用Solexa测序技术分析和鉴定猪胚胎microRNA的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNA(miRNA)是一类大小21-23个碱基的单链小分子RNA,由具有发夹结构约70-90个碱基的单链RNA前体经过Dicer酶加工后生成,其家族能够通过与靶mRNA的3′端非翻译区(UTR)完全或不完全配对而降解靶mRNA或抑制mRNA的正常翻译,进而对基因转录后表达进行调控。与小鼠或其他模式生物相比,在生物医学方面猪与人类的亲缘关系更近。
     到目前为止,已经在人和小鼠等哺乳动物中鉴定出数百种miRNA,但关于猪的miRNA报道却较少,特别是猪胚胎生长发育中调节基因表达的miRNA研究更加欠缺。显然,系统地鉴定并分析研究猪胚胎的miRNA,阐明miRNA参与胚胎生长发育调控的分子机制十分的必要。
     因此,本实验中我们使用Solexa测序以及生物信息学的方法分析猪33天胚胎(E33)中miRNA的序列以及相对表达情况。结果成功获得猪胚胎头部与内脏组织小分子RNA序列,并在胚胎头部组织中鉴定了75种已知miRNA与194种候选的miRNA,而在内脏组织中鉴定了76种已知miRNA与130种候选的miRNA,同时胚胎头部组织与内脏组织中共有50条miRNA的表达具有显著的差异。另外我们使用PicTar和TargetScan对高表达的miRNA进行靶基因预测,同时KEGG功能分析表明在头部与内脏组织中高度表达的miRNA参与神经、大脑、肌肉以及器官的发育。本结果为下一步研究miRNA调节猪胚胎神经系统以及器官生成等的分子调控机制奠定基础。
MicroRNA (miRNA) are a class of small, non-coding RNAs of~22nucleotidesin length that regulate gene expression by completely or incompletely binding to the3′-untranslated regions (UTR) of target mRNAs with degradation mRNA orinhabiting translation. It is now clear that miRNAs are involved in many physiologicaland biochemical processes, including proliferation, differentiation, and regulation ofgene expression during early embryonic development. The miRBase16.0(2010)shows that there are175,673,408, and1,048annotated miRNAs for Caenorhabditiselegans, Mus musculus, Rattus norvegicus, and Homo sapiens, respectively. However,there are only211miRNAs described for Sus scrofa. In particular, the full expressionpatterns of miRNAs regulating gene expression are still poorly understood inembryonic development.
     Therefore, based on the construction of head region and organ region small RNAlibraries, we used the Solexa sequencing technology to identify the expression ofembryonic miRNAs by the researching embryo day33of pigs (E33). Meanwhile, wepredicted the target genes of abundant miRNAs in cDNA libraries by using ofbiological information software and preliminary study functions of them, thenanalyzing the different expression of the highly expressed miRNAs in head, organregions and adult tissues. The results show that:(1) After Solexa sequencing, the twolibraries of head and organ were successfully founded including11,617,079and11,458,732raw reads, in which11,400,040and11,256,616were high-quality smallRNA sequences, respectively.(2) Bioinformatics analysis of the distinct miRNAsidentified,75previously known miRNAs and194candidate miRNAs were identifiedin head library,76known miRNAs and130predicted candidate miRNAs wereidentified in organ library. In addition,20miRNAs were verified to express in bothhead and organ regions by Poly(A)-tailed PCR.(3)50known miRNAs were differentially expressed between head and organ libraries, in which31miRNAs inhead library were significantly higher than these in organ library,19miRNAs in organlibrary were significantly higher than these in head library and22miRNAs nodifferences.(4) The expression of10abundant miRNAs in head and organ regionwere analyzed by qRT-PCR, miR-9expression levels was highest in head region andmiR-1expression levels was highest in organ region. Moreover, the expression ofmiR-1, miR-103, and miR-140*were highest in muscle, brain, and lung, respectively.(5) Furthermore, we performed additional investigation for identifying the potentialtarget mRNAs of10highly expressed miRNAs using PicTar and TargetScan, finallyselecting total50target genes. KEGG Pathway analysis showed that the50targetgenes may be involved in the pig embryonic developmental formation of nervoussystem, limbs, anterior-posterior and dorsal-ventral pattern.
     In this study, we successfully identified miRNAs of embryo day33of pigs andpredicted target genes of partial miRNAs, analyzing function of target genes. Ourresults provide valuable information for investigators interested in the regulation ofembryonic development in pigs and other animals and lay the foundation for furtherinvestigation the action and molecular mechanisms of miRNAs in pig embryonicdevelopment.
引文
[1] AMBROS V. The functions of animal microRNAs.[J] Nature,2004,431(7006):350-355.
    [2] BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function.[J] Cell,2004,116(2):281-297.
    [3] BENTWICH I. Prediction and validation of microRNAs and their targets.[J] FEBS Lett,2005,579(26):5904-5910.
    [4] KIM V N, NAM J W. Genomics of microRNA.[J] Trends Genet,2006,22(3):165-173.
    [5] LIM L P, GLASNER M E, YEKTA S, et al. Vertebrate microRNA genes.[J] Science,2003,299(5612):1540.
    [6] LEWIS B P, SHIH I H, JONES-RHOADES M W, et al. Prediction of mammalian microRNAtargets.[J] Cell,2003,115(7):787-798.
    [7] LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4encodessmall RNAs with antisense complementarity to lin-14.[J] Cell,1993,75(5):843-854.
    [8] REINHART B J, SLACK F J, BASSON M, et al. The21-nucleotide let-7RNA regulatesdevelopmental timing in Caenorhabditis elegans.[J] Nature,2000,403(6772):901-906.
    [9] GIRALDEZ A J, CINALLI R M, GLASNER M E, et al. MicroRNAs regulate brainmorphogenesis in zebrafish.[J] Science,2005,308(5723):833-838.
    [10] ZHAO Y, SAMAL E, SRIVASTAVA D. Serum response factor regulates a muscle-specificmicroRNA that targets Hand2during cardiogenesis.[J] Nature,2005,436(7048):214-220.
    [11] XU P, VERNOOY S Y, GUO M, et al. The Drosophila microRNA Mir-14suppresses celldeath and is required for normal fat metabolism.[J] Curr Biol,2003,13(9):790-795.
    [12] ESAU C, KANG X, PERALTA E, et al. MicroRNA-143regulates adipocyte differentiation.[J] J Biol Chem,2004,279(50):52361-52365.
    [13] ESAU C, DAVIS S, MURRAY S F, et al. miR-122regulation of lipid metabolism revealed byin vivo antisense targeting.[J] Cell Metab,2006,3(2):87-98.
    [14] GLAZOV E A, COTTEE P A, BARRIS W C, et al. A microRNA catalog of the developingchicken embryo identified by a deep sequencing approach.[J] Genome Res,2008,18(6):957-964.
    [15] NIELSEN M, HANSEN J H, HEDEGAARD J, et al. MicroRNA identity and abundance inporcine skeletal muscles determined by deep sequencing.[J] Anim Genet,2010,41(2):159-168.
    [16] CHEN X, LI Q, WANG J, et al. Identification and characterization of novel amphioxusmicroRNAs by Solexa sequencing.[J] Genome Biol,2009,10(7): R78.
    [17] XIE S S, LI X Y, LIU T, et al. Discovery of porcine microRNAs in multiple tissues by aSolexa deep sequencing approach.[J] PLoS One,2011,6(1): e16235.
    [18] LI M, XIA Y, GU Y, et al. MicroRNAome of porcine pre-and postnatal development.[J]PLoS One,2010,5(7): e11541.
    [19] FILIPOWICZ W, BHATTACHARYYA S N, SONENBERG N. Mechanisms ofpost-transcriptional regulation by microRNAs: are the answers in sight?[J] Nat Rev Genet,2008,9(2):102-114.
    [20] WIGHTMAN B, HA I, RUVKUN G. Posttranscriptional regulation of the heterochronic genelin-14by lin-4mediates temporal pattern formation in C. elegans.[J] Cell,1993,75(5):855-862.
    [21] CHALFIE M, HORVITZ H R, SULSTON J E. Mutations that lead to reiterations in the celllineages of C. elegans.[J] Cell,1981,24(1):59-69.
    [22] LEE R, FEINBAUM R, AMBROS V. A short history of a short RNA.[J] Cell,2004,116(2Suppl): S89-92,81p following S96.
    [23] FERGUSON E L, STERNBERG P W, HORVITZ H R. A genetic pathway for thespecification of the vulval cell lineages of Caenorhabditis elegans.[J] Nature,1987,326(6110):259-267.
    [24] ALMEIDA M I, REIS R M, CALIN G A. MicroRNA history: discovery, recent applications,and next frontiers.[J] Mutat Res,2011,717(1-2):1-8.
    [25] PASQUINELLI A E, REINHART B J, SLACK F, et al. Conservation of the sequence andtemporal expression of let-7heterochronic regulatory RNA.[J] Nature,2000,408(6808):86-89.
    [26] GRIFFITHS-JONES S, SAINI H K, VAN DONGEN S, et al. miRBase: tools for microRNAgenomics.[J] Nucleic Acids Res,2008,36(Database issue): D154-158.
    [27] MEZA-SOSA K F, VALLE-GARCIA D, PEDRAZA-ALVA G, et al. Role of microRNAs incentral nervous system development and pathology.[J] J Neurosci Res,2012,90(1):1-12.
    [28] LEE Y, KIM M, HAN J, et al. MicroRNA genes are transcribed by RNA polymerase II.[J]EMBO J,2004,23(20):4051-4060.
    [29] ZENG Y, CULLEN B R. Sequence requirements for micro RNA processing and function inhuman cells.[J] RNA,2003,9(1):112-123.
    [30] LEE Y, AHN C, HAN J, et al. The nuclear RNase III Drosha initiates microRNA processing.[J] Nature,2003,425(6956):415-419.
    [31] YI R, QIN Y, MACARA I G, et al. Exportin-5mediates the nuclear export of pre-microRNAsand short hairpin RNAs.[J] Genes Dev,2003,17(24):3011-3016.
    [32] LUND E, GUTTINGER S, CALADO A, et al. Nuclear export of microRNA precursors.[J]Science,2004,303(5654):95-98.
    [33] AMBROS V, BARTEL B, BARTEL D P, et al. A uniform system for microRNA annotation.[J] RNA,2003,9(3):277-279.
    [34] LAU N C, LIM L P, WEINSTEIN E G, et al. An abundant class of tiny RNAs with probableregulatory roles in Caenorhabditis elegans.[J] Science,2001,294(5543):858-862.
    [35] SIOMI H, SIOMI M C. Posttranscriptional regulation of microRNA biogenesis in animals.[J]Mol Cell,2010,38(3):323-332.
    [36] KHVOROVA A, REYNOLDS A, JAYASENA S D. Functional siRNAs and miRNAs exhibitstrand bias.[J] Cell,2003,115(2):209-216.
    [37] SCHWARZ D S, HUTVAGNER G, DU T, et al. Asymmetry in the assembly of the RNAienzyme complex.[J] Cell,2003,115(2):199-208.
    [38] HUTVAGNER G, ZAMORE P D. A microRNA in a multiple-turnover RNAi enzymecomplex.[J] Science,2002,297(5589):2056-2060.
    [39] RANA T M. Illuminating the silence: understanding the structure and function of small RNAs.[J] Nat Rev Mol Cell Biol,2007,8(1):23-36.
    [40] HWANG H W, WENTZEL E A, MENDELL J T. A hexanucleotide element directsmicroRNA nuclear import.[J] Science,2007,315(5808):97-100.
    [41] DOENCH J G, SHARP P A. Specificity of microRNA target selection in translationalrepression.[J] Genes Dev,2004,18(5):504-511.
    [42] BRENNECKE J, STARK A, RUSSELL R B, et al. Principles of microRNA-targetrecognition.[J] PLoS Biol,2005,3(3): e85.
    [43] MARTINEZ J, PATKANIOWSKA A, URLAUB H, et al. Single-stranded antisense siRNAsguide target RNA cleavage in RNAi.[J] Cell,2002,110(5):563-574.
    [44] SCHWARZ D S, HUTVAGNER G, HALEY B, et al. Evidence that siRNAs function asguides, not primers, in the Drosophila and human RNAi pathways.[J] Mol Cell,2002,10(3):537-548.
    [45] YEKTA S, SHIH I H, BARTEL D P. MicroRNA-directed cleavage of HOXB8mRNA.[J]Science,2004,304(5670):594-596.
    [46] QIN W, SHI Y, ZHAO B, et al. miR-24regulates apoptosis by targeting the open readingframe (ORF) region of FAF1in cancer cells.[J] PLoS One,2010,5(2): e9429.
    [47] LYTLE J R, YARIO T A, STEITZ J A. Target mRNAs are repressed as efficiently bymicroRNA-binding sites in the5' UTR as in the3' UTR.[J] Proc Natl Acad Sci U S A,2007,104(23):9667-9672.
    [48] TAY Y, ZHANG J, THOMSON A M, et al. MicroRNAs to Nanog, Oct4and Sox2codingregions modulate embryonic stem cell differentiation.[J] Nature,2008,455(7216):1124-1128.
    [49] EIRING A M, HARB J G, NEVIANI P, et al. miR-328functions as an RNA decoy tomodulate hnRNP E2regulation of mRNA translation in leukemic blasts.[J] Cell,2010,140(5):652-665.
    [50] LIM L P, LAU N C, GARRETT-ENGELE P, et al. Microarray analysis shows that somemicroRNAs downregulate large numbers of target mRNAs.[J] Nature,2005,433(7027):769-773.
    [51] MASSIRER K B, PASQUINELLI A E. The evolving role of microRNAs in animal geneexpression.[J] Bioessays,2006,28(5):449-452.
    [52] ZHAO X, HE X, HAN X, et al. MicroRNA-mediated control of oligodendrocytedifferentiation.[J] Neuron,2010,65(5):612-626.
    [53] MISKA E A, ALVAREZ-SAAVEDRA E, TOWNSEND M, et al. Microarray analysis ofmicroRNA expression in the developing mammalian brain.[J] Genome Biol,2004,5(9):R68.
    [54] CHEN J F, MANDEL E M, THOMSON J M, et al. The role of microRNA-1andmicroRNA-133in skeletal muscle proliferation and differentiation.[J] Nat Genet,2006,38(2):228-233.
    [55] LEWIS M A, STEEL K P. MicroRNAs in mouse development and disease.[J] Semin CellDev Biol,2010,21(7):774-780.
    [56] XIAO C, CALADO D P, GALLER G, et al. MiR-150controls B cell differentiation bytargeting the transcription factor c-Myb.[J] Cell,2007,131(1):146-159.
    [57] JOHNNIDIS J B, HARRIS M H, WHEELER R T, et al. Regulation of progenitor cellproliferation and granulocyte function by microRNA-223.[J] Nature,2008,451(7182):1125-1129.
    [58] BAEK D, VILLEN J, SHIN C, et al. The impact of microRNAs on protein output.[J] Nature,2008,455(7209):64-71.
    [59] RODRIGUEZ A, VIGORITO E, CLARE S, et al. Requirement of bic/microRNA-155fornormal immune function.[J] Science,2007,316(5824):608-611.
    [60] SELBACH M, SCHWANHAUSSER B, THIERFELDER N, et al. Widespread changes inprotein synthesis induced by microRNAs.[J] Nature,2008,455(7209):58-63.
    [61] LEWIS M A, QUINT E, GLAZIER A M, et al. An ENU-induced mutation of miR-96associated with progressive hearing loss in mice.[J] Nat Genet,2009,41(5):614-618.
    [62] GUO H, INGOLIA N T, WEISSMAN J S, et al. Mammalian microRNAs predominantly actto decrease target mRNA levels.[J] Nature,2010,466(7308):835-840.
    [63] VASUDEVAN S, TONG Y, STEITZ J A. Switching from repression to activation:microRNAs can up-regulate translation.[J] Science,2007,318(5858):1931-1934.
    [64] PLACE R F, LI L C, POOKOT D, et al. MicroRNA-373induces expression of genes withcomplementary promoter sequences.[J] Proc Natl Acad Sci U S A,2008,105(5):1608-1613.
    [65] BARTEL D P, CHEN C Z. Micromanagers of gene expression: the potentially widespreadinfluence of metazoan microRNAs.[J] Nat Rev Genet,2004,5(5):396-400.
    [66] CREIGHTON C J, REID J G, GUNARATNE P H. Expression profiling of microRNAs bydeep sequencing.[J] Brief Bioinform,2009,10(5):490-497.
    [67] GRIMSON A, FARH K K, JOHNSTON W K, et al. MicroRNA targeting specificity inmammals: determinants beyond seed pairing.[J] Mol Cell,2007,27(1):91-105.
    [68] THADANI R, TAMMI M T. MicroTar: predicting microRNA targets from RNA duplexes.[J]BMC Bioinformatics,2006,7Suppl5(S20.
    [69] ENRIGHT A J, JOHN B, GAUL U, et al. MicroRNA targets in Drosophila.[J] Genome Biol,2003,5(1): R1.
    [70] KIRIAKIDOU M, NELSON P T, KOURANOV A, et al. A combinedcomputational-experimental approach predicts human microRNA targets.[J] Genes Dev,2004,18(10):1165-1178.
    [71] TAYLOR M V. Developmental biology: micromanaging muscle growth.[J] Curr Biol,2006,16(1): R20-23.
    [72] ANDERSON C, CATOE H, WERNER R. MIR-206regulates connexin43expression duringskeletal muscle development.[J] Nucleic Acids Res,2006,34(20):5863-5871.
    [73] KIM H K, LEE Y S, SIVAPRASAD U, et al. Muscle-specific microRNA miR-206promotesmuscle differentiation.[J] J Cell Biol,2006,174(5):677-687.
    [74] NAGUIBNEVA I, AMEYAR-ZAZOUA M, POLESSKAYA A, et al. The microRNA miR-181targets the homeobox protein Hox-A11during mammalian myoblast differentiation.[J] NatCell Biol,2006,8(3):278-284.
    [75] CARE A, CATALUCCI D, FELICETTI F, et al. MicroRNA-133controls cardiac hypertrophy.[J] Nat Med,2007,13(5):613-618.
    [76] XU C, LU Y, PAN Z, et al. The muscle-specific microRNAs miR-1and miR-133produceopposing effects on apoptosis by targeting HSP60, HSP70and caspase-9in cardiomyocytes.[J] J Cell Sci,2007,120(Pt17):3045-3052.
    [77] VAN ROOIJ E, SUTHERLAND L B, QI X, et al. Control of stress-dependent cardiac growthand gene expression by a microRNA.[J] Science,2007,316(5824):575-579.
    [78] LI Y, WANG F, LEE J A, et al. MicroRNA-9a ensures the precise specification of sensoryorgan precursors in Drosophila.[J] Genes Dev,2006,20(20):2793-2805.
    [79] LEUCHT C, STIGLOHER C, WIZENMANN A, et al. MicroRNA-9directs late organizeractivity of the midbrain-hindbrain boundary.[J] Nat Neurosci,2008,11(6):641-648.
    [80] DELALOY C, LIU L, LEE J A, et al. MicroRNA-9coordinates proliferation and migration ofhuman embryonic stem cell-derived neural progenitors.[J] Cell Stem Cell,2010,6(4):323-335.
    [81] FIORE R, SIEGEL G, SCHRATT G. MicroRNA function in neuronal development, plasticityand disease.[J] Biochim Biophys Acta,2008,1779(8):471-478.
    [82] KRICHEVSKY A M, SONNTAG K C, ISACSON O, et al. Specific microRNAs modulateembryonic stem cell-derived neurogenesis.[J] Stem Cells,2006,24(4):857-864.
    [83] SCHAEFER A, O'CARROLL D, TAN C L, et al. Cerebellar neurodegeneration in theabsence of microRNAs.[J] J Exp Med,2007,204(7):1553-1558.
    [84] LUKIW W J. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus.[J]Neuroreport,2007,18(3):297-300.
    [85] ROSSBACH M. Small non-coding RNAs as novel therapeutics.[J] Curr Mol Med,2010,10(4):361-368.
    [86] KOTA J, CHIVUKULA R R, O'DONNELL K A, et al. Therapeutic microRNA deliverysuppresses tumorigenesis in a murine liver cancer model.[J] Cell,2009,137(6):1005-1017.
    [87] LI G, LI Y, LI X, et al. MicroRNA identity and abundance in developing swine adipose tissueas determined by Solexa sequencing.[J] J Cell Biochem,2011,112(5):1318-1328.
    [88] KREK A, GRUN D, POY M N, et al. Combinatorial microRNA target predictions.[J] NatGenet,2005,37(5):495-500.
    [89] KWON C, HAN Z, OLSON E N, et al. MicroRNA1influences cardiac differentiation inDrosophila and regulates Notch signaling.[J] Proc Natl Acad Sci U S A,2005,102(52):18986-18991.
    [90] UCHIDA N. MicroRNA-9controls a migratory mechanism in human neural progenitor cells.[J] Cell Stem Cell,2010,6(4):294-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700