剩余污泥温度分级—生物分相厌氧消化系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市污水处理厂建设力度加大,导致污泥产量激增,污泥的处理处置问题日益突出。厌氧消化是实现污泥稳定化、无害化、减量化、资源化重要工艺之一,在降解有机物的同时可以产生再生能源,在解决污泥处理处置问题方面有着很大的发展潜力。然而厌氧消化技术在我国并不普及,建成的厌氧消化系统能够正常运行的并不多。本研究从厌氧消化工艺原理出发,以城市污水厂的剩余污泥为研究对象,提出温度分级-生物分相(Temperature Staged and Biologically Phased, TSBP)厌氧消化工艺,通过同时控制温度和停留时间来实现产酸相和产甲烷相的分离。并结合污泥集中处理的思路,开发适用于高含固率污泥的热碱联合预处理+TSBP厌氧消化工艺,使高含固率污泥能够更容易水解酸化,进而提高整个TSBP系统的厌氧消化能力。
     通过间歇试验和半连续试验,分别研究温度和停留时间对污泥产酸相处理效果的影响。研究结果表明,在25~60oC范围内温度对水解和酸化反应的影响不同。污泥的水解效果随着温度升高而水解作用增强,而温度高于45oC时挥发性脂肪酸(VFAs)浓度并没有继续增长。当产酸相温度为45oC时,在2~6d的停留时间范围内停留时间为4d时比较合适。
     在产酸相反应器运行工况确定的基础上,建立污泥TSBP厌氧消化系统,将其系统产气量以及有机物降解率等方面与单相系统进行比较。研究结果表明,在产酸相温度为45oC、停留时间为4d,产甲烷相反应器温度为35oC、停留时间为16d时TSBP系统运行情况较好。TSBP厌氧消化系统甲烷产量和VS去除率分别能达到754mLCH4/d和51.3%,高于中温单相系统的408mLCH4/d和46.0%。通过扫描电镜对反应器内微生物形态进行分析表明在TSBP系统中通过对温度和停留时间的控制成功实现了产酸菌和产甲烷菌生物相的基本分离。
     将TSBP系统应用于含固率为8%左右的污泥厌氧消化中,在工艺前端增加热碱预处理技术。通过批式试验对热碱预处理进行条件参数优化研究,结果表明投加KOH溶液将污泥初始pH调节至11.0后,在80oC下持续加热30min能够明显促进污泥水解反应。而热碱预处理后的污泥在水解酸化间歇试验中产生的溶解性有机物浓度(SCOD)和VFAs浓度均明显高于未预处理的污泥。同时KOH热碱预处理后的污泥在经过水解酸化反应后污泥细胞壁破裂现象明显且经过预处理的污泥在水解酸化后的产甲烷潜力明显高于未预处理的污泥。将热碱预处理技术与TSBP厌氧消化系统相结合,高含固率污泥热碱预处理+TSBP厌氧消化系统的甲烷产量和有机物去除率均明显高于单相系统。
     依据小试试验结果,建立高含固率污泥TSBP厌氧消化系统的示范工程。并着重对整个系统从能量平衡的角度进行计算和分析,从经济性方面来评价本工艺的推广和应用潜力。经过对系统进行能量平衡核算,TSBP系统能够实现能量自给自足。
In recent years, with the rapid development of WWTPs and the increase of sewagetreatment rates, sewage treatment capacity has substantially increased, resulting in acorresponding increase in sludge production. Sewage sludge has become a prominentglobal environmental problem. Anaerobic digestion is an established technology that iseffective and economical for the stabilization of sewage sludge and renewable energy canbe generated in the process of the degradation of organic matter at the same time.Therefore, it is very potential for the treatment and disposal of sludge. However, anaerobicdigestion technology is not popular in China and most of the exsiting anaerobic digestivesystems didn’t run very well. The concept of temperature staged and biologically phased(TSBP) was proposed to enhance the performance of waste-activated sludge (WAS)anaerobic digestion in this paper and the separation of acidogenic and methanogenic phasewas achieved by simultaneously controlling temperature and hydraulic retention time(HRT). Furthermore, thermal-alkaline pretreatment and TSBP anaerobic digestion processwere combined to discuss the efficiency of high solid content WAS treatment.
     The effect of temperature and HRT for acidogenic phase was disccused through batchtests and semi-continuous experiments, respectively. The results showed that theinfluences of temperature on the hydrolysis and acidification processes were different. Thedegree of solubilization gradually increased with the increase of temperature while whilethe acidification degree was highest at45°C. Compared with HRT of2and6days,4dayswas chosen as the appropriate HRT at45°C.
     TSBP anaerobic digestion system combined the acidogenic reactor (45°C,4days)with the methanogenic reactor (35°C,16days) was estabilished based on the operatingconditions of acidogenic phase and compared gas production and volatile solid reductionwith a single-phase system. The results showed84.8%and11.4%higher methane yieldand volatile solid reduction, respectively. Moreover, different microbial morphologieswere observed in the acidogenic and methanogenic phase reactors, which resulted fromthe temperature control and HRT adjustment.
     Applied TSBP anaerobic digestion system to high solid content (about8%) WAStreatment and thermal-alkaline pretreatment technology was added before the system.Batch tests were carried out to optimize the thermal-alkaline pretreatment condition andthe results explained that the hydrolysis process could significantly be promoted whendosing KOH solution to adjuste the initial pH value of sludge to11.0and then heating thesludge at80oC for30min. Moreover, after hydrolysis and acidification reaction in batchtests, the concentration of soluble chemical oxygen demand(SCOD)and volatile fattyacids(VFAs)were significantly higher than non-pretreated sludge. And the methanogenicpotential of thermal-alkaline pretreated WAS after hydrolysis and acidification processwas significantly higher than non-pretreated sludge. Combining thermal-alkalinepretreatment technology and TSBP anaerobic digestion system, the methane yield andvolatile solid reduction were both improved compared with single-phase syetem as well asTSBP anaerobic digestion system.
     A full-scale TSBP anaerobic digestion project was established based on the results ofthe laboratory research. The discussion was focusd on energy balance calculation andanalysis of the entire system to evaluate the application potential in terms of economy.And the TSBP anaerobic digestion system was able to achieve stable operation and realizeenergy self-sufficiency from the point of view of energy balance.
引文
[1]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2011
    [2]陈科.我国城市污水厂污泥处理处置技术浅谈[J].科技创新导报,2012,1(8):141-143
    [3]王洪臣.我国污水处理业的发展历程与未来展望[J].环境保护,2012,1(15):19-22
    [4]王凯军.坚持正确的技术方向稳步推进我国污泥处理处置工作[J].给水排水,2010,36(10):1-3
    [5]吴静,姜洁,周红明.我国城市污水处理厂污泥产沼气的前景分析[J].给水排水,2009,35(S):101-104
    [6]吴静,姜洁,周红明等.我国城市污水厂污泥厌氧消化系统的运行现状[J].中国给水排水,2008,24(22):21-24
    [7] Rulkens W., Bien J. Recovery of energy from sludge——comparison of the variousoptions[J]. Water science and technology,2004,50(9):213-221
    [8] Appels L., Baeyens J., Degrève J., et al. Principles and potential of the anaerobicdigestion of waste-activated sludge[J]. Progress in Energy and Combustion Science,2008,34(6):755-781
    [9] Cao Y., Paw owski A. Sewage sludge-to-energy approaches based on anaerobicdigestion and pyrolysis: Brief overview and energy efficiency assessment[J].Renewable and Sustainable Energy Reviews,2012,16(3):1657-1665
    [10] Chen Y., Cheng J. J., Creamer K. S. Inhibition of anaerobic digestion process: Areview[J]. Bioresource Technology,2008,99(10):4044-4064
    [11] Madsen M., Holm-Nielsen J. B., Esbensen K. H. Monitoring of anaerobic digestionprocesses: A review perspective[J]. Renewable and Sustainable Energy Reviews,2011,15(6):3141-3155
    [12] Solera R., Romero L., Sales D. The evolution of biomass in a two-phase anaerobictreatment process during start-up[J]. Chemical and Biochemical EngineeringQuarterly,2002,16(1):25-29
    [13] Claassen P., Van Lier J., Lopez Contreras A., et al. Utilisation of biomass for thesupply of energy carriers[J]. Applied Microbiology Biotechnology,1999,52(6):741-755
    [14] Lay J. J. Modeling and optimization of anaerobic digested sludge converting starchto hydrogen[J]. Biotechnology and Bioengineering,2000,68(3):269-278
    [15] Ting C., Lee D. Production of hydrogen and methane from wastewater sludge usinganaerobic fermentation[J]. International Journal of Hydrogen Energy,2007,32(6):677-682
    [16] Ueno Y., Otsuka S., Morimoto M. Hydrogen production from industrial wastewaterby anaerobic microflora in chemostat culture[J]. Journal of Fermentation andBioengineering,1996,82(2):194-197
    [17] Wang C., Chang C., Chu C., et al. Producing hydrogen from wastewater sludge byClostridium bifermentans[J]. Journal of Biotechnology,2003,102(1):83-92
    [18] Wu K. J., Chang J. S. Batch and continuous fermentative production of hydrogenwith anaerobic sludge entrapped in a composite polymeric matrix[J]. ProcessBiochemistry,2007,42(2):279-284
    [19] Liu H., Ramnarayanan R., Logan B. E. Production of electricity during wastewatertreatment using a single chamber microbial fuel cell[J]. Environmental Science andTechnology,2004,38(7):2281-2285
    [20] Dentel S., Strogen B., Chiu P. Direct generation of electricity from sludges andother liquid wastes[J]. Water Science and Technology,2004,50(9):161-168
    [21] Baeyens J., Van Puyvelde F. Fluidized bed incineration of sewage sludge: a strategyfor the design of the incinerator and the future for incinerator ash utilization[J].Journal of Hazardous Materials,1994,37(1):179-190
    [22] Braguglia C., Mininni G., Marani D., et al. Sludge incineration: Good practice andenvironmental aspects[C]. Preprint Biosolids2003, Wastewater Sludge as aResource,23-25, June2003, Trondheim, Norway,2003:523-530
    [23] Fullana A., Conesa J. A., Font R., et al. Formation and destruction of chlorinatedpollutants during sewage sludge incineration[J]. Environmental Science andTechnology,2004,38(10):2953-2958
    [24] Guibelin E. Sludge thermal oxidation processes: mineral recycling, energy impact,and greenhouse effect gases release[J]. Water Science and Technology,2004,49(10):209-216
    [25] Malerius O., Werther J. Modeling the adsorption of mercury in the flue gas ofsewage sludge incineration[J]. Chemical Engineering Journal,2003,96(1-3):197-205
    [26] Rulkens W. Increasing the environmental sustainability of sewage treatment bymitigating pollutant pathways[J]. Environmental Engineering Science,2006,23(4):650-665
    [27] Simonsen N., Bruus J. Drying and incineration of wastewater sludge. Experienceand perspectives based on the development in Denmark[C]. Biosolids2003,Wastewater Sludge as a Resource,23-25June2003, Trondheim, Norway,2003:399-406
    [28] Luts D., Devoldere K., Laethem B., et al. Co-incineration of dried sewage sludge incoal-fired power plants: A case study[J]. Water Science and Technology,2000,42(9):259-268
    [29] Stolarek P., Ledakowicz S. Thermal processing of sewage sludge by drying,pyrolysis, gasification and combustion[J]. Water Science and Technology,2001,44(5):333-339
    [30] Jaeger M., Mayer M. The Noell Conversion Process: a gasification process for thepollutant-free disposal of sewage sludge and the recovery of energy andmaterials[J]. Water Science and Technology,2000,41(8):37-44
    [31] Endo H., Nagayoshi Y., Suzuki K. Production of glass ceramics from sewagesludge[J]. Water Science and Technology,1997,36(11):235-241
    [32] Okuno N., Ishikawa Y., Shimizu A., et al. Utilization of sludge in buildingmaterial[J]. Water Science and Technology,2004,49(10):225-232
    [33] Taruya T., Okuno N., Kanaya K. Reuse of sewage sludge as raw material ofPortland cement in Japan[J]. Water Science and Technology,2002,46(10):255-258
    [34] Stark K., Plaza E., Hultman B. Phosphorus release from ash, dried sludge andsludge residue from supercritical water oxidation by acid or base[J]. Chemosphere,2006,62(5):827-832
    [35] Stendahl K., J fverstr m S. Recycling of sludge with the Aqua Reci process[J].Water Science and Technology,2004,49(10):233-240
    [36] Hansen B., Karlsson I., Cassidy S., et al. Operational experiences from a sludgerecovery plant[J]. Water Science and Technology,2000,41(8):23-30
    [37]荀锐,王伟,乔玮等.城市污泥处理现状与强化脱水的水热减量化技术[J].环境卫生工程,2008,1(2):28-32
    [38]张辰.城市污泥集约化处理[J].给水排水,2002,28(4):21-22
    [39]董峙标,乔波,徐飞.我国污水处理厂污泥处理现状分析——以大连夏家河污泥处理厂为例[J].节能,2012,31(4):4-6
    [40][胡纪萃.废水厌氧生物处理理论与技术[M].中国建筑工业出版社,2003
    [41] Batstone D., Keller J., Angelidaki I., et al. Anaerobic digestion model no.1(ADM1), IWA task group for mathematical modelling of anaerobic digestionprocesses[J]. Water Research,2002,41(18):4085-4096
    [42] Gujer W., Zehnder A. Conversion processes in anaerobic digestion[J]. WaterScience and Technology,1983,15(8-9):127-167
    [43]任南琪,王爱杰.厌氧生物技术原理与应用[M].化学工业出版社,2004
    [44] Buhr H., Andrews J. The thermophilic anaerobic digestion process[J]. WaterResearch,1977,11(2):129-143
    [45] Lin C., Noike T., Sato K., et al. Temperature characteristics of the methanogenesisprocess in anaerobic digestion[J]. Water Science and Technology,1987,19(1-2):299-300
    [46] Parkin G. F., Owen W. F. Fundamentals of anaerobic digestion of wastewatersludges[J]. Journal of Environmental Engineering,1986,112(5):867-920
    [47] Mata-Alvarez J. Biomethanization of the organic fraction of municipal solidwastes[M]. IWA publishing,2003
    [48] Pohland F., Ghosh S. Developments in anaerobic stabilization of organic wastes-thetwo-phase concept[J]. Environmental Letters,1971,1(4):255-266
    [49] Massey M. L., Pohland F. G. Phase separation of anaerobic stabilization by kineticcontrols[J]. Journal (Water Pollution Control Federation),1978,50(9):2204-2222
    [50]尹军,赵纯广,张立国等.污泥两相厌氧消化若干研究进展[J].吉林建筑工程学院学报,2008,25(2):11-14
    [51] Speece R. E., Duran M., Demirer G., et al. The role of process configuration in theperformance of anaerobic systems[J]. Water Science and Technology,1997,36(6):539-547
    [52] Azbar N., Speece R. E. Two-phase, two-stage, and single-stage anaerobic processcomparison[J]. Journal of Environmental Engineering,2001,127(3):240-248
    [53] Welper L. L., Sung S., Dague R. R. Laboratory studies on the temperature-phasedASBR system[J]. Water Science and Technology,1997,36(2):295-302
    [54]凡广生,李多松.两相厌氧消化工艺的研究进展及其应用[J].能源环境保护,2006,20(1):10-13
    [55] Liu T., Ghosh S. Phase separation during anaerobic fermentation of solid substratesin an innovative plugflow reactor[J]. Water Science and Technology,1997,36(6):303-310
    [56] Cohen A., Breure A., Van Andel J., et al. Influence of phase separation on theanaerobic digestion of glucose——II: Stability, and kinetic responses to shockloadings[J]. Water Research,1982,16(4):449-455
    [57] Cho J. K., Park S. C., Chang H. N. Biochemical methane potential and solid stateanaerobic digestion of Korean food wastes[J]. Bioresource Technology,1995,52(3):245-253
    [58] Demirer G., Chen S. Two-phase anaerobic digestion of unscreened dairy manure[J].Process Biochemistry,2005,40(11):3542-3549
    [59] Ghosh S., Henry M., Sajjad A., et al. Pilot-scale gasification of municipal solidwastes by high-rate and two-phase anaerobic digestion(TPAD)[J]. Water Scienceand Technology,2000,41(3):101-110
    [60] Jha A. K., Li J., Nies L., et al. Research advances in dry anaerobic digestionprocess of solid organic wastes[J]. African Journal of Biotechnology,2011,10(65):14242-14253
    [61] Mata-Alvarez J., Mace S., Llabres P. Anaerobic digestion of organic solid wastes.An overview of research achievements and perspectives[J]. BioresourceTechnology,2000,74(1):3-16
    [62] Raynal J., Delgenes J., Moletta R. Two-phase anaerobic digestion of solid wastesby a multiple liquefaction reactors process[J]. Bioresource Technology,1998,65(1):97-103
    [63]吴华明,高廷耀,周增炎.城市污泥两相厌氧消化的试验[J].中国给水排水,1992,8(3):4-8
    [64]边兴玉,肖红,周增炎.城市污水厂污泥两相厌氧消化工艺的研究[J].工业水处理,1992,12(5):24-25
    [65]边兴玉,肖红,周增炎.城市污水厂污泥两相厌氧消化工艺与传统厌氧消化工艺的比较研究[J].环境污染与防治,1993,15(4):14-17
    [66] Ghosh S., Buoy K., Dressel L., et al. Pilot-and full-scale two-phase anaerobicdigestion of municipal sludge[J]. Water Environment Research,1995,67(2):206-214
    [67]尹军,赵纯广,张立国等.中温两相厌氧消化工艺处理混合污泥的效能[J].中国给水排水,2008,24(5):1-4
    [68] Riau V., de la Rubia M., Pérez M. Temperature-phased anaerobic digestion (TPAD)to obtain Class A biosolids. A discontinuous study[J]. Bioresource Technology,2010,101(1):65-70
    [69] Sandino J., Shimp G., Santha H., et al. Evaluation of a sequential feeding schemefor temperature-phased anaerobic digestion (TPAD) system treating municipalsludge[J]. Proceedings of the Water Environment Federation,2002(15):629-643
    [70] Santha H., Sandino J., Shimp G. F., et al. Laboratory Studies on aSequencing-Batch Temperature-Phased Anaerobic Digestion (TPAD) System[J].Proceedings of the Water Environment Federation,2003,15(1):639-653
    [71] Sun X. Y., Chen C., Wang W., et al. Acidification of Waste Activated Sludge duringMesophilic Phase in Two Phases Anaerobic Digestion System[J]. AdvancedMaterials Research,2013,610(1):2416-2420
    [72]汪德生,付蕾.城市污水处理厂剩余污泥中温厌氧消化处理研究[J].新疆环境保护,2006,28(4):6-9.
    [73] Nges I. A., Liu J. Effects of anaerobic pre-treatment on the degradation ofdewatered-sewage sludge[J]. Renewable Energy,2009,34(7):1795-1800
    [74] Bhattacharya S. K., Madura R. L., Walling D. A., et al. Volatile solids reduction intwo-phase and conventional anaerobic sludge digestion[J]. Water Research,1996,30(5):1041-1048
    [75] Watts S., Hamilton G., Keller J. Two-stage thermophilic-mesophilic anaerobicdigestion of waste activated sludge from a biological nutrient removal plant[J].Water Science and Technology,2006,53(8):149-157
    [76] Ge H., Jensen P. D., Batstone D. J. Temperature phased anaerobic digestionincreases apparent hydrolysis rate for waste activated sludge[J]. Water Research,2011,45(4):1597-1606
    [77] Roberts R., Le S., Forster C. F. A thermophilic/mesophilic dual digestion systemfor treating waste activated sludge[J]. Journal of Chemical Technology andBiotechnology,1999,74(5):445-450
    [78] Bolzonella D., Pavan P., Zanette M., et al. Two-phase anaerobic digestion of wasteactivated sludge: effect of an extreme thermophilic prefermentation[J]. Industrialand Engineering Chemistry Research,2007,46(21):6650-6655
    [79] Skiadas I. V., Gavala H. N., Lu J., et al. Thermal pre-treatment of primary andsecondary sludge at70oC prior to anaerobic digestion[J]. Water Science andTechnology,2005,52(1-2):161-166
    [80] Song Y.C., Kwon S.J., Woo J.H. Mesophilic and thermophilic temperature co-phaseanaerobic digestion compared with single-stage mesophilic-and thermophilicdigestion of sewage sludge[J]. Water Research,2004,38(7):1653-1662
    [81] Han Y., Dague R. R. Laboratory studies on the temperature-phased anaerobicdigestion of domestic primary sludge[J]. Water Environment Research,1997,69(6):1139-1143
    [82] Gavala H. N., Yenal U., Skiadas I. V., et al. Mesophilic and thermophilic anaerobicdigestion of primary and secondary sludge. Effect of pre-treatment at elevatedtemperature[J]. Water Research,2003,37(19):4561-4572
    [83] Lu J., Ahring B. K. Effects of temperature and hydraulic retention time onthermophilic anaerobic pretreatment of sewage sludge[J]. Proceedings AnaerobicDigestion of Solid Waste,2005,1:159-164
    [84]苑宏英,张华星,陈银广等. pH对剩余污泥厌氧发酵产生的COD,磷及氨氮的影响[J].环境科学,2006,27(7):1358-1361
    [85] Rajan R., Lin J.G., Ray B. T. Low-level chemical pretreatment for enhanced sludgesolubilization[J]. Research Journal of the Water Pollution Control Federation,1989,61(11/12):1678-1683
    [86] Katsiris N., Kouzeli-Katsiri A. Bound water content of biological sludges inrelation to filtration and dewatering[J]. Water Research,1987,21(11):1319-1327
    [87] Kim J., Park C., Kim T. H., et al. Effects of various pretreatments for enhancedanaerobic digestion with waste activated sludge[J]. Journal of Bioscience andBioengineering,2003,95(3):271-275
    [88]肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学,2006,27(2):319-323
    [89][89] Lin J. G., Chang C. N., Chang S. C. Enhancement of anaerobic digestion ofwaste activated sludge by alkaline solubilization[J]. Bioresource Technology,1997,62(3):85-90
    [90]林志高,张守中.废弃活性污泥加碱预处理后厌氧消化的试验研究[J].给水排水,1997,23(1):10-15
    [91] Haug R. T., Stuckey D. C., Gossett J. M., et al. Effect of thermal pretreatment ondigestibility and dewaterability of organic sludges[J]. Journal (Water PollutionControl Federation),1978,50(1):73-85
    [92] Anderson N., Dixon D., Harbour P., et al. Complete characterisation of thermallytreated sludges[J]. Water Science and Technology,2002,46(10):51-54
    [93] Fisher W., Swanwick J. High-temperature treatment of sewage sludges[J].WaterPollution Control,1971,71(3):255-370
    [94]严媛媛,刘晓光,戴晓虎.污泥厌氧消化预处理技术综述[J].四川环境,2012,31(2):113-118
    [95] Weemaes M. P., Verstraete W. H. Evaluation of current wet sludge disintegrationtechniques[J]. Journal of Chemical Technology and Biotechnology,1998,73(2):83-92
    [96] Neyens E., Baeyens J. A review of thermal sludge pre-treatment processes toimprove dewaterability[J]. Journal of Hazardous Materials,2003,98(1):51-67
    [97] Dohanyos M., Zabranska J., Kutil J., et al. Improvement of anaerobic digestion ofsludge[J]. Water Science and Technology,2004,49(10):89-96
    [98] Ferrer I., Ponsá S., Vázquez F., et al. Increasing biogas production by thermal(70oC) sludge pre-treatment prior to thermophilic anaerobic digestion[J].Biochemical Engineering Journal,2008,42(2):186-192
    [99] Stuckey D. C., McCarty P. L. Thermochemical pretreatment of nitrogenousmaterials to increase methane yield[J]. Biotechnology and BioengineeringSymposium.1978,8(1):219-233
    [100] Bougrier C., Delgenes J., Carrere H. Impacts of thermal pre-treatments on thesemi-continuous anaerobic digestion of waste activated sludge[J]. BiochemicalEngineering Journal,2007,34(1):20-27
    [101] Kepp U., Machenbach I., Weisz N., et al. Enhanced stabilisation of sewage sludgethrough thermal hydrolysis: three years of experience with full scale plant[J]. WaterScience and Technology,2000,42(9):89-96
    [102] Chauzy J., Cretenot D., Bausseron A., et al. Anaerobic digestion enhanced bythermal hydrolysis: first reference BIOTHELYS at Saumur, France[J]. WaterPractice and Technology,2008,3(1):4
    [103]孙弘,李清彪,王远鹏等.预处理温度对剩余活性污泥生产挥发性脂肪酸的影响[J].现代化工,2008,28(S2):424-427
    [104] Vlyssides A., Karlis P. Thermal-alkaline solubilization of waste activated sludge asa pre-treatment stage for anaerobic digestion[J]. Bioresource Technology,2004,91(2):201-206
    [105] Takashima M., Kudoh Y., Tabata N. Complete anaerobic digestion of activatedsludge by combining membrane separation and alkaline heat post-treatment[J].Water Science and Technology,1996,34(5):477-481
    [106] Neyens E., Baeyens J., Creemers C. Alkaline thermal sludge hydrolysis[J]. Journalof Hazardous Materials,2003,97(1):295-314
    [107] Tanaka S., Kobayashi T., Kamiyama K. I., et al. Effects of thermochemicalpretreatment on the anaerobic digestion of waste activated sludge[J]. Water Scienceand Technology,1997,35(8):209-215
    [108] APHA A. WEF, Standard Methods for the Examination of Water and Wastewater20th Edition-4500-NO3-D nitrate Electrode Method[M]. American Public HealthAssociation: Washington, DC.1998
    [109]魏复盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].中国环境科学出版社,2002
    [110] Kim D. H., Kim S. H., Shin H. S. Sodium inhibition of fermentative hydrogenproduction[J]. International Journal of Hydrogen Energy,2009,34(8):3295-3304
    [111] Liu D., Liu D., Zeng R. J., et al. Hydrogen and methane production from householdsolid waste in the two-stage fermentation process[J]. Water Research,2006,40(11):2230-2236
    [112] Ince O., Ince B. K., Yenigun O. Determination of potential methane productioncapacity of a granular sludge from a pilot-scale upflow anaerobic sludge blanketreactor using a specific methanogenic activity test[J]. Journal of chemicaltechnology and Biotechnology,2001,76(6):573-578
    [113] Angelidaki I., Alves M., Bolzonella D., et al. Defining the biomethane potential(BMP) of solid organic wastes and energy crops: a proposed protocol for batchassays[J]. Water Science and Technology,2009,59(5):927-934
    [114]蔚静雯,王坤,陶涛等.剩余污泥水解酸化挥发酸产量最大化试验研究[J].可再生能源,2012,30(11):87-92
    [115] Zahller J., Bucher R., Ferguson J., et al. Performance and stability of two-stageanaerobic digestion[J]. Water Environment Research,2007,79(5):488-497
    [116] Demirel B., Yenigun O. Anaerobic acidogenesis of dairy wastewater: the effects ofvariations in hydraulic retention time with no pH control[J]. Journal of ChemicalTechnology and Biotechnology,2004,79(7):755-760
    [117] Demirer G. N., Othman M. Two-phase thermophilic acidification and mesophilicmethanogenesis anaerobic digestion of waste-activated sludge[J]. EnvironmentalEngineering Science,2008,25(9):1291-1300
    [118] Rahman M. A., Elefsiniotis P. The effect of upper mesophilic temperature andfeed-to-seed ratio on batch anaerobic digestion systems[J]. Journal ofEnvironmental Science and Health, Part A: Toxic/Hazardous Substances andEnvironmental Engineering,2010,45(9):1126-1133
    [119]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].科学出版社,2005
    [120] Bouzas A., Gabaldon C., Marzal P., et al. Fermentation of municipal primarysludge: effect of SRT and solids concentration on volatile fatty acid production[J].Environmental Technology,2002,23(8):863-875
    [121] Jiang S., Chen Y., Zhou Q., et al. Biological short-chain fatty acids (SCFAs)production from waste-activated sludge affected by surfactant[J]. Water Research,2007,41(14):3112-3120
    [122] Yuan Q., Sparling R., Oleszkiewicz J. Waste activated sludge fermentation: Effectof solids retention time and biomass concentration[J]. Water Research,2009,43(20):5180-5186
    [123]张濂,许志美,袁向前.化学反应工程原理[M].上海:华东理工大学出版社,2004
    [124]张希衡.废水厌氧生物处理工程[M].中国环境科学出版社,1996
    [125]李绍芬.反应工程[M].化学工业出版社,2000
    [126]苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究:[D]上海:同济大学图书馆,2006
    [127] Eastman J. A., Ferguson J. F. Solubilization of particulate organic carbon during theacid phase of anaerobic digestion[J]. Journal (Water Pollution Control Federation),1981,53(3):352-366
    [128] Moser-Engeler R., Kühni M., Bernhard C., et al. Fermentation of raw sludge on anindustrial scale and applications for elutriating its dissolved products andnon-sedimentable solids[J]. Water Research,1999,33(16):3503-3511
    [129]杨艳,冯晓西.碱性环境中臭氧破解污泥的效果研究[J].环境科学与管理,2007,32(8):101-103
    [130] Déléris S., Paul E., Audic J. M., et al. Effect of ozonation on activated sludgesolubilization and mineralization[J]. Ozone: Science and Engineering,2000,22(5):473-486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700