氮、磷源与蛋白酶解物的营养组合对小球藻增殖机理和缢蛏生长影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在研制一种能促进缢蛏生长并能降低缢蛏养殖环境污染的蛋白酶解物。首先筛选出最佳的酶解条件、酶解物形式,确定最佳的无机氮源形式以及最佳氮、磷源添加浓度。然后以缢蛏的一种饵料来源——小球藻为研究对象,通过细胞密度、叶绿素、蛋白质含量等生长生化指标,研究蛋白酶解物对小球藻生长的影响,并与多种动植物蛋白的酶解物进行比较。并拆分蛋白酶解物的组成成分,深入研究其作用机理。最后应用到缢蛏养殖,通过壳长、个体重、养殖塘底泥有机物含量、氮含量等指标,研究蛋白酶解物对缢蛏生长及养殖环境的影响。
     试验一、首先以普通豆粕为研究对象,通过对酶解时间、液固比等条件的摸索,筛选出最佳的酶解条件。试验表明,最佳酶解条件为:液固比15:1,酶解时间为8h,温度为50℃,pH为7.2,酶与底物浓度比为6:1(mg/g),此时,水解度和三氯乙酸溶解度分别达到最大值11.68%和26.96%。酶解时间超过8h或者液固比超过15:1,普通豆粕酶解物的水解程度明显减小。
     然后通过酶解蛋白酶解物、豆粕、棉粕、菜粕和花生粕等多种蛋白酶解物,以水解度、三氯乙酸溶解度和悬浮性等指标,筛选出最佳的蛋白酶解物。研究结果表明,蛋白酶解物在人工海水中的有机物沉降比例最小(21.58%),显著低于鱼浆等其它各蛋白饲料酶解物(p<0.05),表明其在海水中的悬浮性最好。蛋白酶解物的水解程度显著大于其它各蛋白饲料酶解物(p<0.05),表明其酶解后的产物更充分,更能促进海洋生物吸收和利用;试验结果还表明,棉粕酶解后的悬浮性和酶解效果相对其它植物粕类蛋白的酶解物更佳。
     试验二、首先,通过细胞密度、光密度值、干重、叶绿素含量以及可溶性蛋白含量等生长生化指标,对碳酸氢铵、硫酸铵、硝酸钠、尿素、氯化铵和磷酸二氢铵等不同氮源的筛选,选出小球藻生长最佳的氮源。结果表明,碳酸氢铵可更好地促进小球藻生长(p<0.01),硝酸钠和尿素次之,硫酸铵、氯化铵和磷酸二氢铵的效果不显著。然后以磷酸二氢钠为磷源,通过正交组合,研究不同浓度的氮和N/P比对小球藻生长的影响,确定最佳的N、P源组合。在培养液中添加N质量浓度分别为0、50、100mg/l的碳酸氢铵和P质量浓度为O、3、6mg/l的磷酸二氢钠,进行双因素正交试验。结果显示,添加N50mg/l、P3mg/l时小球藻的细胞密度、光密度值(OD)和单位体积叶绿素等生长指标均显著高于其它各处理组(P<0.05)。然后缩小浓度梯度进一步试验,分别添加N浓度为40、50、60mg/l和P浓度为2、3、4mg/l,结果表明,NH4HCO3作为N源,NaH2PO4作为P源时,小球藻生长的最适N、P浓度分别为50mg/l、3mg/l,N/P比为16.7。最后再与蛋白酶解物进行3x3正交试验,筛选出对小球藻生长最佳的氮、磷源与蛋白酶解物之间的组合。结果表明,同时添加N50mg/l、P4mg/l、蛋白酶解物12ml/L时,能显著促进小球藻生长、提高叶绿色和藻体蛋白质的合成(P<0.05)。
     试验三、通过分解蛋白酶解物的组成成分(酶制剂和微量元素制剂),采用单因素试验设计,分别对各种成分的酶解物进行分析,以细胞密度、光密度值、干重、叶绿素含量以及可溶性蛋白含量等指标,研究蛋白酶解物对小球藻生长的影响机理。结果表明,培养液中同时添加动物蛋白加酶与微量元素的降解物以及N、P源对小球藻生长效果要明显好于没有添加N、P源组(P<0.01),说明无机N、P的添加对小球藻的生长有较好的促进作用;结果还表明,添加微量元素组或酶制剂组相对对照组均能显著促进藻类生长(P<0.01),但添加蛋白酶解物对小球藻的生长效果是最佳的,细胞密度、叶绿素水平,蛋白质含量都相对最高(P<0.05)。
     试验四、以缢蛏为研究对象,在各试验塘分别添加蛋白酶解物、鱼浆和鸡粪进行比较,以缢蛏的壳长、个体重、总重以及塘底泥的含氮量、有机物含量等指标来反应不同添加物对缢蛏生长性能和养殖环境的影响,同时分析添加蛋白酶解物后的养殖经济效益。研究结果表明,添加蛋白酶解物的各个处理组缢蛏平均总重达到18.5千克,分别比鸡粪组高3.1%,比鱼浆组高8.8%。从经济效益上看,蛋白酶解物组的缢蛏每500克单价达到7.5-8.0元,比鸡粪组的平均单价高出了33.3%-66.7%。从对环境的影响看,鸡粪组和鱼浆组有机物含量分别比蛋白酶解物组高28.5%和9.8%;氮含量分别比蛋白酶解物组高94.6%和16.1%。由此可见,使用蛋白酶解物可显著促进缢蛏的快速生长,增加经济收益,并能降低蛏涂及养殖环境的污染。
This study was conducted to develop a kind of animal protein enzymatic hydrolysis that could improve growth of Sinonovacula constricta, and reduce the pollution of culture environment. First, the best enzymatic hydrolyzed condition and best form of enzymatic hydrolysis were selected. The best form of inorganic nitrogen and concentration of nitrogen and phosphorus sources were definited. Then the effects of animal protein enzymatic hydrolysis on growth of Chlorella vulgaris were studied, by parameters such as cell density、chlorophyll content and protein content. The reaction mechanism was also studied. Then the animal protein enzymatic hydrolysis was used in culture of Sinonovacula constricta to study the effects on its growth and environment by the index of carapace length、body weight、nitrogen content and organic matter content of soil from the bottom pond.
     In Expt.1, the best enzymatic hydrolyzed condition of soybean was selected by indicators such as hydrolyzed time、ratio of liquid and solid. Results showed that the degree of hydrolyzed reached 11.68%, and trichloroacetic acid degree of dissolved reached 26.96%, when the ratio (15:1)、hydrolyzed time(8h)、temperature(50℃)、pH(7.2)。Then the best form of enzymatic hydrolysis was selected by indicators such as degree of hydrolyzed、trichloroacetic acid degree of dissolved and suspension quality from five kinds of hydrolysis such as soybean、cotton、vegetable、peanuts dregs and animal protein enzymatic hydrolysis. Results showed that the suspension quality in sea water of animal protein enzymatic hydrolysis was smallest (p< 0.05),and its degree of hydrolyzed was better than any other hydrolysis. It could promote growth of marine life significantly (p<0.01)
     In Expt.2, the best kind of nitrogen resource for growth of Chlorella was selected by indicators of cell density、light density、dry matter、chlorophyll content and protein content from six different. nitrogen sources such as NH4HCO3, (NH4)2SO4, NaNO3, NH2CONH2、NH4Cl, and NH4H2PO4.. Results showed that NH4HCO3 could promote growth of Chlorella significantly compared with the other nitrogen sources (p< 0.01).Then the best combination of nitrogen and phosphorus sources was established by orthogonal design(2x2) adding 0、50、100mg/l NH4HCO3 and 0、3、6mg/l NaH2PO4. Results showed that the group (N50mg/l、P3mg/l) was best for growth of Chlorella. Then shorten the concentration gradient,and added 40、50、60mg/l NH4HCO3 and 2、3、4mg/l NaH2PO4. Results showed that the best combination was N50mg/l、P3mg/l. The ratio N/P was 16.7. Then added animal protein enzymatic hydrolysis to design a orthogonal experiment(3x3). Results showed that the best combination to promote growth and improve synthesis protein significantly was N (50mg/l)、P (4mg/l)、animal protein enzymatic hydrolysis (12ml/L) (P<0.05)
     In Expt.3, the mechanism of animal protein enzymatic hydrolysis effecting growth of Chlorella was studied by analyzing component of animal protein enzymatic hydrolysis by indicators of cell density、light density、dry matter、chlorophyll content and protein content. Results showed that adding nitrogen and phosphorus sources could improve growth of Chlorella significantly than not added (P<0.01).Results also showed that trace elements group and enzyme group had obviously effects on growth of Chlorella compared with the control, and adding them together was best to improve biomass、chlorophyll content and protein content of Chlorella significantly (P<0.05).
     In Expt.4, effects of animal protein enzymatic hydrolysis on the growth and culture environment of Sinonovacula constricta were studied compared with fish starch and chicken excrement, by indicators such as length of shell、height of body、nitrogen concentration and organism content of bottom pond. Results showed that the mean weight of Sinonovacula constricta of animal protein enzymatic hydrolysis group reached 18.5kg, more than chicken excrement group (3.1%), fish starch group(8.8%) respectively. The price of Sinonovacula constricta reached 7.5-8.0 rmb/kg from animal protein enzymatic hydrolysis group which higher than chicken excrement group by degree 33.3-66.7%. Results also showed that the organic matter concentrations of soil from bottom pond of chicken excrement group and fish starch group were higher than animal protein enzymatic hydrolysis group by degree 28.5% and 9.8% respectively, while nitrogen concentration higher by degree 94.6% and 16.1% respectively. In conclusion, animal protein enzymatic hydrolysis could improve growth of Sinonovacula constricta、increase financial gain and decrease the pollution significantly.
引文
Bandit A. Biological Functions of Dietary Carotenoids In Carotenoids in Human Health [M]. New York:The New York Academy of Sciences,1993.38-48.
    Becker W. Measurement of algal growth. Micro algal Biotechnology& Microbilogy[M]. Cambridge:Cambridge University Press,1994:56-62
    Boot K G, Dissolved oxygen and pH relationship in northern Australian mangrove ways [J].Limnos Oceang.1981,27(6):1176-1178
    Brown M. R. The Vitamin Content of Micro algae Used in Aquaculture[J]. Journal of Applied Phycology,1999, 11(3):247-255.
    Cahn C, Amboina J, Infant J. Protein hvdrolysate VS, fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae[J]. Aquaculture,1999,171(12): 109-119
    Chen F. High Cell Density Culture of Micro algae in Heterotrophic Growth[J]. Trends in Biotechnol,1996,14(11):421-426.
    Chu W L, Pang S M. Environmental effects on growth and biochemical composition of Nietzsche inconspicuous Grunion [J]. J Appl Phycol.1996,8:389-396
    Darnley W M. Algal biology:A physiological approach[M].Oxford London: Black-well Scientific Publication,1982:168
    Dumas A, Alberta G. Betterment of fish effluents using the cyan bacterium phormidium bohner[J].Aqua Engi,1998,17:57-68
    Folk C, Kitschy N. The role of ecosystems for a sustainable development of aquaculture[J]. Ambio,1989,18:234-243
    Gaillard R L. Culture of phytoplankton for feeding marine invertebrates[M]. Culture of marine invertebrate animal, Plenum:New York Press,1975:29-60
    Geresh S. The extracellular polysaccharides of the red micro algae:chemistry and rheology[J]. Biores Technol,1991,38:195-201
    Grime E M, Medina A R., Jimenez A G. Gram2 scale purification of eicosapentaenoic acid (EPA,20:5n-3) from wet Phaeodactylum tricornutum UTEX640 biomass, J,Appl. phycol,1996,8:359-367
    Harker M. Use of response-surface methodologhy to optimixe carotenogenesis In the microalgal Haematococcus Pluvialis[J]. J of Applied.1995,7(4):399-406
    Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environments [J]. A review of recent evidence on the effects of enrichment Liminology and Oceanography,1988,33(4):796-822
    Hiashiyama T, Noutoshi Y, Akiba M. Telomere and LINE like Elen Ment at the Termini of the Chlorella Chromosome I[J]. Nucleic Acide Symp Set,1995,34: 71-72.
    Higashi H, Murayama S, Onishi T. Studies on'liquefied fish protein'. Nutritive value of'liquefied fish protein'[J]. Bulletin of Tokai Region Fisheries Research Laboratory,1965,43:77-86
    Higashiyama T, Maki S, Yamade T. Molecular Organization of Chlorella Vulgaris Chromosome[J]. Mol Gen Genet,1995,246(1):29-36
    Higashiyama T, Noutoshi Y, Fuji M. Aline like Retrotranspo son Accumulated in the Chlorella Telomeric Region[J]. EMBO J,1997,16(12):3715-3723
    Huang X G, Li C L, Liu C W. Studies on two microalgae improving enviroment of shrimp pond and strengthening anti-disease ability of penaeus[J]. Acta hydrobiologica Sinica,2002,26(4):342-347
    Infante J Z. Nutritional rehabilitation of malnourished Fats by idand tripeptides: nitrogen metabolism and intestinal response[J]. Journal of Nutritional Bioc hemistry,1992,3:285-290
    Kaibab M, Loutish Y, Maki S. Molecular Characterization of Chlorella Chromosomes: Screening of Bent Danas [J]. Nucleic Aside Sump Set,1995,34:73-74
    Konishi F. Antitumor Effect Induced by a Hot Water Extract of Chlorella Valgaris[J]. Cancer Immunol,1985,19:73-78.
    Langdon C J, Warlock M J. The effect of algal and artificial diets on the growth and fatty acid composition of Crassest read gigs S pat. J. Mar. Biol. Ass.1981,61: 431-448
    Lefebvre,S.,Brossard,N.. Water treatment of land-based fish farm effluents by outdoor
    culture of marine diatoms[J]. Journal of Applied phycology,1996,8:193-200
    Lei A P, Wong Y S, Tam N F. Removal of Pyrene by Different microalgal Species[J]. Water Sci Techno,2002,46:105-201
    Liang Y, Mai K S, Sun S C. Effect of NaNO3 concentration on the growth and fatty acid compo sitions of Phaeodactylum tricornutum MACC/B226[J]. Marine Maruyama I. Utilization of Microalgae[J]. Appl. Phycol,1994,6:151-157
    Otero A, Garcia D, Fabregas J. Factors controlling eicosapentaenoic acid production in semicontinuous cultures of marine microalgae[J]. J Appl Phycol,1997,9:465-469
    Pattnaik P. Algae as Animal Feed Potentials to Reality [J]. Indian Dairyman,1999, 51(1):13-18.
    Phee G Y. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake[J]. Limnol Oceanogr,1978,23:10-25
    Redfield A C. The biological control of chemical factors in the environment[J]. Am Sci.1958,46:205-222
    Renaud S. M. The Grass Chemical Composition and Fatty Acid Composition 18 Species of Tropical Australian Microalge for Possible Use in Mariculture[J]. Aquaculture,1999,170(2):147-159.
    Rodhouse P G, Roden C. Nutritional value of microalgal mass cultures to the oyster Ost reaedulis L[J]. Aquaculture,1983,32:11-18
    Sherman B R, Rowland R D. Mineral chelates:Piggyback nutrients [J].Feed Management,1990,41(5):35-40
    Shi Xian-Ming, Chen Feng. Chlorella and Production of Carotenoid[M]. Beijing: Light Industry Press of China.1999,55-91.
    Simpson B K, Nayeri G, Yaylayan V. Enzymatic hydrolysis of shrimp meat [J]. Food Chem,1997,61:131-138
    Sing S, Richmond A. Extracelluar polysaccharide production in outdoor mass cultures of Porphyridium sp in flat plate glass reactors[J]. Journal of Applied Phycology, 2000,12:269-275
    Subsume M, Shinseki M. Angiogenesis I2coverting enzyme inhibitory activities of synthetic peptides related to the tandem repeated sequence of a maize endosperm protein Agric [J]. Biol. Chem,1989,53(4):1077-1081.
    Suen Y, Hubbard J S, Holzer G. Total lipid production of the green alga Nannochloropsis sp. under different nitrogen regimes.Phycol.1987,23:289-296
    Takii K, Shimeno S, Tkeda M, Kamekawa S. The effect of feeding stimulants in diet on digestive enzyme activities of eel[J]. Bulletin of the Japanese Society of Scientific Fisheties,1996,52:1449-1454
    Tan C. K. and Johns M. R. Screening of diatoms for heterotrophic eicosapentaenoic acid production[J]. Appl. phycol,1996,8:59-64
    Teshima S, Kanazawa Akio, Koshio S. Recent developments in nutrition and microparticulate diets of larvral prawns [J]. The Israeli Journal of Aquaculture-Bamidgh,1993,45:175-184
    Tovara, Morenoc, Manuel. Environmental implications of intensive marine aquaculture in earten ponds [J]. Marine Pollution Bulletin.2002,40(11):981-988
    Uchido M. Microbial Conversion of Microalgae into a Detrital Hatchery Diet[J]. Japan Agri. Res. Quarterly,1999,33 (4):295-301.
    Volkman J K, Jeffrey S W, Nichols P D. Fatty acid and lipid composition of 10 species of microalage used in mariculture[J].JExp Mar Biol Ecol,1989,128:219-240
    Watanabe T, Kitajima C. Nutritional value of live organisms used in Japan for mass propagation of fish:A review[J]. Aquaculture,1983,34:115-143
    Wakasugi T, Nagai T, Kapoor M. Complete Nucleotide Sequence of the Chloroplast Genome from the Green Alga Chlorella Vulgaris:the Existence of Genes Possibly Involved in Chloroplast Division[J]. Proc Natl Acad Sci,1997,94(11):5967-5972
    Wang Q H, Li M, Wang S H. Studies on culture conditions of benthic diatoms for feeding abalone. II.Effects of salinity, pH, nitrogenous and phosphate nutrients on growth rate[J].Chinese J Oceanology and Limnology.1998,16(1):78-83
    Wei D, Zhang X C, Sui H Z. Effects of nitrogen sources and N/P ratio on cell growth, total lipid content and fatty a cid composition of Ntinnochloropsis oculat [J]. Marine Scienc,2000,24(7):46-50
    Whikfors G H. Altering growth and gross chemical composition of two microalgae molluscan food species by varying-nitrate-and phosphate [J]. Aquaculture,1986,59: 1-14
    Xu N J, Zhang X C, Fan X. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp[J]. J Appl Phycol,2001,13: 463-469
    Yan H, Yen C. Kinetics of phthalate esters biodegradation by Chlorella[J]. Environ Toxical Chen,1995,14(6):931
    Yan H, Pan G. Toxicity and bioaccumulation of copper in three green microalgal species[J]. Chemosphere,2002,49:471
    Yongmanitchai W, Ward O P. Growth of and omega 2-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions [J]. Appl. Envir. Microbiol,1991,57(2):419-425
    Zambonino J, Infante J, Cahu C and Peres A. Partial substitution of diet and tripeptides for native proteins in sea bass diets improves Dieentrarchus labrax larval development[J]. Journal of Nutrition,1997,127:608-614
    陈慈美,包建军,吴瑜端.磷的效应[J].海洋环境科学.1990,9(1):6-12
    陈德辉,章宗涉,陈坚.藻类批量培养中的最大比增长率[J].水生生物学报,1998,22(1):28-32
    陈峰,姜悦.微藻生物技术[M].北京:中国轻工业出版社,1999,55
    曹吉祥.微藻应用的潜力及途径[J].海洋湖沼通报,1994,(4):81-821
    曹健,漆开华,高孔荣.微藻的研究进展[J].广州食品工业科技,1996,12(4):5-91
    陈季旺,姚惠源.几种常见植物蛋白生物活性肽的研究概述[J].中国油脂,2003,28(1):37-39
    陈明耀.生物饵料培养[M].北京:农业出版社.1995,49-71
    程双奇.螺旋藻的营养评价[J].营养学报,1990,12(4):415-417.
    陈颖,李高彬.孙勇如.小球藻生物技术研究应用现状及展望[J].生物工程进展.1998,18(6):12-16
    陈贞奋.牟氏角毛藻培养研究Ⅱ.海泥提取液和不同氮肥对生长率的作用.海洋学 报[J].1984.6(2):253-259
    戴继勋.微藻育种与培养研究概况[J].生物工程进展,1996,16(6):17-201
    冯俊荣,李秉钧.合理进行营养调控缓解养殖水体富营养化[J].齐鲁渔业.2004,21(10):3-6
    郭宝江.螺旋藻多糖对植物细胞辐射损伤的保护[J].植物学报,1992,34(10):809
    高雯.食品酶学原理与分析方法[M].哈尔滨:黑龙江科学技术出版社,1991
    何海伦,陈秀兰,张玉忠.海洋生物蛋白资源酶解利用研究进展[J].中国生物工程杂志,23(9):71-73
    何建军,张弘.低盐液化鱼蛋白粉的研究[J].食品工业,1994,(5):50
    何培民.螺旋藻在我国水产养殖业应用与研究的现状和前景[J].上海水产大学学报,1998,7(2):149-154
    黄鹤鹄,李长玲,刘楚吾,等.微绿球藻对氮与磷营养盐需求的研究[J].海洋科学,2002,26(8):14-16
    黄翔鹄,李长玲,刘楚吾,等.两种微藻改善虾池环境增强凡纳对虾抗病力的研究[J].水生生物学报,2002,26(4):342-347
    黄旭雄,周洪琪,袁灿东,孙梅.氮源及浓度对微绿球藻营养价值的影响[J].上海水产大学学报,2003,12(2):113-1 15
    胡开辉,汪世华.小球藻的研究开发进展[J].武汉工业学院学报,2005,24(3):27-30
    胡开辉,周山勇.小球澡细胞活性物质的提取及对啤酒酵母的生理效应[J].应用生态学报,2005,16(8)
    蒋汉明,高坤山.氮源及其浓度对三角褐指藻生长和脂肪酸组成的影响[J].水生生物学报.2004,28(5):545-551
    蒋汉明,张凤珍,顾洪雁,等.氮源对等鞭金藻生长和脂肪酸组成的影响[J].食品与发酵工业.2004,30(10):3-8
    乐国伟,施用晖.酶解酪蛋白与相应氨基酸混合物对雏鸡组织蛋白质合成的影响[J].畜牧兽医学报,1998,29(1):10-16
    刘东艳,孙军,巩晶等.不同氮磷比例对球等鞭金藻生长的影响[J].海洋水产研 究.2002,23(1):29-32
    刘公臣.β-胡萝卜素对肿瘤的防治作用[J].国外医学中医药分册,1991,13:7-10
    刘健康.高级水生生物学[M].北京:农业出版社,1999.68-72
    李庆彪,宋全山.生物饵料培养技术[M].北京:中国农业出版社.20-28
    李师翁,李虎乾.植物单细胞蛋白资源——小球藻开发利用研究的现状[J].生物技术,1997,7(3):45-48
    刘文斌,王恬.大豆粕蛋白酶解条件和产物分析研究[J].中国油脂,2005,30(6):47-49
    刘学剑.新型微量元素添加荆——氨基酸络(螯)合盐.饲料博览[J],1994,(1):34-36
    刘学铭.小球藻在食品工业中的应用及小球藻食品的研制[J].武汉食品工业学院学报,1999,(1):47-52.
    刘学铭,王菊芳,余若黔,等.不同氮水平下异养小球藻生物量和叶绿素含量的变化[J].植物生物学通讯,1999,35(3):198-201
    李志勇,郭祀远,李琳,等.微藻保健食品的开发与利用[J].食品研究与开发,1997,18(2):38-40.李建武,萧能,余瑞元,等.生物化学实验原理和方法[J].北京:北京大学出版社,1994
    梁英,麦康森,孙世春.不同的营养盐浓度对三角褐指藻生长的影响[J].海洋湖沼通报.1999,(4):43-47
    梁英,麦康森,孙世春等.硝酸钠浓度对三角褐指藻生长及脂肪酸组成的影响[J].海洋科学,2002,26(5):48-51
    林志华,尤仲杰.浙江滩涂贝类养殖高产技术模式[J].Marine sciences.2005,29 (8):95-99
    马志珍.氮源及其浓度对三角褐指藻生长的影响.海洋湖沼通报[J].1983(2):45-50
    米振琴,谢骏,潘德博,等.精养虾池浮游植物理化因子与虾病的关系[J].上海水产大学学报.1999,8(4):304-308
    庞启深.螺旋藻抗辅射多糖的提纯分析[J].生物化学与生物物理学报,1989,5:445.
    潘庭双,胡贤江,候冠军等.氮对微绿球藻生长的影响[J].安徽农业科学.2001,29(4):548-555
    彭卫民.钝顶螺旋藻藻蓝蛋白性质的研究[J].中国农业大学学报,1999,增刊,35-38.
    邱昌恩,况琪军,刘国祥,等.不同氮浓度对绿球藻生长及生理特性的影响[J].中国环境科学,2005,25(4):408-411.
    曲克明,陈碧鹃,表有宪,等.氮磷营养盐影响海水浮游硅藻种群组成的初步研究[J].应用生态学报.2000,11(3):445-448
    沈萍萍,王朝晖,齐雨藻,等.光密度法测定微藻生物量[J].暨南大学学报,2001,22(3):115-119
    沈颂东.氮磷比对小球藻吸收作用的影响[J].淡水渔业,2003,33(1):23-25
    沈颂东.氮素对小球藻生长的影响[J].水利渔业.2003,23(2):55-57
    孙灵毅,王力勇,徐惠章.单细胞藻类对营养盐类的吸收[J].水产科技情报.2003,30(3):119-120
    唐兴本,宋玲利.水产养殖中浮游植物的培养方法[J].饲料园地.66-68
    王健,王萍,何义朝.滤食性贝类营养需求和代用饲料研究进展[J].海洋科学2000,24(4):26-30
    王丽卿,黄旭雄.不同营养盐下微绿球藻的生长及水体中氮磷的变化[J].上海水产大学学报.2002,11(3):215-218
    王清印.浅论我国海水养殖存在的问题及可持续发展对策[M].海水健康养殖的理论与实践.北京:海洋出版社.2003,55-60
    王如才,王昭萍,张建中.海水贝类养殖学[M].青岛海洋大学出版社.1993,244-275
    王秀红,沈健英,陆贻通.氮肥对3种固氮蓝藻种群数量的影响[J].云南农业大学学报,2006,21(3):333-336
    王业勤,李勤生:小球藻应用研究动态[J].微生物学通报,1985,12(6):275-277.
    王渊源.海产饵用单细胞藻类培养研究的进展与问题[J].海洋通报,1988,7(4):108-112
    王扬才,叶显峰.饵料藻类对贝类育苗的影响[J].2003,20(11):6-9
    王中元.缢蛏半人工采苗中附着期的预报[J].太平洋西部渔业研究委员会第五次全体会议论文集,1960,33-39
    魏东,张学成,隋正红.等.氮源和N/P对眼点拟微球藻的生长、总脂含量和脂肪酸组成的影响[J].海洋科学,2000,24(7):46-50
    韦进钟.小球藻的营养价值及其开发利用简述[J].畜牧兽医科技信息,2004,8-12-13
    吴长斌,张佳峰,翟兴文.氮源对雨生红球藻和扁藻生长的影响[J].河北渔业,2003,2:24-27
    吴国琳.水污染的监测与控制[M].北京:科学出版社.2004,109-116
    吴建平.大豆降血压肽的研制[J].中国油脂,1998,23(5):22-25.
    吴建中.大豆蛋白的酶解产物研究[J].中国油脂,2004,29(8):50-54
    谢忠明.海水经济贝类养殖技术[M].北京:中国农业出版社,2003,792-799
    萧散新.微藻养殖与应用之前瞻[J].中国水产,1990,4(4):7-12
    熊光权,张弘.低值淡水鱼的酶法水解[J].中国水产,1992,(8):37
    杨海波,于媛,刘艳,等.营养元素对小球藻生长及胞内蛋白质和多糖含量的影响[J].水产科学,2004,23(1):6-9
    叶林超,叶均安,徐国忠,等.微藻作为缢蛏饵料的营养与应用研究进展[J].中国水产,2006,11(6):65-66
    易文利,王国栋,刘选卫,等.氮磷比例对铜绿微囊藻生长及部分生化组成的影响[J].西北农林科技大学学报,2005,33(6):151-154
    于瑞海,王如才,邢克敏,等.海产贝类的苗种生产[M].青岛海洋大学出版社.1993,40-56
    赵法箴.我国海水养殖现状发展趋势与展望[M].21世纪中国海洋开发战略.北京:海洋出版社.2001,91-100
    赵玉蓉,王红权.微量元素氨基酸螯合物在水产养殖中的应用[J].内陆水产,2003,28(1):29
    周炳元,董松生.缢蛏养殖技术[M].金盾出版社,1994,10-94
    周洪琪,丁卓平,张旭日,等.微藻饵料的研究[J].上海水产大学学报,1998,7(增刊):323-331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700