十字花科黑腐病菌RNA聚合酶ω亚基的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Omega(ω))亚基是细菌RNA聚合酶(RNA polymerase)最小的一个亚基,尽管它在细菌中广泛存在并且序列非常保守,但由于在许多细菌中编码ω亚基的基因突变后没有明显的表型变化,因此人们通常认为它是不重要的。到目前为止,在大多数细菌(包括动植物病原细菌)中ω亚基的功能还是未知的。
     十字花科黑腐病菌(Xanthomonas campestris pv.campestris,简称Xcc),是引起十字花科植物黑腐病的病原菌;它是研究病原细菌与植物之间复杂相互作用的模式菌之一。基因组注释结果表明,十字花科黑腐病菌8004菌株(Xcc 8004)基因组中存在一个编码ω亚基的基因rpoZ(ORF编号为XC0913基因)。为研究ω基的功能,本工作采用自杀质粒pK18mob突变方法,构建了该基因的非极性突变体NK0913。表型检测结果表明:(1)NK0913在丰富和基本培养基上的生长均比野生型菌株明显减慢;(2)NK0913在非寄主植物辣椒ECW-10R上不能产生HR反应而野生型菌株8004在该植物上能产生正常的HR反应,在寄主满身红萝卜上的致病力明显低于野生型菌株8004;(3)NK0913的胞外多糖产量、胞外酶(纤维素酶、蛋白质酶和淀粉酶)的活性、细胞运动能力比野生型菌株显著降低;(4)NK0913在LB培养基中表现为聚集生长而野生型菌株在该培养基中表现为分散生长。将带有完整rpoZ基因的质粒pLALR3导入ω亚基的突变体NK0913后能将该突变体的表型恢复到野生型水平。这些结果表明,ω亚基在Xcc的生长、致病、EPS合成、胞外酶产生、细胞运动、生物膜形成等过程中有重要作用。
     为了进一步了解ω亚基在上述生理过程中的具体作用,我们用β-葡糖醛酸酶(GUS)活性测定和RT-PCR的方法检测ω亚基与hrp基因的调控关系。GUS报告质粒结果显示,rpoZ基因的突变导致hrp基因簇中hrpB、C、F转录单元以及hrp调控基因hrpG和hrpX的表达明显下降,而RT-PCR结果显示,hrpB5、hpaP、hrcQ,hrpD6、hpaA、hpaB、hpal、hpa2和hrpW基因表达明显下降,但hrpF表达增高。根据这些结果,我们推测ω亚基可能是通过调控hrp基因的表达来影Xcc的致病性和HR反应的。
     我们还用RT-PCR的方法检测了ω亚基与鞭毛合成相关基因的调控关系。结果显示,rpoZ基因的突变后,鞭毛合成相关基因motA、fliD、fliE、fliL、基因的表达明显下降,表明ω亚基可能是通过调控这些基因的表达来影响Xcc的运动能力。
Omega(ω),the smallest subunit of bacterial RNA polymerase(RNAP),is encoded by rpoZ,and is wildely distributed and highly conserved in various bacteria species.Since few phenotypic alterations were obsurved in the rpoZ mutant,it is belived thatωis not important in bacteria.For this reason,up to date,the exact role ofωin bacteria including animal and plant bacterial pathogens is largely unknown.
     Xanthomonas campestris pv.campestris(here after Xcc)is the causal agent of the black rot disease of cruciferous plants,and is the model bacteria for studying the interaction between pathogen and its plant host.Genome sequencing and annotation showed that,in the genome of Xcc strain 8004 (Xcc8004),the gene rpoZ(ORF number XC0913)encodes theωsubunit of the Xcc RNAP.To investigte the function of the co subunit of Xcc RNAP,in this study,the nonpolar mutant of rpoZ gene,named NK0913,was constructed by homologous suicide plasmid pK18mob integration and the phenotypes of the mutant were analyed.The results showed that,(ⅰ)NK0913 shows a reduced growth rate in the rich medium NYG and the minimal medium MMX compare to the wild type strain 8004;(ⅱ)NK0913 can not induce a hypersensitive reaction(HR)in the nonhost plant pepper ECW-10R,and a significant reduced virulence in the host plant Chinese radish(Raphanus sativus L.var.radiculus Pers.);(ⅲ)NK0913 displyed a reduction in exopolysaccharides(EPS) production,extracellular enzyme(cellulose,protease and amylase)activity and cell motility;(ⅳ)although the wild type train does not form aggregates in LB medium,NK0913 grows in aggregated fashion in the medium.Introduction of the plasmid pLALR3 carrying rpoZ gene into NK0913 can restore all of the phenotypes of the mutant.,These results reveal that theωsubunit plays an important role in cell growth,pathogenesis,EPS production,extracellular enzyme activity and cell motility of Xcc.
     To investigate the exact role ofωsubunit,an RT-PCR and the GUS-promoter transcriptional fusion reporter analysis were performed to determine the regulatory relation between rpoZ gene and hrp genes.The result of GUS-promoter analysis showed that the expression of the hrp operons hrpB, hrpC and hrpF,and the two key hrp regulatory genes hrpG and hrpX is singnificantly reduced in the rpoZ mutant NK0913.The RT-PCR results showed that the expression of hrpB5、hpaP、hrcQ,hrpD6、hpaA、hpaB、hpa1、hpa2 and hrpW is reduced but the hrpF is inncreased in NK0913.These results suggested thatωsubunit is involved in virulence and HR through regulating the expression of hrp genes.
     We further used RT-PCR analysis to investigate the regulatory relation between rpoZ and the genes involved in flagellum synthesis.The results showed that the expression of motA,fliD,fliE and fliL is reduced in the rpoZ mutant NK0913,indicating thatωsubunit is involved in cell motility through regulating the expression of these flagellum synthesis-related genes.
引文
[1]Gopalan,S.,W.Wei,and S.Y.He.hrp gene-dependent induction of hin1:a plant gene activated rapidly by both harpins and the avrPto gene-mediated signal.Plant J.1996,10:591-600.
    [2]Keen NT Gene-for-gene complementarity in plant-pathogen interactions.Annu.Rev.Genet.1990,24:447-63.
    [3]Henderson IR,Navarro-Garcia F,Desvaux M et al.Type V protein secretion pathway:the autotransporter story.MMBR 2004,68:692-744.
    [4]Kobe B,Deisenhofer J Crystal structure of porcine ribonuclease inhibitor,a protein with leucine-rich repeats.Nature 1993,366:751-756.
    [5]Hayward,A.C.,In:Swings JG&Civerolo EL(ed),Xanthomonas.Chapman &Hall.London.1993,pp.51-54.
    [6]王金生.植物病原细菌学.2000,北京:中国农业出版社.
    [7]Williams PH.Black rot:a continuing threat to world crucifers.Plant Dis.1980,64:736-742.
    [8]Vicente JG,Conway J,Roberts SJ.et.al.Identification and origin of Xanthomonas campestris pv.campestris races and related pathovars.Phytopathology.2001,91:492-499.
    [9]Chan,J.W.,and P.H.Goodwin.The molecular genetics of virulence of Xanthomonas campestris.Biotechnol Adv.1999,17:489-508.
    [10]Qian W,Jia Y,Ren SX.et.al.Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv.campestris.Genome Res.2005,15:757-767.
    [11]Jansson PE,Kenne L,Lindberg B.Structure of extracellular polysaccharide from Xanthomonas campestris.Carbohydr Res.1975,45:275-282.
    [12]李兴存,张忠智,王洪君,陈进富,李术元.黄原胶的性能与应用.日用化学工业.2002,32:47-50
    [13]Alfano JR,Collmer A.Bacterial Pathogens in Plants:Life up against the Wall.Plant Cell.1996,8:1683-1698.
    [14]Yun MH,Torres PS,El Oirdi M,Rigano LA.et.al.Xanthan induces plant susceptibility by suppressing callose deposition.Plant Physiol.2006,141:178-87.
    [15]Steinmann,D.,R.Koplin,A.Puhler,and K.Niehaus.Xanthomonas campestris pv.campestris lpsI and lpsJ genes encoding putative proteins with sequence similarity to the alpha- and beta-subunits of 3-oxoacid CoA-transferases are involved in LPS biosynthesis.Arch Microbiol.1997,168:441-447.
    [16]Dow JM,Osbourn AE,Wilson TJ.et.al.A locus determining pathogenicity of Xanthomonas campestris is involved in lipopolysaccharide biosynthesis.Mol Plant Microbe Interact.1995,8:768-777.
    [17]唐纪良.甘蓝黑腐病黄单胞菌胞外蛋白酶的致病作用.广西农学院学报.1992,11:81-84
    [18]Russel M.Macromolecular assembly and secretion across the bacterial cell envelope:type Ⅱprotein secretion systems.J Mol Biol.1998,279:485-499.
    [19]Collmer,A.,and N.T.Keen.The role of pectic enzymes in plant pathogenesis.Annu.Rev.Phytopathol.1986,24:383-409
    [20]Dangl JL,Dietrich RA and Richberg MH.Death don't have no mercy:cell death programs in plant-microbe interactions.Plant Cell.1996,8:1793-1807.
    [21]Klement Z.Hypersensitivity.In Mount M.S.and Lacy,G.H.(eds),Phytopathogenic Prokaryotes.Vol.2.Academic Press,New York,1982,pp149-177.
    [22]Bogdanove AJ,Beer SV,Bonas U,Boucher CA,Collmer A,Coplin DL,Cornelis GR,HUange HC,Hutcheson SW,Panopoulos NJ,Van Gijsegem F.Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria.Microbiology.1996,20:681-683.
    [23]Burgess,R.R.Separation and characterization of the subunits of ribonucleic acid polymerase.J.Biol.Chem.1969,244:6168-6176.
    [24]Gross,C.A.et al.Bacterial sigma factors.In Transcriptional Regulation(McKnight,S.L.and Yamamoto,K.R.,eds),1992,pp.129-176,Cold Spring Harbor Laboratory Press.
    [25]Weiss,S.B.and Gladstone,L.A mammalian system for the incorporation of cytidine triphosphate into ribonucleic acid.J.Am.Chem.Soc.1959,81:4118-4119.
    [26]Ochoa,S.et al.Deoxyribonucleic acid-dependent incorporation of nucleotides from nucleoside triphosphates into ribonucleic acid.Proc.Natl.Acad.Sci.U.S.A.1961,47:670-679.
    [27]Furth,J.J.et al.The directing role of DNA in RNA synthesis.Biochem.Biophys.Res.Commun.1961,4:362-367.
    [28]Weiss,S.B.and Nakamoto,T.Net synthesis of ribonucleic acid with a microbial enzyme requiring deoxyribonucleic acid and four ribonucleoside triphosphates.J.Biol.Chem.1961,236:18-20.
    [29] Hurwitz, J. et al. The enzymic incorporation of ribonucleotides into polyribonucleotides and the effect of DNA. Biochem. Biophys. Res. Commun. 1960, 3:15-19.
    [30] Stevens, A. Incorporation of the adenine ribonucleotide into RNA by cell fractions from E. coli B. Biochem. Biophys. Res. Commun. 1960,3:92-96.
    [31] Stevens, A. Net formation of polyribonucleotides with base compositions analogous to deoxyribonucleic acid. J. Biol. Chem. 1961, 236: 43-45
    [32] Burma, D.P. et al. Further studies on deoxyribonucleic aciddependent enzymatic synthesis of ribonucleic acid. Proc. Natl. Acad. Sci. U. S. A. 1961, 47: 749-752.
    [33] Huang, R.C. et al. Enzymatic synthesis of RNA. Biochem. Biophys. Res. Commun. 1960, 3: 689-694.
    [34] Burgess, R.R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J. Biol. Chem. 1969, 244: 6160-6167.
    [35] Nusslein, C. and Heyden, B. Chromatography of rNA polymerase from Escherichia coli on single stranded DNA-agarose columns. Biochem. Biophys. Res. Commun. 1972, 47: 282-289.
    [36] Berg, D. et al. Purification of two forms of Escherichia coli RNA polymerase and of sigma component. Methods Enzymol. 1971, 21: 506-519.
    
    [37] Burgess, R.R. RNA polymerase. Annu. Rev. Biochem. 1971,40: 711-740.
    [38] Chamberlin, M.J. The selectivity of transcription. Annu. Rev. Biochem. 1974,43: 721-775.
    [39] Goldberger, R.F. et al. Regulation of gene expression in prokaryotic organisms. Adv. Genet. 1976, 18: 1-67.
    
    [40] Gros, F. Control of gene expression in prokaryotic systems. FEBS Lett. 40 (Suppl.), 1974,S19-S27
    [41] Hinkle, D.C. and Chamberlin, M.J. Studies of the binding of Escherichia coli RNA polymerase to DNA. I. The role of sigma subunit in site selection. J. Mol. Biol. 1972, 70: 157-185.
    [42] Ishihama, A. and Fukuda, R. Autogenous and posttranscriptional regulation of RNA polymerase synthesis. Mol. Cell. Biochem. 1980, 31: 177-196.
    [43] Lowe, P.A. et al. Purification and properties of the sigma subunit of Escherichia coli DNA-dependent RNA polymerase. Biochemistry . 1979, 18: 1344-1352.
    
    [44] Travers, A. On the regulation of RNA synthesis in Escherichia coli. Basic Life Sci. 1973, 1: 43-52.
    [45] Travers, A. RNA polymerase-promoter interactions: some general principles. Cell. 1974, 3: 97-104.
    [46] Yura, T. and Ishihama, A. Genetics of bacterial RNA polymerases. Annu. Rev. Genet. 1979, 13: 59-97.
    [47] Duffy, J.J. and Geiduschek, E.P. RNA polymerase from phage SP01-infected and uninfected Bacillus subtilis. J. Biol. Chem. 1975, 250: 4530-4541.
    [48] Heil, A. and Zillig, W. Reconstitution of bacterial DNAdependent RNA-polymerase from isolated subunits as a tool for the elucidation of the role of the subunits in transcription. FEBS Lett. 1970, 11: 165-168.
    [49] Gentry, D.R. and Burgess, R.R. Cross-linking of Escherichia coli RNA polymerase subunits: identification of betaO as the binding site of omega. Biochemistry .1993, 32: 11224-11227.
    [50] Dove, S.L. and Hochschild, A. Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. 1998,12: 745-754.
    [51] Severinov, K. RNA polymerase structure-function: insights into points of transcriptional regulation. Curr. Opin. Microbiol. 2000, 3:118-125.
    [52] Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3A ° resolution. Cell. 1999,98: 811-824.
    [53] Minakhin, L. et al. Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc. Natl. Acad. Sci. U. S. A. 2001, 98: 892-897.
    [54] Nouraini, S. et al. Rpo26p, a subunit common to yeast RNA polymerases, is essential for the assembly of RNA polymerases I and II and for the stability of the largest subunits of these enzymes. Mol. Cell. Biol. 1996, 16, 5985-5996
    [55] Gentry, D.R. and Burgess, R.R. The cloning and sequence of the gene encoding the omega subunit of Escherichia coli RNA polymerase. Gene .1986, 48: 33-40.
    [56] Gentry, D.R. and Burgess, R.R. rpoZ, encoding the omega subunit of Escherichia coli RNA polymerase, is in the same operon as spoT. J. Bacteriol. 1989,171: 1271-1277.
    [57] An, G. et al. Cloning the spoT gene of Escherichia coli: identification of the spoT gene product. J. Bacteriol. 1979, 137: 1100-1110.
    [58] Sarubbi, E. et al. Characterization of the spoT gene of Escherichia coli. J. Biol. Chem. 1989, 264: 15074-15082.
    
    [59] Igarashi, K. et al. Promoter selectivity of Escherichia coli RNA polymerase: omega factor is responsible for the ppGpp sensitivity. Nucleic Acids Res. 1989,17: 8755-8765.
    [60] Gentry, D. et al. The omega subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. J. Bacteriol. 1991,173: 3901-3903.
    [61] Vrentas, C.E. et al. Response of RNA polymerase to ppGpp: requirement for the omega subunit and relief of this requirement by DksA. Genes Dev. 2005,19:2378-2387.
    [62] Paul, B J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell. 2004,118: 311-322.
    [63] Paul, B.J. et al. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl. Acad. Sci. U. S. A. 2005,102: 7823-7828.
    [64] Ghosh, P. et al. Inter-subunit recognition and manifestation of segmental mobility in Escherichia coli RNA polymerase: a case study with omega-betaO interaction. Biophys. Chem. 2003, 103: 223-237.
    [65] Bibb, M.J. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 2005, 8: 208-215.
    [66] Mukherjee, K. and Chatterji, D. Studies on the omega subunit of Escherichia coli RNA polymerase - its role in the recovery of denatured enzyme activity. Eur. J. Biochem. 1997, 247: 884-889.
    [67] Mukherjee, K. et al. GroEL is involved in activation of Escherichia coli RNA polymerase devoid of the omega subunit in vivo. Eur. J. Biochem. 1999, 266:228-235.
    [68] Ishihama, A. et al. A novel adenosine triphosphatase isolated from RNA polymerase preparations of Escherichia coli. II. Enzymatic properties and molecular structure. J. Biochem. (Tokyo). 1976, 79:927-937.
    [69] Ishihama, A. et al. A novel adenosine triphosphatase isolated from RNA polymerase preparations of Escherichia coli. I. Copurification and separation. J. Biochem. (Tokyo). 1976, 79:917-925.
    [70] Houry, W.A. et al. Identification of in vivo substrates of the chaperonin GroEL. Nature .1999, 02:147-154.
    [71] Ghosh, P. et al. Escherichia coli RNA polymerase subunit omega and its N-terminal domain bind full-length betaO to facilitate incorporation into the alpha2beta subassembly. Eur. J. Biochem. 2001, 68:4621-4627.
    [72] Taketo, M. and Ishihama, A. Biosynthesis of RNA polymerase in Escherichia coli. IV. Accumulation of intermediates in mutants defective in the subunit assembly. J. Mol. Biol. 1976, 102: 297-310.
    [73] Ito, K. et al. Biosynthesis of RNA polymerase in Escherichia coli. III. Identification of intermediates in the assembly of RNA polymerase.J. Mol. Biol. 1975, 96: 257-271.
    [74] Ishihama, A. Subunit of assembly of Escherichia coli RNA polymerase. Adv. Biophys. 1981, 14:1-35.
    [75] Saitoh, T. and Ishihama, A. Subunits of RNA polymerase in function and structure. VI. Sequence of the assembly in vitro of Escherichia coli RNA polymerase. J. Mol. Biol. 1976,104:621-635.
    [76] Ghosh, P. et al. Inter-subunit recognition and manifestation of segmental mobility in Escherichia coli RNA polymerase: a case study with omega-betaO interaction. Biophys. Chem. 2003, 103:223-237.
    [77] Richard, C.L. et al. RNA polymerase subunit requirements for activation by the enhancer-binding protein Rhodobacter capsulatus NtrC. J. Biol. Chem. 2003, 278:31701-31708.
    [78] Periago, P.M. et al. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 2002, 68:3486-3495.
    [79] Mathew, R. et al. Deletion of the gene rpoZ, encoding the omega subunit of RNA polymerase, in Mycobacterium smegmatis results in fragmentation of the betaO subunit in the enzyme assembly. J.Bacteriol. 2005,187:6565-6570.
    [80] Kojima, I. et al. The rpoZ gene, encoding the RNA polymerase omega subunit, is required for antibiotic production and morphological differentiation in Streptomyces kasugaensis. J. Bacteriol. 2002, 184:6417-6423.
    [81] Mathew, R. et al. Deletion of the gene rpoZ, encoding the v subunit of RNA polymerase, results in pleiotropic surface related phenotypes in Mycobacterium smegmatis. Microbiol. 2006, 152:1741-1750.
    [82] Magill, C.P. et al. Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB. J.Biol. Chem. 2001, 276: 46693-46696.
    [83] Ishiguro, A. et al. The Rpb6 subunit of fission yeast RNA polymerase II is a contact target of the transcription elongation factor TFIIS. Mol. Cell. Biol. 2000, 20:1263-1270.
    [84] Tan, Q. et al. Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases Ⅰ, Ⅱ, and Ⅲ. Mol.Cell. Biol. 2003,23:3329-3338.
    
    [85] Wei Qian et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv.Campestris.Genome Res.published online May 17.2005
    [86]Daniela Buttner,Laurent Noel,Frank Thieme,Ulla Bonas.Genomic approaches in Xanthomonas campestris pv.vesicatoria allow fishing for virulence genes.Journal of Biotechnology.2003,106:203-214.
    [87]Bhattacharyya,A.,Stilwagen,S.,Ivanova,N.,D'Souza,M.,Bernal,A.,Lykidis,A.,Kapatral,V.,Anderson,I.,Larsen,N.,Los,T.,et al.Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains.Proc.Natl.Acad.Sci.2002,99:12403-12408.
    [88]da Silva,A.C.,Ferro,J.A.,Reinach,F.C.,Farah,C.S.,Furlan,L.R.,Quaggio,R.B.,Monteiro-Vitorello,C.B.,Van Sluys,M.A.,Almeida,N.F.,Alves,L.M.,et al.Comparison of the genomes of two Xanthomonas pathogens with differing host specificities.Nature.2002,417:459-463.
    [89]Swift S,Lynch MJ,Fish L.et.al.Quorum Sensing-Dependent Regulation and Blockade of Exoprotease Production in Aeromonas hydrophila.Infect Immun.1999,67:5192-5199.
    [90]庄新妹,王树荣,安宏等.纤维素低浓度酸水解制取液体燃料的试验研究.浙江大学学报.2006,40:997-1001.
    [91]崔莉,范雪荣,钱国坻等.不同酶种及助剂对酶活影响的研究。印染助剂.2003,20:39-41.
    [92]赵玉锦,王台.水稻种子萌发过程中α-淀粉酶与萌发速率关系的分析.植物学通报.2001,18:226-230.
    [93]Lai HC,Soo PC,Wei JR.et.al.The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids.J Bacteriol.2005,187:3407-3414.
    [94]王梅竹,王和.细菌鞭毛镀银染色法的改良.贵州医药.2006,30:256-257.
    [95]Friedman,L.& Kolter,R.Genes involved in matrix formation in Pseudomonas aeruginosa PA 14biofilms.Mol Microbiol.2004,51:675-690.
    [96]Sambrook,J.,Fritsch,E.F.,and Maniatis,T.Molecular cloning:a laboratory manual,2nd ed.Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.1989.
    [97]Chen L,Segal DM,Mash DC.Semi-quantitative reverse-transcriptase polymerase chain reaction:an approach for the measurement of target gene expression in human brain.Brain Res Brain Res Protoc.1999,4:132-139.
    [98] Schafer, A., Tauch, A., Jager, W. et. al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. 1994, 145: 69-73.
    [99] Windgassen, M., Urban, A., and Jaeger, K-E. Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2000,193: 201-205.
    [100] Daniels MJ, Barber CE, Turner PC. et. al. Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J. 1984,3:3323-3328.
    [101] Bonas U., Schulte R., Fenselan S.et al. Isolation of a gene cluster from Xanthomonas campestris pv.vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol.Plant-Microbe Interact. 1991, 4: 81-89.
    [102] Ponting CP, Schultz J, Milpetz F. et. al. SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res. 1999, 27: 229-232.
    [103] McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32: W20-W25.
    [104] Apweiler R, Attwood TK, Bairoch A. et. al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites.Nucleic Acids Res. 2001,29:37-40.
    [105] Henderson, R. F., Benson, J. M., Hahn, F. F., Hobbs, C. H., Jones, R. K., Mauderly, J. L., McClellan, R. O., and Pickrell, J. A. New approaches for the evaluation of pulmonary toxicity: Bronchoalveolar lavage fluid analysis. Fundam. Appl. Toxicol. 1985, 5:451-458.
    
    [106] Tans-Kersten J, Huang H, Allen C. Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol. 2001,183: 3597-605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700