol., 1991, 81:7-20.
    165. Chan S T H and Yeung S B. Sex steroids in intersexual fishes. Fish Physiol. Biochem., 1989, 7:229-235.
    166. Yeung W S B and Chan S T H. The plasma sex steroid profiles in the freshwater sex-reversing teleost fish, Monoplerus albus (Zuiew). Gen. Comp. Endocrinol, 1987,65:233-242.
    167. Bhandari R K, Komuro H, Nakamura S, et al. Gonadal restructuring and correlative steroid hormone profiles during natural sex change in protogynous honeycomb grouper (Epinephelus merra). Zool. Sci., 2003
    168. Yeh S L, Dai Q C, Chu Y T, et al. Induced sex change, spawning and larviculture of potato group, Epinephelus tukula: Aquaculture, 2003, 228:371-381.
    169. Yeh S L, Kuo C M, Ting Y Y, et al. Androgens stimulate sex change in protogynous grouper, Epinephelus coioides: spawning performance in sex-changed males. Comp. Biochem. Physiol., Part C, 2003, 135:375-38
    170. Fostier A, Jalabert B, Billard R, et al. The gonadal steroids. In "Fish Physiology" (W S. Hoar and D. J. Randall, Eds.). 1983 vol. 9a: 277-372. Academic Press, New York. Biol. Fish. 7: 137-142.
    171. Chan S T H and Yeung W S B. Sex control and reversal in fish under natural conditions. In "Fish Physiology" (Hoar W S and Randall D J, Eds), Academic Press, New York. 1983. 96:171-222.
    172. Liley N, and Stacey N E. Hormones, pheromones, and reproductive behaviour in fish. In "Fish Physiology"(W S. Hoar and D. J. Randall, Eds.), Academic Press, New York. 1983. 96: 1-63.
    173. 洪万树,张其永,公茂军等.外源激素诱导赤点石斑鱼雄性化.台湾海峡,1994,13(4): 374-380.
    174. 黄世蕉,姜仁良,赵维信等,鲤鱼血清中促性腺激素、17β-雌二醇含量的周年变化.水产学报,1987,11(1):76-80
    175. Tsai C L, Wang L H, Chang C F, et al. Effects of gonadal steroids on brain serotonergic and aromatase activity during the critical period of sexual differentiation in tilapia, Oreochromis mossambicus. J. Neuroendocrinol., 2000, 12(9): 894-898
    176. Morrey G E, Kobayashi Y, Nakamura M, et al. Loss of gonadal P450aromatase mRNA corresponds with the de-differentiation of the ovary in the protogynous wrasse, Thalassoma duperrey. Exp. Z ool., 1998, 281: 507-508
    177. Gelinas D, Pitoc G A, Callard GVIsolation of goldfish brain cytochrome P450 aromatase cDNA: mRNA expression during the seasonal cycle and after steroid treatment. Mol Cell Endocrinol, 1998, 138:81-93.
    178. Nakahama M, Kobayashi T, Yoshiura Y, et al. Role of endogenous steroid hormones on gonadal sex differention in fish. 2000. In: Proceeding of the 6th International Symposium on the Reproductive Physiology of Fish. Bergen, Norway, 1999:247-249.
    179. Kitano T, Takamune K, Nagahama Y, et al. Aromatase inhibitors and 17 α-methytestosterone cause sex-reversal from genetical female to phenotypic males and suppression of P450 Aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Mol. Reprod., 2000, 56(1):1-5
    180. Miyata S and Kubo T. In virto on sex differentiation effect of estradiol and Aromatase inhibitor in Xenopus Laevis gonads. Gen. Comp. Endocrinol,2000, 119(1):105-110.
    181. Afonso L O, Campbell P M, lwama G K, et al. The effect of the aromatase inhibitor Fadrozole and two polynuclear aromatic hydrocarbon on sex steroid secretion by ovarian follicles of female coho salmon. Gen. Comp. Endocrinol., 1997, 106(2):169-174.
    182. Antonopoutou E, Mayer 1, Berglund 1, et at. Effects of aromatase inhibitors on sexualmaturation in Atlantic salmon, Salmo salar, male parr. Fish Physiol. Biochem., 1995, 14(1):15-24.
    183. Burke W H, Henry M H. Gonadal development and growth of chickens and turkeys hatched from eggs injected with an Aromatase inhibitor. Poult Sci., 1999, 78(7):1019-1033.
    184. Cardone A, Comitato R, Bellini L, et al. Effects of aromatase inhibitor fadrozol on plasm sex steroid secretion, spermatogenesis and epididymis morphology in the lizard, Podarcis sicula. Mol. Repord. Dev., 2002, 63(1):63-70.
    185. Bhandari R K, Komuro H, Higa M, et al. Sex inversion of sexually immature honeycomb grouper (Epinephelus merra) by aromatase inhibitor. Zool. Sci 2004, 21:305-310.
    186. Du J L, Lee C Y, Tacon P, et al. Estradiol-17(3 stimulates gonadotropin ll and release in the protandrous black porgy, Acanthopagrus schlegeli Bleeker: A possible role in the sex change. Gen Comp Endocrinol, 2001, 121:135-145
    187. Shimada K. Gene expression of steroidogenic enzymes in chicken embryonic gonads. J. Exp. Zool., 1998, 81:450-456.
    188. Yoshida K, Shimada K, Kikuchi T et al. Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos. J Mol Endocrinol, 1998, 20:193-202.
    189. Trant J M, Lehrter J, Gregory T, et al. Expression of cytochrome P450 aromatase in the channel catfish. Gen. Comp. Endocrinol., 1997, 61:393-397
    190. Zhao,J, Mak P, Tchoudakova A, et al. Different catalytic properties and inhibitor responses of the goldfish brain and ovary aromatase isozymes. Gen. Comp Endocrinol ,2001,123:180-191
    191. Kitano T, Takamune K, Kobayashi T, et al. Suppression of P450 aromatase gene expression in sex-reversal males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J. Mol. Endocrinol., 1999, 23(2):167-176.
    192. Baroiller J F, Nakayama I, Fostier A, et al. Sex determination studies in two species of teleost fish, Oreochromis niloticus and Leporinus elongates. Zool Studies, 1996, 35: 279–285.
    193. Blazquez M, Zanuy S, Carillo M, et al. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.) [J]. J Exp Zool, 1998, 281: 207– 216.
    194. Craig J K, Foote C J, Wood C C. Evidence for temperature-dependent sex determination in Sockeye salmon (Oncorhynchus nerka) [J]. Can J Fish Aquat Sci. 1996, 53: 141–147.
    195. Strüssmann C A, Moriyama S, Hanke E F, et al. Evidence of thermolabile sex determination in pejerrey. J Fish Biol, 1996, 48: 643–651.
    196. Patiňo R, Davis K B, Schoore J E, et al. Sex differentiation of channel catfish gonads: normal development and effects of temperature. J Exp Zool, 1996, 276: 209–218.
    197. Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture 1999. 173, 235– 246.
    198. Luckenbach J A, Godwin J, Daniels H V, et al. Gonadal differentiation and effects of temperature on sex determination in southern flounder (Paralichthys lethostigma). Aquaculture, 2003, 216: 315–327.
    199. 邓景耀,孟田湘,任胜民等.渤海鱼类种类组成及数量分布.海洋水产研究,1988.9: 10-98.
    200. 孙中之,柳学周,徐永江等.半滑舌鳎工厂化人工育苗工艺技术研究,中国水产科学,2007,14(2):244-248.
    201. 马学坤,柳学周,温海深等.半滑舌鳎性腺分化组织学观察.海洋水产研究,2006,27(2):55-61.
    202. Baroiller J F, D’Cotta H. Environment and sex determination in farmed fish[J]. Comp Biochem Physiol, 2001,130C: 399–409.
    203. Strüssmann C A, Nakamura M, Morphology. Endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiol and Biochem, 2002.26: 13–29.
    204. Chen Songlin, Li Jing, Deng Siping, et al. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Mar Biotechnol, 2007, In Press.
    205. Yamamoto, T. Sex differentiation[J]. In: Fish Physiology Vol. III, Reproduction and Growth, Bioluminescence, Pigments, and 29 Poisons. Edited by W.S. Hoar and D.J. Randall. New York, Academic Press, 1969,117–175.
    206. 刘少军,革胡子鲇原始生殖细胞的起源、迁移及性腺分化.水生生物学报,1991,15(1):1-7.
    207. Strüssmann C A, Saito T, Usui M, et al. Thermal thresholds and critical period ofthermolabile sex determination in two atherinid fishes, Odontesthes bonariensis and Patagonina hatcheri. J Exp Biol, 1997, 278: 167-177.
    208. 万瑞景,姜言伟,庄志猛.半滑舌鳎早期形态及发育特征动物学报.2004,50(1):91-102.
    209. Yamamoto E. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture, 1999, 173: 235–246.
    210. Simpson E R, Mahendroo M S, Means G D, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev. 1994, 15: 342-355.
    211. Uchida D, Yamashita M, Kitano T, et al. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal[J]. Comp Biochem Physiol, 2004, 137A: 11-20.
    212. Yamamoto, E., Application of gynogenesis and triploidy in hirame (Paralichthys olivaceus) breeding. Fish Genet. Breeding Sci. 1992.18: 3-23.
    213. Howell, B.R., Baynes, S.M., Thompson, D., Progress towards the identification of the sex-determining mechanism of the sole, Solea solea (L.), by the induction of diploid gynogenesis. Aquac. Res. 1995,26: 135-140.
    214. Goto, R., Mori, T., Kawamata, K., Matsubara, T., Mizuno, S., Adachi, S., Yamauchi, K., Effects of temperature on gonadal sex determination in barfin flounder Verasper moseri. Fish Sci, 1999,65:884–887.
    215. Purdom, C.E.,. Genetics and Fish Breeding. (Fish and Fisheries Series, 8.) Chapman & Hall, London, 1993,277:12-21
    216. Hendry Christopher I., Deborah J. Martin-Robichaud,Tillmann J. Benfey,Hormonal sex reversal of Atlantic halibut (Hippoglossus hippoglossus L.) Aquaculture 2003,219: 769–781
    217. Bhandari R K, Nakamura M, Kobayashi T, Nagaham Y. Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus) General and Comparative Endocrinology. 2006,145: 20–24
    218. Yamamoto T. Artificially induce sex reversal in genotypic males of the medaka (Oryzias latipes). J. Exp. Zool., 1953, 123:571-59
    219. Johnstone R., Simposon T H., Youngson A F. Sex reversal in salmonid culture Aquaculture, 1978, 13:115-134.
    220. Donaldson E M and Hunter G A. Sex control in fish with particular reference to Salmonids.Can. J. Fish. Aquat. Sci., 1982, 39:99-110.
    221. Lee Y H, Du J L, Yen F P, et al. Regulation of plasma gonadotropin 11 secretion sex steroid, aromatase inhibitors, and antiestrogens in the protandrous black porgy, Acanthopagrus schlegeli Bleeker. Comp. Biochem. Physiol. (b), 2001,129:399-406.
    222. Kobayashi, T., Kajiura-Kobayashi, H., Nagahama, Y., Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet. Genome Res. 2003,101: 289-294.
    223. Dalla Valle, Ramina A, Vianello S, et al. Cloning of two mRNA variants of brain aromatase cytochrome P450 in rainbow trout (Oncorhynchus mykiss Walbaum). J.Steroid Biochem. Mol Biol, 2002, 82:19–32.
    224. Luckenbach J A, Lea W E, Ashlee H, et al. Aromatase Cytochrome P450: Cloning, Intron Variation, and Ontogeny of Gene Expression in Southern Flounder (Paralichthys lethostigma). Journal of Experimental Zoology 2005, 303A: 643–656.
    225a. Feist G, Yeoh C G, Fitzpatrick MS, et al. The production of functional sex-reversed male rainbow trout with 17α-methyltestosterone and 11β-hydroxyandrostenedione. Aquaculture 1995, 131: 1–2.
    225b. LeeY H., Yueh W S, DuJ L, et al. Aromatase Inhibitors Block Natural Sex Change and Induce Male Function in the Protandrous Black Porgy, Acanthopagrus schlegeli Bleeker: Possible Mechanism of Natural Sex Change. Biology of Reproduction.2002, 66: 1749–1754
    226. Papoulias DM, Noltie DB, Tillitt DE. Effects of methyltestosterone exposure on sexual differentiation in medaka, Oryzias latipes. Mar Environ Res. 2000, 50: 181–184.
    227. 徐跑,俞菊华,唐永凯等.黄颡鱼卵巢 P-450arom 基因的克隆及组织表达。中国水产科学,2005,12(5):541-548
    228. Greytak S R, Denise C D, Gloria, V et al. Isolation and characterization of two cytochrome P450 aromatase forms in killifish (Fundulus heteroclitus): Differential expression in fish from polluted and unpolluted environments Aquatic Toxicology, 2005, 71:371–389
    229. Van Nes S, Moe M, Andersen O. Molecular characterization and expression of two cyp19 (P450 aromatase) genes in embryos, larvae, and adults of Atlantic halibut (Hippoglossus hippoglossus).Mol Reprod Dev. 2005, 72(4):437-449
    230. Sherilyn J, Sawyer, Kelly A, et al. Real-time PCR analysis of cytochrome P450 aromataseexpression in zebrafish: Gene specific tissue distribution, sex differences, developmental programming, and estrogen regulation. General and Comparative Endocrinology 2006,147: 108–117
    231a. Kobayashi T, Matsuda M, Kajiura-Kobayashi H, et al,Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes, Dev Dyn. 2004, 231(3): 518-26
    231b. Kobayashi Y, Kobayashi T, Nakamura M, et al. Characterization of two types of cytochrome P450 aromatase in the serial-sex changing gobiid fish, Trimma okinawae. Zool Sci, 2004, 21: 417–425
    232a. González A. and Piferrer F. Aromatase activity in the European sea bass (Dicentrarchus labrax L.) brain. Distribution and changes in relation to age, sex, and the annual reproductive cycle. General and Comparative Endocrinology, 2003,132:223–230
    232b. 李广丽,刘晓春,张勇等.赤点石斑鱼两种芳香化酶 cDNA 的克隆及其表达的组织特异性.动物学报, 2004:50(5):791-799
    233. D’Cotta H, Fostier A, Guiguen Y, et al. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticus. J Exp Zool 2001, 290:574–585.
    234. Tzchoria I, Gad Degani G, Hurvitzb A, et al. Cloning and developmental expression of the cytochrome P450 aromatase gene (CYP19) in the European eel (Anguilla anguilla),General and Comparative Endocrinology. 2004, 138: 271-280
    235. Callard G.V., A. Tchoudakova, Evolutionary and functional significance of two CYP19 genes differentially expressed in brain and ovary of goldfish, J. Steroid Biochem. Mol. Biol. 1997, 61 (3–6): 387–392.
    236. Belvedere P., L. Dalla Valle, A. Lucchetti, A. Ramina, S. Vianello, L. Colombo, Extraglandular expression of genes encoding steroidogenic cytochromes in rainbow trout (Oncorhynchus mykiss Walbaum), Ann. N. Y. Acad. Sci. 1998, 839 (1): 559–589.
    237. Bjerselius, R., Lundstedt-Enkel, K., Olsen, H., Mayer, I., Dimberg, K., Male goldfish reproductive behaviour and physiology are severely affected by exogenous exposure to 17β-estradiol. Aquat Toxicol, 2001, 53: 139–152.
    238. Cavaco, J.E., Baal, J., Dijk, W., Hassing, G.A., Goos, H.J., Schulz, R.W., Steroid hormonesstimulate gonadotrophs in juvenile male African catfish (Clarias gariepinus). Biol.Reprod. 2001,64: 1358-1365.
    239. Yukinori Kazeto, Allen R. Place, John M. Trant,Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles,Aquatic Toxicology 2004,69 :25–34
    240. Zhang W, Zhang Y, Zhang L, et al. The mRNA expression of P450 aromatase, gonadotropin beta-subunits and FTZ-F1 in the orange-spotted grouper (Epinephelus Coioides) during 17alpha-methyltestosterone-induced precocious sex change. Mol Reprod Dev. 2006 Oct 30;
    241. Lala DS, Rice DA, Parker KL. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is a mouse homolog of fushi tarazu-factor I. Mol Endocrinol, 1992, 6:1249–1258.
    242. Honda S, Morohashi K, Nomura M et al. Ad4BP regulating steroidogenic P–450 gene is a member of steroid hormone receptor superfamily. J Biol Chem, 1993, 268:7494–7502.
    243. Ellinger-Ziegelbauer H, Hihi AK, Laudet Vet al. FTZ-F1–related orphan receptors in Xenopus laevis: transcriptional regulators differentially expressed during early embryogenesis. Mol Cell Biol, 1994.14:2786–2797.
    244. Oba K, Yanase T, Nomura M, et al. Structural characterization of human ad4bp (SF–1) gene. Biochem Biophys Res Commun, 1996, 226: 261–267.
    245. Lu TT, Repa JJ, Mangelsdorf D J. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem. 2001, 276:37735–37738.
    246. Parker KL, Schimmer BP. Steroidogenic factor 1: a key determinant of endocrine development and function. Endocrine Rev, 1997, 18: 361-377.
    247. Hammer GD, Ihgraham HA. Steroidogenic factor-1: Its role in endocrine organ development and differentiation. Front Neuroendocrinol, 1999, 20: 199-223.
    248. Sadovsky Y, Crawford P A, Woodson K G et al. Mice deficient in the orphan receptor steroidgenic factor 1 lack adrenal glands and gonads but express P450 side-chaincleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci USA, 1995, 92:10939–10943.
    249. Shen W H, Moore C C, Ikeda Y, et al, Nuclear receptor steroidogenic factor 1 regulates the Müllerian inhibiting substance gene: A link to sex determination cascade. Cell, 1994, 77:651–661.
    250. Kobayashi Y, Sunobe T, Kobayashi T et al. Molecular cloning and expression of Ad4BP/SF-1 in the serial sex changing gobiid fish, Trimma okinawae. :Biochem Biophys Res Commun. 2005 Jul 15; 332(4): 1073-1080
    251. Raymond C.S., Kettlewell J.R. Hirsch B,et al, Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development, Dev. Biol. 1999b, 215 : 208–220.
    252. Nanda I., Zend-Ajusch E., Shan Z., Grutzner F., Schartl M., Burt D.W., M. Koehler, V.M. Fowler, G. Goodwin, W.J. Schneider, S. Mizuno, G. Dechant, T. Haaf, M. Schmid, Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1: a comparative review on avian sex determination, Cytogenet Cell Genet. 2000, 89: 67-78.
    253. Shan Z., Nanda I., Wang Y., M. Schmid, A. Vortkamp, T. Haaf, Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds, Cytogenet Cell Genet. 2000,89: 252-257.
    254. Aoyama S., Shibata K., Tokunaga S., M. Takase, K. Matsui, M. Nakamura, Expression of Dmrt1 protein in developing and in sexreversed gonads of amphibians, Cytogenet. Genome Res. 2003,101: 295–301.
    255. He C.L., Du J.L., Wu G.C., Y.H. Lee, L.T. Sun, C.F. Chang, Differential Dmrt1 transcripts in gonads of the protandrous black porgy, Acanthopagrus schlegeli, Cytogenet. Genome Res. 2003, 101: 309-313.
    256. 刘绪生,梁冰,张树义.黑鲷DMRT1基因cDNA的克隆、组织表达谱及在性别逆转前后性腺中的表达,动物学研究,2004,25(2):158-161
    257. Smith Craig A., Katz Melissa, and Sinclair Andrew H.,DMRT1 Is Upregulated in the Gonads During Female-to-Male Sex Reversal in ZW Chicken Embryos1,Biology of Reproduction, 2003, 68: 560–570
    258. Torres-Maldonado LC, Landa-Piedra A, Moreno-Mendoza N, Marmolejo-Valencia A, Meza-Martinez A, Merchant-Larios H. Expression profiles of Dax1, Dmrt1, and Sox9 during temperature sex determination in gonads of the sea turtle Lepidochelys olivacea. Gen Comp Endocrinol, 2002, 129:20–26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700