大口黑鲈生长发育分析及微卫星标记的亲权鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大口黑鲈(Micropterus salmoides)俗名加州鲈,自上世纪70年代由美国引入我国台湾,80年代又从台湾引入广东。因其生长快,肉质鲜美等优点,已成为我国重要的淡水养殖品种,现已在全国各地都有养殖。经过20多年的养殖,因缺乏定向选育,加上繁殖生产过程中不注重亲本所需遵循的操作规程,已使大口黑鲈出现种质退化现象。为保证大口黑鲈养殖业的可持续发展,有必要展开大口黑鲈良种选育。目前已运用群体选育和家系选育展开大口黑鲈良种选育工作。为保证选育工作能高效进行,本研究对大口黑鲈早期生长发育和微卫星DNA标记在选育后代亲权鉴定中应用进行了研究,该研究可为大口黑鲈选择育种和日常生产管理提供可靠的理论依据,具体研究内容如下:
     1、大口黑鲈早期生长规律研究
     为了解大口黑鲈早期生长发育规律,选用8个全同胞家系,每月从每个家系随机选取30~40尾对其体重和体长进行测量。运用Gompertz、Logistic和Von Bertalanfly 3种非线性模型对大口黑鲈体重和体长的生长进行了曲线拟合分析,还利用幂函数研究大口黑鲈体重和体长的生长关系。结果显示,3种非线性模型均能较好的模拟大口黑鲈体重和体长的生长,但Logistic模型拟合效果更佳;进一步分析,体重和体长的最佳拟合参数,发现体重和体长的拐点月龄分别为5.77月龄和4.95月龄,拐点体重和拐点体长分别为146.35g,13.75cm。幂指数亦能很好的拟合大口黑鲈体重和体长的相互关系,其方程为W=0.076L~(2.650)(R~2=0.998)。研究结果为及时了解大口黑鲈的早期生长规律和自然生长条件下大口黑鲈的饲养管理提供了参考。
     2、大口黑鲈形态性状对体重的影响效果分析
     对大口黑鲈全长、体长、体高、体宽、眼间距、头长、吻长、尾柄长、尾柄高和体重共10个性状进行测定,运用相关分析、通径分析和多元回归分析,剔除与体长存在显著共线性的全长、体高、头长,尾柄高及回归方程中不显著的吻长和尾柄长。计算以体宽、体长、眼间距3个形态性状为自变量,体重为依变量的相关系数、通径系数、决定系数及相关指数,定量分析大口黑鲈形态性状对体重的影响效果。结果显示:3个形态性状与体重的相关系数(0.942,0.979,0.928)均达到极显著水平(P<0.01);通径分析中,3个形态性状对体重的通径系数亦达到极显著水平(P<0.01),它们是直接影响体重的重要指标,其中体宽(P_4=0.599)对体重的直接影响最大。所选形态性状与体重的相关指数R~2=0.980,说明所选性状是影响体重的主要形态性状。应用逐步多元回归分析建立了以体重为依变量(Y)、体宽(X_4)、体长(X_2)和眼间距(X_5)为自变量的回归方程:lgY=1.065+0.765 lgX_2+1.441 lgX_4+0.543 lgX_5。以上形态性状对体重影响效果相关数据的获得为大口黑鲈选育测量指标的确定提供了理论依据。
     3、微卫星DNA标记在大口黑鲈亲权鉴定中的应用
     为了解微卫星DNA标记在大口黑鲈亲权鉴定中的可行性,为大口黑鲈家系选育的系谱精确鉴定和选育效果评价提供依据,选择12个多态信息含量较高的微卫星DNA位点,以人工选育建立大口黑鲈(Micropterus salmoides)的5个全同胞家系(总共102个个体)为试验材料,采用Cervus3.0进行亲权分析,并根据家系内个体间的遗传距离进行UPGMA聚类分析。结果显示,所选的12个微卫星DNA多态位点在102个子代中的平均等位基因数A为3,平均观测杂合度Ho为0.594 8,平均期望杂合度He为0.545 7,平均多态性息含量PIC为0.475 9。Cervus3.0亲权分析表明,置信度95%,使用12个和10个位点,模拟和实际分析的判别成功率分别为96%和98%,87%和91%;而置信度99%,分别为78%和92%、64%和86%;在置信度99%和95%时,判别准确率皆在90%以上。从12个位点中挑选10个多态性息含量最高的微卫星DNA位点即可将102个子代完全准确的聚为5个群体。亲权分析和聚类分析结果一致。所选用的12个微卫星位点可用于大口黑鲈亲权鉴定研究,其判定成功率和准确率高,结果可靠。
     4、大口黑鲈群体选育效果初步研究
     2005年从四个不同地区选择体型标准、健康、体重均大于0.65 kg的大口黑鲈各300尾建立群体选育基础群,混合后均匀的分到不同的两个选育养殖场,雌雄各半。选择率为5%~12%。至2008年,群体选育系已产生第三代。为及时了解大口黑鲈群体选育后代的生长情况,本研究以2组群体选育大口黑鲈为选育组,未选育组作为对照组。每组随机测量50~60尾,测量了112、144、168和207日龄的体重、全长、体长、头长、体高、尾柄长和尾柄高共7个性状,并进行多重比较。结果显示,除112日龄时,选育组体重介于对照组之间,在144日龄、168日龄和207日龄时,大口黑鲈选育组体重极显著高于对照组;选育组全长、体长和尾柄长亦高于对照组,头长、体高和尾柄高在168日龄时极显著高于对照组,在207日龄时,差异不显著,在112日龄和144日龄时,呈现不规律的显著性差异水平。结果表明,以增加大口黑鲈体重为目标的群体选育是可行的。
The largemouth bass (Micropterus salmoides) has been introduced into Taiwan from the United States since 1970s, and then introduced to Guang dong Provience in 1980s. Now the largemouth bass has been an important aquaculture species in China. Because of its fast-growing, good quality, it was cultured throughout in China. But it lacked directional selection and did not pay attention to the rules which must be followed in the production process in 20-year breeding. It had led to emergence of germplasm degradation in largemouth bass breeding. To ensure the sustainable development of the largemouth bass, the selected breeding program must be carried out in time. In the present study, we focused on the growth and development of largemouth bass in early stages and microsatelliate marker in parentage determination, in order to make the work can be highly effective. The specific studies are as follows:
     1、The growth and development of largemouth bass in early stages
     In order to study the growth and development rules of largemouth bass, 8 full-sib families of the largemouth bass were selected , body weight and standard length of randomly sampled 30 to 40 individuals from each family were measured per month (from 1 month to 7 months). The growth data were analyzed and fitted with three kinds of nonlinear models (Gompertz, Logistic, Von Bertalanffy). Further, the power growth model was performed to find the relationship between body weight and standard length. Results indicate that the growth curves were appropriately fitted with three models, but the Logistic had the best goodness-of-fit of growth curve. Analyzing the fitting parameters of the Logistic, we found the inflection point month of body weight and standard length were 5.77 and 4.95 respectively, the inflection point of weight and standard length were 146.35g and 13.75cm respectively. The power growth model also had a better effection on fitting the relationship between body weight and standard length W = 0.076 L~(2.650) (R~2 = 0.998) . This research will help us to kown the early growth and development rules of largemouth bass and supply guideline for feeding and selected breeding.
     2、Mathematical analysis of effects of morphometric attribute on body weight
     The effects of morphometric attributes on body weight of Largemouth bass were analyzed. Data of total length (X_1),standard length(X_2),body depth (X_3),body width (X_4),interorbital distance (X_5),head length (X_6),snout length (X_7),caudal peduncle length (X_8),caudal peduncle depth (X_9) and body weight ( Y )were collected from culture pond in this study. Correlation analysis, path analysis and multiple regressions were used. The correlation coefficients among the morphometric attributes were calculated, then the total length、body depth、head length and caudal peduncle depth were eliminated from the variable data, because all of them were co-linear with standard length. Snout length and caudal peduncle length were also kicked out from the variable data because of no significance in multiple regression equation. The three morphometric attributes ( X_2, X_4, X_5) were used as independent variables, and body weight (Y) was used as a dependent variable for path analysis. Path coefficients (P_(y.x)) , determination coefficients (d_(y.x)) and correlation index (R~2) were calculated in path analysis. The results showed that the three independent variables significantly effect body weight with correlation coefficient 0.942 , 0.979 , 0.928 (p<0.01 ) respectively. The path coefficients (P_(y.x) ) of the body width, standard length, Interorbital distance to the body weight have all reached a level of significance. These attributes were very indicative of determining the body weight, among them the body width weighted the most (P_4 = 0.599) to the body weight, it is a key effective factor, standard length and interorbital distance weighted the second and the third (P_2 = 0.231, P_5 = 0.189 ). Judging from the result of high correlation index ( R~2 = 0.980 ), the main variables (X_2, X_4, X_5) have been selected. We have obtained the multiple regression equation to estimate the body weight as lgY = 1.065 + 0.765 lgX_2+1.441 lgX_4 +0.543 lgX_5 This paper provides theoretical evidence and perfect measure target for selective breeding of Largemouth bass.
     3、microsatellite marker in parentage determination
     This study was initiated to assess the feasibility of parentage determination by microsatellites in order to giving help for family accuracy determination and estimating the results of selective breeding in aquaculture populations for largemouth bass (Micropterus salmoides). The genotypes of 12 the most polymorphic microsatellites loci were detected in 5 full-sib families of selected largemouth bass (Micropterus salmoides) and the parentage determination was done by using the software package Cervus3.0. the UPGMA dendrogram was constructed according to genetic distance among 102 individual of 5 families.The Result indicated that: The basic genetic parameters of the 12 microsatellite polymorphic loci in offspring population were: the average number of alleles A = 3, Mean observed heterozygosity Ho = 0.5948, Mean expected heterozygosity He = 0.5457, Mean polymorphic information content PIC = 0.4759. Simulations based on allele frequency data from the population demonstrated that 10 loci were required to assign 64% and 86% of offspring with 99% confidence, 87% and 91% of offspring with 95% confidence in simulation and actual simulation analysis, respectively. When marker data from 12 loci were used, the assignment rate of offspring to their true parental couple (including 7 males and 7 females) increased to 78% and 92% with 99% confidence, 96% and 98% with 95% confidence in simulation and actual simulation analysis, respectively. The power of microsatellite loci was not only estimated by the assignment success rate, but also judged by assignment accuracy rate. When 10 microsatellites were used, the assignment accuracy rate was more than 90%; when all loci were used, the assignment accuracy rate was nearly to 100%. The UPGMA tree demonstrated that when only 10 most polymorphic loci were selected, the results were consistent with parentage determination and the records of the 5 families. The results of this study revealed that the microsatellite markers could be used in the parentage determination of largemouth bass with high assignment rate and accuracy.
     4、the preliminary study about the results of mass selection
     In 2005, 300 largemouth bass with body weight above 0.65 kg were selected from 4 different regions as broodstocks respectively which were divided into 2 hatcheries (sire : dam = 1:1), selected rate was 5%~12%. Till to 2008, three generations had been produced. In order to kown growth of offspring in mass selection in time, two mass selection groups were chosed as selected groups and unselected group as control group. We randomly sampled 50~60 individuals from each group at the age of 122, 144, 168 and 207days respectively. The body weight, total length, standard length, head length, body height, caudal peduncle length and caudal peduncle depth were measured. Then the means were compared among selected groups and control group using LSD. Results indicated that the body weight of selected groups were above that of control group with significant except at the age of 112days; The means of total length, standard length and caudal peduncle length were also above those of control group; The means of head length, body height and caudal peduncle depth of selected were high than those of control group with significant at the age of 168 days, but there were no significant difference among selected groups and control group at the age of 207 days, the significant difference and no significant difference were not always the same when at another two stages; The results suggusted that mass selection applied in largemouth was possible.
引文
[1]Bailey R M,Hubbs C L.The black basses(Micropterus) of Florida,with description of a new species[J].University of Michigan Museum of Zoology Occasional Papers.1949:1-40.
    [2]Maceina M J,Murphy B R.Stocking Florida largemouth bass outside its native range[J].Transactions of the American Fisheries Society.1992:686-691.
    [3]樊佳佳,白俊杰,叶星,等.我国大口黑鲈的亚种分类地位探讨[J].大连水产学院学报,2009,24(1):83-86.
    [4]李胜杰,王广军.人口黑鲈养殖技术[J].海洋与渔业,2008,(9):33-36.
    [5]贾长春.加州鲈人工养殖技术的初步研究[J].水产养殖,1993,(2):15-20.
    [6]Beamish C A,Booth A J,Deacon N.Age,growth and reproductive of largemouth bass,Micropterus salmolides,in lake Manyame,Zimbabwe[J].African Zoology,2005,40(1 ):63-69.
    [7]吴庆龙,郑柏年.加州鲈鱼仔幼鱼口器结构与食性的研究[J].生态学报,1993,13(3):283-286.
    [8]陈建酬,苏润荣,吕贻民.加州鲈人工繁殖技术[J].水产科学,2001,20(4):21-23.
    [9]盛志廉,陈瑶生.数量遗传学[M].科学出版社.1999.42-108.
    [10]楼允东.鱼类育种学[M].中国农业出版社.2001.1-106.
    [11]刘小林,相建海.重要经济贝类选择育种及遗传力研究进展[J].海洋科学,2003,27(6):15-20.
    [12]吴仲庆.水产生物遗传育种学[M].厦门大学出版社.1991.
    [13]Okamoto N,Tayaman T,Kawanobe M.,et al.Resistance of a rainbow trout strain to infectious Pancreatic necrosis[J].Aquaculture,1993,117(1-2):71-76.
    [14]Kause A,Ritola O,Paananen T,et al.Coupling body weight and its composition:a quantitative genetic analysis in rainbow trout[J].Aquaculture,2002,211(1-4):65-79.
    [15]Vandeputte M,Quillet E,Chevassus B.Early development and survival in brown trout:indirect effects of selection for growth rate and estimation of genetic parameters[J].Aquaculture,2002,204(3-4):435-445
    [16]Oeverli O,Pottinger T G,Carrick T R,et al.Differences in behavior between rainbrow trout selected for high-and low-stress responsiveness.Journal of experimental biology[J],2002,205(3):391-395.
    [17]Cheryl D.Quinton et ai.Development of an Atlantic salmon(Salmo salar) genetic improvement program:Genetic parameters of harvest body weight and carcass quality traits estimated with animal models[J].Aquaculture,2005,247(1-4):211-217.
    [18]刘明华,沈俊宝,白庆利,等.选育中的高寒鲤[J].中国水产科学,1994,1(1):10-19.
    [19]Tanck M W T,ClaesT,Bovenhuis H,et al.Exploring the genetic background of stredd using isogenic progenies of common carp selected for high or low stress-related cortisol response[J].Aquaculture,2002,204(3-4):419-434.
    [20]朱健,王建新,龚永生.建鲤一代选育效果的分析[J].浙江海洋学院学报(自然科学版),2002,21(1):30-33.
    [21]Li S F,Wang C H..Genetic diversity and selective breeding of red common carps in china[J].INGA,2001,24(3-4):56-61.
    [22]李思发,蔡完其.团头鲂双向选育效应研究[J].水产学报,2000,24(3):201-205.
    [23]张友良,张飞明.团头鲂“浦江1号”选育技术[J].中国水产,2004,1:66-67.
    [24]袁丁,马志宏,胡红霞,等.彩虹鲷亲鱼选育技术的初步研究[J].中国水产,2005,4:81-82.
    [25]Hulata G.Genetic manipulations in aquaculture:a review of stock improvement by classical and modern technologies[J].Genetica,2001,111:155-173.
    [26]Bolivar R.B,Newkrik G F.Response to within family selection for body weight in Nile tilapia (Oreochromis niloticus) using a single-trait animal model[J].Aquacuiture,2002,204(3-4):371-381.
    [27]Watanabe W O,Losordo T M,Fitzsimmons K,et al.Tilapia Production Systems in the Americas:Technological Advances,Trends,and Challenges[J].Review in Fisheries Science 2002,10(3-4):465-498.
    [28]Harrison C K,Komen H,Rezk M A,etal.Heritability estimates and response to selection for growth of Nile tilapia(Oreochromis niloticus) in low-input earthen ponds[J].Aquaculture,2006,261(2):479-486.
    [29]Sbordoni V,Matthaeis E D,Cobdli-Sbodoni M,et al.Bottleneck effects and the depression of genetic variability in hatchery stocks of Penaeusjaponicus[J].Aquaculture.1986,57(1-4):239-251.
    [30]Nigel P P,Peter J C,Sandra J K,et al.Comparative growth of selected and non-selected Kuruma shrimp Penaeus(Marsupenaeus)japonicus in commercial farm ponds;implications for broodstock production[J],Aquaculture,2004,231(1-4):73-82
    [31]Keys S J,Crocos P J,Burridge C Y,et al.Comparative growth and survival of inbred and outbred Penaeus(marsupenaeus)japonicus,reared under controlled environment conditions:indications of inbreeding depression[J].Aquaculture,2004,241(1-4):151-168.
    [32]Sunden S L F,Davis S K.Evaluation of genetic variation in a domestic population of Penaeus vannamei(Boone):a comparison with three natural populations[J].Aquaclture.1991,97(2-3):131-142.
    [33]Goyard E,Patrois J,Peignon J M,et al.Selection for better growth of penaeus stylirosdtris in Tahiti and New Caledonia[J].Aquaculture,2002,204(3-4):461-468.
    [34]Argue B J,Arce S M,Lotz J M,et al.Selective breeding of Pacific white shrimp(Litopenaeus Vannamei) for growth and resistance to Taura Syndrome Virus[J].Aquaculture,2002,204(3-4):447-460.
    [35]Gitterle T,Rye M,Salte R,et al.Genetic(co) variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions[J].Aquaculture,2005,243(1-4):83-92.
    [36]Hadley L E.,Newkirk G F,Waugh D W,et al.A report on the quantitative genetics of growth and survivorship of the American oyster[M].Crassostrea virginica under laboratory conditions.10th Eur.Symp.Mar.Bio.,Universa Press,Wetteren,Belgium,1975:221-228.
    [37]Hershberger W K,Perdue J A,Beattie J H.Genetic selection and systematic breeding in pacific oyster culture[J].Aquaculture,1984,39(1-4):237-245.
    [38]Evans S,Langdon C.Effects of genotype x environment interactions on the selection of broadly adapted Pacific oysters(Crassostrea gigas)[J].Aquaculture,2006,261(2):522-534.
    [39]Lucas T,Michael M,Degnan S M,et al.Heritability estimates for growth in the tropical abalone Haliotis asinine using microsatellites to assign parentage[J].Aquaculture,2006,259(1-4):146-152.
    [40]Wada K T.Genetic selection for shell traits in the Japanese Pearl oyster,Pinctaada fucata martensii[J].Aquaculture,1986,57(1-4):171-176.
    [41]李梦军,杨品红.三角帆蚌选择育种技术研究[J].内陆水产,2006,3:38-40.
    [42]殷名称.鱼类生态学[M].中国农业出版社,1993.53.[43]姜勋平,刘桂琼,杨利国,等.海门山羊生长规律及其遗传分析[J].南京农业大学学报,2001,24(1):69-72.
    [44]王存芳,张劳,李俊英,等.平原.饲养的藏鸡体型外貌分析和生长模型拟合的研究[J].中国农业科学,2005,38(5):1065-1068.
    [45]朱志明,强巴央宗,朱猛进,等.藏鸡生长曲线拟合利分析的比较研究[J].中国农业科学,2006,39(10):2159-2162.
    [46]Gamito S.Growth models and their use in ecological modelling:an application to a fish population[J].Ecological Modelling,1998,133(1-3):83-94.
    [47]谢恩义,何学福.瓣结鱼的年龄和生长的研究[J].动物学杂志,1999,34(5):8-12.
    [48]宋昭彬,曹文宣.长江草鱼幼鱼的生长研究[J].淡水渔业,200l,31(5):45-48.
    [49]张健东.中华乌塘鳢的生长、生长模型和生活史类型[J].生态学报,2002,22(6):841-846.
    [50]姜作发,贾锺贺,白庆利,等.人工养殖山女鳟幼鱼的生长特性[J].中国水产科学,2007,14(1):160-164.
    [51]区又君,廖锐,李加儿,等.驼背鲈的年龄与生长特征[J].水产学报,2007,31(5):624-632.
    [52]陆伟民.大口黑鲈仔、稚鱼生长和食性的观察[J].水产学报,1994,18(4):330-334.
    [53]刘文生,林焯坤,彭锐民.加州鲈鱼胚胎及幼鱼发育的研究[J].华南农业大学学报,1995,16(2):5-11.
    [54]刘家照,冼炽彬,叶星,等.大口黑鲈人工繁殖和胚胎发育[J].淡水渔业,1990,1:15-16.
    [55]黎道丰,苏泽古.水库网箱中加州鲈鱼生长的研究[J].水生生物学报,2000,24(5):468-473.
    [56]Gowanloch,J N.Fishes and fishing in Louisiana[J].Bull La Depart Comm,1933,23:1-638.
    [57]Brown CJD,Logan SM.Age and growth of four species of warm-water game fish from three Montana ponds[J].Trans Am Fish Soc,1960,89(4):379-382.
    [58]Robert H K,Lloyd L,Smith J.First-Year Growth of the Largemouth Bass,Micropterus salmoides (Lacepede),and Some Related Ecological Factors[J].Transactions of the American Fisheries Society.1960,89(2):222-233.
    [59]Strawn K.Growth of largemouth bass fry at various temperatures[J].Trans Am Fish Soc,1961,90(3):334-350.
    [60]David C.Comparison of ageing methods and growth rates for largemouth bass,micropterus salmoides Lacepede,from northern latitudes[J].Env.Biol.Fish,1979,4(3):263-271.
    [61]Mahon R,Balon E K.Ecological fish production in long pond,a lake shore lagoon on long point,lake Erie[J].Env.Biol.fish.1977,2:261-284.
    [62]MacCrimmon H R,Skobe E.The fisheries of Lake Simcoe[J].Ont.Dept.Lands Forests,Fish Wildl.Br.1970:140.
    [63]Garvey J E,Wright R A et al.Fish.Overwinter growth and survival of age-O largemouth bass (Micropterus salmoides):revisiting the role of body size[J].Aquat.Sci./J.can.sci.halieut,aquat.1998,55(11):2414-2424.
    [64]Petit G,Beauchaud J A,Buisson B.Food intake and growth of largemouth bass(Micropterus salmoides) held under alternated light/dark cycle(12L:12D) or exposed to continuous light.Aquaculture,2003,228:397-401.
    [65]Schulz U H,Leal M E.Growth and mortality of black bass,Micropterus salmoides(Pisces,Centrachidae;Lacapede,1802) in a reservoir in southern Brazil[J].Braz J Biol.2005,65(2):363-369.
    [66]Beamish C A,Booth A J,Deacon N.Age,growth and reproduction of largemouth bass,Micropterus salmoides,in lake Manyame,Zimbabwe[J].African Zoology,2005,40(1):63-693.
    [67]Helser T E,Han L L.A Bayesian hierarchical meta-analysis of fish growth:with an example for North American largemouth bass,Micropterus salmoides[J].Ecological Modelling,2004,178(3-4):399-416.
    [68]Cooke S J,Philipp D P.Influence of local adaptation and interstock hybridization on the cardiovascular performance of largemouth bass micropterus salmoides[J].Journal of experimental biology,2005,208:2055-2062.
    [69]Cooke S J,philipp D P.hybridization among divergent stocks of largemouth bass(micropterus salmoides) results in altered cardiovascular performance:the influence of genetic and geographic distance[J].Physiol biochem zool,2006,79(2):400-410.
    [70]周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005.
    [71]郑冰蓉,张亚平,肖春杰,等.洱海鲤属鱼类同域分化形成的分子遗传学证据[J].遗传学报,2004,31(9):976-982.
    [72]王中铎,刘楚吾,郭昱蒿.5种笛鲷mtDNA及Cyt b基因片段的RFLP比较[J].水产学报,2005,29(3):327-332.
    [73]Williams J G K,Kubelik A R,Livak K J,et al.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic Acids Res.1990,18:6531-6535.
    [74]Welsh J,McClelland M.Fingerprinting genomes using PCR with arbitrary primers[J].Nucleic Acids Res.1990,18:7213-7218.
    [75]Yue G,Li Y,Chen F,et al.Comparison of three DNA marker systems for assessing genetic diversity in Asian arowana(Scleropagesformosus)[J].Electrophoresis 2002,23:1025-1032.
    [76]Partis L,Wells R J.Identification of fish species using random amplified polymorphic DNA(RAPD)[J].Mol.Cell.Probes 1996,10:435-441.
    [77]梁素娴,白俊杰,叶星,等.养殖人口黑鲈的遗传多样性分析[J].大连水产学学报,2007,22(4):260-263.
    [78]Klinbunga S,Ampayup P,Tassanakajon A.,et al.Development of speciesspecific markers of the tropical oyster(Crassostrea belcheri) in Thailand[J].Mar.Biotechnol.2000,2:476-484.
    [79]Tassanakajon A.,Pongsomboon S.,Jarayabhand P,et al.Genetic structure in wild populations of black tiger shrimp(Penaeus monodon) using randomly amplified polymorphic DNA analysis[J].J.Mar.Biotechnol.1998,6:249-254.
    [80]王志勇,王艺磊,林利民,等.福建官井洋大黄鱼AFLP指纹多态性的研究[J].中国水产科学,2002,9(3):198-202.
    [81]刘必谦,董闻琦,王亚平,等.岱衢族大黄鱼种质的AFLP分析[J].水生生物学报,2005,29(4):413-416.
    [82]Shen X Y,Yang G,Liu Y J,et al.Construction of genetic linkage maps of guppy(poecilia reticulata) based on AFLP and microsatellite DNA markers[J].Aquaculture,2007,271:178-187.
    [83]Postlethwait J H,Johnson S,Midson C N,et al.A Genetic Linkage Map for the Zebrafish[J].Science,1994,264(29):699-703.
    [84]Young W P,Wheeler P A,Coryell V H,et al.A detailed linkage map of rainbow trout produced using doubled haploids[J].Genetics,1998,148:839-850.
    [85]梁利群,常玉梅,董崇智,等.微卫星DNA标记对乌苏里江哲罗鱼遗传多样性的分析[J].水产学报,2004,28(3):241-244.
    [86]梁素娴,孙效文,白俊杰,等.微卫星标记对中国引进加州鲈养殖群体遗传多样性的分析[J].水生生物学报.2008,32(5):694-700.
    [87]Lutz-Carrillo D J,Nice C C,Bonner T H,et al.Admixture analysis of florida iargemouth bass and northern largemouth bass using microsatellite loci[J].Transactions of the American Fisheries Society,2006,135:779-791.
    [88]Liu Y G,Chen S L,Li J,et al.Genetic diversity in three Japnese flounder(Paralochthys olivaceus)population revealed by ISSR marker.Aquaculture,2006,255:565-572.
    [89]Thai B T,Pham T A,Austin C M.Genetic diversity of common carp in Vietnam using direct sequencing and SSCP analysis of the mitochondrial DNA control region[J].Aquaculture,2006,258(1-4):228-240.
    [90]刘峰,刘臻,鲁双庆,等.3种鳜属鱼生长激素基因差异的检测与分析[J].中国水产科学,2008,15(5):745-754.
    [91]于凌云,白俊杰,叶星,等.大口黑哦MyoD基因结构和单核苷酸多态位点的筛选[J].水产学报,2009,(1):1-8.
    [92]Rengmark A H,Slettan A,Skaala θ,et al.Genetic variability in wild and farmed Atlantic salmon (Salmo salar) strains estimated by SNP and microsatellites[J].Aquaculture,2006,253:229-237.
    [93]赵志辉,李宁,胡晓湘,等.鸡下丘脑组织表达序列标签初步分析[J].中国兽医学报,2002,22(2):184-186.
    [94]Hatey F,Tosser-Klopp G,Glouscard-Martination C.Expressed sequenced tags for genes:a review[J].Genet Sel Evol,1998,30(5):521-541.
    [95]Harushima Y,Yano M,Shomura A.A high-density rice genetic linkage map with 2275markers using a single F2 population[J].Genetic,1998,148(1):1-16.
    [96]王春艳,俞小牧,童金苟.鲤鱼多态性EST标记的筛选与特征分析[J].水生生物学报,2008,32(2):207-212.
    [97]Brown W M.The mitochondrial genome of animals.In:Macintyre,R.J.(Ed.),Molecular Evolutionary genetics[J].Plenum,New York,NY,1985:95-130.
    [98]Wilson A C,Cann R L,Carr S M,et al.Mitochondrial DNA and two perspectives on evolutionary genetics[J].Biol.J.Linn.Soc.1985,26:375-400.
    [99]Birky C W,Fuerst P,Maruyama T.Organelle gene diversity under migration,mutation,and drift:equilibrium expectations,approach to equilibrium,effect of heteroplasmic cells,and comparison to nuclear genes[J].Genetics,1989,121:613-627.
    [100]Brown J R,Bechenbach A T,Smith M J.Intraspeciflc DNA sequence variation of the mitochondrial control region of white sturgeon(Acipenser transmontanus)[J].Mol.Biol.Evol.1993,10:326-341.
    [101]戴建华,殷文莉,杨代淑,等.鲤鱼mtDNA酶切图谱的构建.生物化学杂志[J].1996,12(6):681-685.
    [102]张四明,龙华.湖北淤泥湖团头鲂mtDNA限制性片段长度多态性的研究[J].水产学报,1996,20(4):289-293.
    [103]胡文革,王金富,盛金良,等.新疆三种雅罗鱼属鱼类mtDNA D-loop多态性及起源分化分析[J].遗传,2003,25(4):414-418.
    [104]彭珊,代应贵.濒危鱼类稀有白甲鱼清水江种群mtDNA D-loop序列多态性[J].水产学报,2009,33(2):196-200.
    [105]Skinner D M,Beattie W G,Blattner F R,et al.The sequence of a hermit crab satellite DNA in (-TAGG)n-(-TAGG-)n[J].Biochemistry,1974,13:3930-3937.
    [106]Singh L,Purdom I F,Jons K W.Sex chromosome associated satellite DNA:Evolution and conservation[J].Chromosome,1980,79:137-157.
    [107]Hamada H,Petrino M,Kakunaga T.A novel repeat element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes[J].Proc Natl Acad Sci.USA.,1982,79:646-649.
    [108]Weber,J.L.lnformation of human(dC-dA)n(dG-dC)n polymorphisms[J].Genomies.1990,7:524-530.
    [109]Tauatz.Hyper variability of simple sequences as a general source for polymorphic DNA Markers[J].Nucleic acid research,1989,17:6463-6471.
    [110]Edwards A,Civitello A.DNA typing and genetic mapping with trimeric and tetramertic tandem repeats[J].America Journal of human genetics,1991,49:746-756.
    [111]Xu Z,Primavera J H,Pena L D,et al.Genetic diversity of wild and cultured black tiger shrimp(Penaeus monodon) in the Philippines using microsatellites[J].Aquaculture,2001,199:13-40.
    [112]梁利群,常玉梅,董崇智,等.微卫星DNA标记对乌苏里江哲罗鱼遗传多样性的分析[J].水产学报,2004,28(3):241-244.
    [113]Li Q,Park C,Endo T,et al.Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone(Haliotis discus hannai).Aquaculture,2004,235:207-222.
    [114]张天时,刘萍,李健,等.用微卫星DNA技术对中国对虾人工选育群体遗传多样性的研究[J].水产学报,2005,29(1):6-12.
    [115]汪桂玲,袁一鸣,李家乐.中国五大湖三角帆蚌群体遗传多样性及亲缘关系的SSR分析[J].水产学报,2007,31(2):152-158.
    [116]宋红梅,白俊杰,叶星,等.橙色莫桑比克罗非鱼微卫星遗传多样性分析及其与尼罗罗非鱼差异位点的筛选[J].中国水产科学,2008,15(3):400-406.
    [117]Schlotterrer C,Amos W,Tautz D.Conservation of polymorphic simple sequence loci in cetacean species[J].Nature,1991,354:63-65.
    [118]Thamas M R,Scott N S.Microsatellites repeats in gravevine reveal DNA polymorphisms when analysised as sequence-tagged sites(STS)[J].Theor Appl Genet,1993,86:985-990.
    [119]Olson M.A common language for physical mapping of the human genome[J].Science,1989,245:1434-1435.
    [120]Postlethwait J H,Johnson S,Midson C N,et al.A Genetic Linkage Map for the Zebrafish[J].Science,1994,264(29):699-703.
    [121]Knapik E W,Goodman A,Ekker M,et al.A microsatellite genetic linkage map for zebrafish(Daniorerio)[J].Genes Dev,1998,18:338-342.
    [122]Kocher T D,Lee W J,Sobolewska H,et al.A genetic Linkage Map of Cichid Fish,the Tilapia (Oreochromis niloticus)[J].Genetics,1998,148:1225-1232.
    [123]Husstain M G.Estimating gene-centromere recombination frequencies in gynogenetic diploids of Oreochromis niloticus,using allozymes,skin colour and a putative sex-determining locus(SDL-2)[A],Beaumont A R,Genetics and Evolution of Aquqtic Organisms[C],New York:Riven press,502-509.
    [124]Allendorf F W,Seeb J E,Knudsen K L,et al.Gene-centromere mapping of 25 loci in rainbow trout [J].The Journal of Heredity,1986,77(5):307-312.
    [125]Johnson S L,Africa D,Home S,et al.Half-tetrad analysis in zebrafish:mapping the ros mutation and the centromere of linkage group I[J].Genetics,1995,139:1727-1735.
    [126]Young W P,Wheeler P A,Coryell V H,et al.A detailed linkage map of rainbow trout produced using doubled haploids[J].Genetics,1998,148:839-850.
    [127]孙效文,梁利群.鲤鱼的遗传连锁图谱(初报)[J].中国水产科学,2000,7(1):1-5.
    [128]Morre S S,Whan V,Davis G P,et al.The development and application of genetic marker for the Kuruma p rawn Penaeus japonicus[J].Aquaculture,1999,173:19-32.
    [129]Meehan D,Xu Z,Zuniga G,et al.High frequency and large number of polymorphic microsatellites in cultured shrimp,Penaeus(L itopenaeus) vannamei[Crustacea:Decapoda][J].Marine Biotechnology,2003,5(4):311-330.
    [130]Jerry D R,Preston N P,Crocos P J,et al.Apllication of DNA parentage analyses for determining relative growth rates of Penaeusjaponicus families reared in commercial ponds[J].Aquaculture,2006,254:171-181.
    [131]Ellegren H.DNA typing of museum birds[J].Nature,1991,354:113.
    [132]刘萍,孟宪红,何玉英,等.中国对虾(Fenneropenaeus chinensis)黄、渤海3个野生地理群遗传多样性的微卫星DNA分析[J].海洋与湖沼,2004,35(3):252-257.
    [133]刘萍,孟宪红,孔杰,等.中国对虾微卫星DNA多态性分析[J].自然科学进展,2004,14(3):333-338.
    [134]王鸿霞,吴长功,张留所,等.微卫星标记应用于凡纳滨对虾家系鉴别的研究[J].遗传,2006,28(2):179-183.
    [135]孙昭宁,刘萍,李健,等.微卫星DNA标记用于中国对虾亲子关系的鉴定[J].海洋水产研究,2007,28(3):8-14.
    [136]Ricker W E.Computation and interpretation of the biological statistics of fish populations[J].Bulletin:Fisheries Research Board of Canada,1975,191:1-382.
    [137]Jones R E,Petrell R J,Pauly D.Using modified length-weight relationships to assess the condition of fish[J].Aquacuh Engin,1999,20:261-276.
    [138]Richter H,Liickstadt C,Focken U L,et al.An improved procedure to assess fish condition on the basis oflength-weight relationships[J].Arch Fish & Mar Res,2000,48:226-235.
    [139]戴强,戴健洪,李成,等.关于肥满度指数的讨论[J]应用与环境生物学报,2006,12(5):
    [140]熊邦喜,陈志奋,高云,等.不同体型鱼类的年龄与生长相关表达式的??合研究[J].水利渔轮业1996,(5):22 26.
    [141]黄真理,常剑波.鱼体体长与体重关系中的分形特征[J].水生生物学报,1999,23(4):330-336.
    [142]刘家照,冼炽彬,叶星,等.大口黑鲈人工繁殖和胚胎发育[J].淡水渔业,1990,(1):15-16.
    [143]谭肖英,刘永坚,田丽霞.饲料中碳水化合物水平对大口黑鲈Micropterus salmoides生长、鱼体营养成分组成的影响[J].中山大学学报(自然科学版),2005,44(增刊):258-263.
    [144]李思发,王成辉,刘志国,等.三种红鲤生长性状的杂种优势与遗传相关分析[J].水产学报,2006,30(2):175-180.
    [145]李加纳.数量遗传学概论[M].西南师范大学出版社,2007.166.
    [146]洪松,赵益贤,刘旭光,等.雏鸡血清蛋白含量与生长性状间相关的通径分析[J].畜牧兽医学报,1994,25(41:301-305.
    [147]易建明,李树聪,虞良,等.乳牛产乳量与几项系统因子间的回归关系及其应用[J].畜牧兽医学报,2002,33(3):239-242.
    [148]贺晓宏,张涛,张亚妮,等.绒山羊体尺、绒毛性状与经济性状的多元统计分析[J].两北农林科技大学学报(自然科学版),2004,32(1):85-89.
    [149]刘小林,吴长功,张志怀,等.凡纳对虾形态性状对体重的影响效果分析[J].生态学报,2004,24(4):857-862.
    [150]耿绪云,王雪惠,孙金生,等.中华绒螯蟹(Eriocheir sinensis)—龄幼蟹外部形态性状对体重的影响效果分析[J].海洋与湖沼,2007,38(1):49-54.
    [151]刘小林,常亚青,相建海,等.栉孔扇贝壳尺寸性状对体重的影响效果分析[J].海洋与湖沼,2002,33(6):673-678.
    [152]Deboski P,Dobosz S,Robak S,et al.Fat level in body of juvenile Atlantic salmon(Salmo salar L.),and sea trout(Salmo trutta M.trutta L.),and method of estimation from morphometric data[J].Archroes of polish Fisheries,1999,7(2):237-243.
    [153]Hong K P,Lee K J.Estimation of genetic parameters on metric traits in Oreochromis niloticus at 60days of age[J].Journal of the Korean Fisheries Society,1999,32(4):404-408.
    [154]Myers J M,Hershberger W K,Saxton A M,et al.Estimates of genetic and phenotypic parameters for length and weight of marine net-pen reared Coho salmon(Oncorhynchus kisutchWalbaum)[J].Aquaculture Research,2001,32(4):277-285.
    [155]Neira R,Lhorente J P,Araneda C,et al.Studies on carcass quality traits in two populations of Coho salmon(Oncorhynchus kisutch):phenotypic and genetic parameters[J].Aquaculture,2004,241:117-131.
    [156]Vandeputte M,Kocour M,Mauger S,et al.Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp(Cyprinus carpio L.)[J].Aquaculture,2004,235:223-236.
    [157]Wang C H,Li S F,Xiang S P,et al.Genetic parameter estimates for growth-related traits in Oujiang color common carp(Cyprinus carpio var.color)[J].Aquaculture,2006,259:103-107.
    [158]佟雪红,董在杰,缪为民,等.建鲤与黄河鲤的杂交优势研究及主要生长性状的通径分析[J].大连水产学院学报,2007,22(3):159-163.
    [159]孟庆闻,苏锦祥,缪学祖.鱼类分类学[M].北京:中国农业出版社,1995.29-30.
    [160]张金屯.数量生态学[M].北京:科学出版社,2004.51.
    [161]李宁.动物遗传学[M].北京:中国农业出版社,2003.178.
    [162]顾万春.统计遗传学[M].北京科学出版社,2006.320.
    [163]Herbinger C M,Doyle R W,Pitman E R,et al.DNA fingerprint based analysis of paternal and maternal effects on offspring growth and survival in communally reared rainbow trout[J].Aquaculture,1995,137:245-256.
    [164]Norris A T,Bradley D G.,Cunningham E P.Parentage and relatedness determination in farmed Atlantic salmon(Salmosalar) using microsatellite markers[J].Aquaculture,2000,182:73-83.
    [165]O'Reilly P,Wright J M.The evolving technology of DNA fingerprinting and its application to fisheries and aquaculture[J].Journal offish Biology.1995,47:29-55.
    [166]Ferguson M M,Danzmann R G.Role of genetic markers in fisheries and aquaculture:useful tools or stamp collecting?[J].Canadlan journal of fisheries and aquatic sciences.1998,55:1553-1563.
    [167]徐晋麟,徐沁,陈淳.现代遗传学原理[M].北京:科学出版社,2003:224-225.
    [168]Ricardo P-E,Motohiro T,Nobu H T.Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream(Pagrus major) used for stock enhancement,based on microsatellite DNA markers[J].Aquaculture,1999,173:413-423.
    [169]Boudry P,Collet B,Cornette F,et al.High variance in reproductive success of the Pacific oyster (Crassostrea gigas,Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses[J].Aquaculture,2002,204:283-296.
    [170]Timothy R J,Martin-Robichaud D J,Michael E R.Application of DNA markers to the management of Atlantic halibut(Hippoglossus hippoglossus) broodstock[J].Aquaculture,2003,220:245-259.
    [171]Motoyuki H,Masashi S.Efficient detection of parentage in a cultured Japanese flounder Paralichthys olivaceus using microsatellite DNA marker[J].Aquaculture,2003,217:107-114.
    [172]Dong S R,Kong J,Zhang T S.Parentage determination of Chinese shrimp(Fenneropenaeus chinensis) based on microsatellite DNA markers[J].Aquaculture,2006,258:283-288.
    [173]Herlin M,Delghandi M,Wesmajervi M,et al.Analysis of the parental contribution to a group of fry from a single day of spawning from a commercial Atlantic cod(Gadus morhua) breeding tank[J].Aquaculture,2008,274:218-224.
    [174]Colbourne J K,Neff B D,Wright J M,et al.DNA fingerprinting of bluegill sunfish (Lepomismacrochirus) using(GT) microsatellites and its potentialn for assessment of mating success [J].Canadian Journal of Fisherise and Aquatic Sciences,1996,53:342-349.
    [175]Ohno Y,Sebetan I M,Akaishi S.A simple method for calculating the probability of excluding paternity with any number of codominant alleles[J].Forensic Sci Int,1982,19(1):93-8.
    [176]Estoup A,Gharbi K,SanCristobal M,et al.Parentage assignment using microsatellites in turbot (Scopthalmus maximus) and rainbow trout(Oncorhynchus mykiss) hatchery populations[J].Canadian Journal of Fisheries and Aquatic Sciences,1998,55:715-725.
    [177]Marshall T C,Slate J,Kruuk L E B,et al.Statistical confidence for likelihood-based paternity inference in natural populations[J].Molecular Ecology Notes,1998,7:639-655.
    [178]Bernatchez L,Duchesne P.Individual based genotype analysis in studies of parentage and population assignment:how many loci,how many alleles?[J].Canadian Journal of Fisheries and Aquatic Sciences,2000,57:1-12.
    [179]MacAvoy E S,Wood A R,Gardner J P A.Development and evaluation of microsatellite markers for identification of individual Greenshell~(TM) mussels (Perna canaliculus) in a selective breeding programme [J]. Aquaculture, 2008, 274: 41-48.
    [180]Castro J, Bouza C, Presa P, et al. Potential sources of error in parentage assessment of terbot (Scophthalmus maximus) using microsatellite loci [J]. Aquaculture, 2004, 242: 119-135.
    [181] Dakin E E, Avise J C. Microsatellite null alleles in parentage analysis[J]. Heredity, 2004, 93: 504-509.
    [182] Pemberton J M, Slate J, Bancroft D R, et al. Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies [J]. Molecular Ecology, 1995, 4: 249-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700