海南沼虾遗传多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海南沼虾(Macrobrachium hainanense),隶属于甲壳纲,十足目,长臂虾科,沼虾属,是我国重要的淡水经济虾类。因其在河口附近繁殖且耐低温能力较弱,分布于浙江(瓯江以南)、广东、广西、福建、海南等地入海的河流。海南沼虾已应用于杂交育种研究,但有关其遗传多样性研究迄今仍为空白。本文采用SRAP分子标记技术对瓯江、闽江、珠江、万泉河、昌化江五个地理种群的海南沼虾遗传多样性进行了研究,并对珠江群体海南沼虾的ITS-1序列进行了分析。
     ①海南沼虾遗传多样性的研究
     本文通过优化SRAP扩增的相关参数,建立了海南沼虾的SRAP反应体系。25μLSRAP扩增体系的最优参数如下:10×PCR反应缓冲液2.5μL,MgCl2(25mmoL/L)1.5μL,Taq DNA聚合酶(5U/μL)0.16μL,正反向引物(10μmol/L)各2.0μL,dNTP(2.5mmol/L)1.5μL,全基因组DNA(20ng/μL)1.0μL,ddH2O补足。
     利用上述反应体系,从30对SRAP引物组合中筛选出15对扩增稳定且多态性较好的引物组合,并分析了瓯江、闽江、珠江、万泉河、昌化江五个地理种群海南沼虾的遗传多样性。共得到了255个清晰、稳定的位点,其中多态性位点为177个,多态性位点比例为69.4118%。五个地理种群多态性位点比例分别为47.45%、43.92%、53.33%、46.67%、43.92%;遗传杂合度分别为0.1799、0.1657、0.1839、0.1892、0.1763;Shannon信息指数分别为0.2746、0.2543、0.2876、0.2846、0.2658。两两群体间遗传分化指数(Gst)值在0.0887-0.2702之间,基因流值(Nm)在1.9135-5.1366之间,遗传距离值介于0.2472-0.3469之间,遗传相似系数为0.6531-0.7528。AMOVA分析结果表明:群体的遗传变异有17.64%是由群体间遗传变异引起的,且群体间遗传变异对总的遗传变异影响是显著的(Pst=0.176>0.15)。聚类分析结果表明:五个地理种群海南沼虾共分为两个类群,昌化江群体单独为一个类群;瓯江、珠江群体在遗传相似系数值为0.75时聚在一起;遗传相似系数值为0.738-0.742时,瓯江、珠江群体先后与闽江群体和万泉河群体聚在一起;当遗传相似系数值为0.67时,五个群体聚在一起。
     ②海南沼虾ITS-1序列分析
     采用青虾(Macrobrachium nipponense)ITS-1扩增引物,对珠江群体海南沼虾基因组DNA进行扩增,扩增出大小为2000bp左右的单一亮带。用DNAStar软件分析海南沼虾ITS-1序列后得出:1)各海南沼虾个体间的平均遗传相似度为90.80357%,ITS-1片段长度在1630-1750bp之间;2)ITS-1序列中碱基A、G、C、G+C的含量百分比变化范围分别为:27%-30%(A),27%-31%(G),14%-16%(C),43%-46%(G+C);3)ITS-1全序列中含有2个具有多态性的SSR位点,分别为位于258bp的(AG)n序列和1270bp的(GA)n序列。将海南沼虾ITS-1标准序列进行BLAST比对分析,结果表明:海南沼虾同青虾(M. nipponense)和刀额新对虾(Metapenaeus ensis)都有较高的同源性。
     本文的研究填补了海南沼虾遗传多样性研究的空白,将为海南沼虾种质资源的有效保护和合理地开发利用提供理论依据;同时也为海南沼虾的遗传学研究提供了新的分子标记。
Macrobrachium hainanense, belonged to Macrobrachium, Palaemonidae, Decapoda, Crustacea, is one of the most important freshwater prawns for aquaculture in China. M. hainanense spawns near the estuary and its low-temperature tolerance is weak. As a result, it only exists in the rivers connected to the sea, which includes O'jiang river and other rivers in the south of O'jiang river. M. hainanense has been used for cross-breeding, but no work was reported on its genetic diversity. In this paper, genetic diversity of M. hainanense of five geographic populations, including O'jiang River(OJ), Minjiang River(MJ), Pearl River(PR), Wanquanhe River(WQ) and Changhuajiang River(CH), were investigated by SRAP markers and ITS-1 sequence of Pearl River population was analysed.
     ①Studies on genetic diversity of M. hainanense
     SRAP reaction system of M. hainanense was established by optimizing PCR reaction factors. The optimal parameters of 25μL reaction system:10×PCR buffer 2.5μL, MgCl2 (25 mmoL/L) 1.5μL, Taq polymerase (5U/μL) 0.16μL, forward and reverse primer (10μmol/L) 2.0μL each, dNTP (2.5mmol/L) 1.5μL, genomic DNA (20ng/μL) 1.0μL, with ddH2O complement to 25μL.
     With the SRAP reaction system,15 pairs of stably and well amplified primer combination were screened from 30 pairs of primer combination. Genetic diversity of five geographic populations named OJ, MJ, PR, WQ, CH for M. hainanense was studied.177 polymorphism loci out of 255 clear and stab loci, the presence ratio of polymorphism locus was 69.4118%. The percentage of polymorphism locus, heterozygosity, Shannon's information index for each population were 47.45%,43.92%,53.33%,46.67%,43.92%; 0.1799,0.1657,0.1839,0.1892,0.1763; 0.2746,0.2543,0.2876,0.2846,0.2658. Gst, Nm, genetic distance and genetic similarity coefficients for any two populations ranged from 0.0887-0.2702,1.9135-5.1366,0.2472-0.3469,0.6531-0.7528. With the method of AMOVA,17.64% genetic variation of populations was caused significantly by genetic variation of inter-populations (Pst=0.176>0.15). The Cluster analysis showed that the five geographic populations of M. Hainanense were divided into two groups and CH population was an independent group; OJ and PR population clustered when coefficient was 0.75; OJ, PR population clustered with MJ and WQ population when coefficient was 0.738-0.742; When coefficient was 0.67, all of populations clustered.
     ②Studies on ITS-1 of M. hainanense
     By using of ITS-1 primer for Macrobrachium nipponense, ITS-1 of M. hainanense was amplified. A band length about 2,000bp was detected. ITS-1 of M. hainanense was analyzed by DNAStar and results as follows:①The length of ITS-1 was ranged from 1,630bp to1,750bp;②The content range of base A, G, C, and G+C were 27%-30%, 27%-31%,14%-16%,43%-46% respectively;③here are two polymorphism loci of SSR. One locus of (AG)n was at 258bp, the other locus of (GA)n was at 1270bp. Standard ITS-1 of M. hainanense was analyzed by BLAST method and the result showed that there was high homology between M. hainanens and M. nipponense, M. ensis.
     This paper not only filled the gap of studies on genetic diversity for M. hainanense but provided the guides for scientific development and utilization of M. hainanense. In addition, new molecular markers were developed for studies of M. hainanense genetics.
引文
1. A Insua, MJ Lopez-Pinon, R Freire, et al. Sequence analysis of the ribosomal DNA internal transcribed spacer region in some scallop species (Mollusca:Bivalvia:Pectinidae)[J]. Genome, 2003,46:595-604
    2. AW Coleman, VD Vacquier. Exploring the Phylogenetic Utility of ITS Sequences for Animals:A Test Case for Abalone (Haliotis)[J]. Journal of molecular evolution,2002,54(2):246-257
    3. Carnoy J. B. La cytodierese ches les Arthropodes[M]. La Cellule. L.1885,1
    4. DA-LONG GUO, XIAO-GAI HOU, JING ZHANG. Sequence-related amplified polymorphism analysis of tree peony(Paeonia suffruticosa Andrews) cultivars with different flower colours[J]. The Journal of Horticultural Science & Biotechnology,2005,84(2):131-136
    5. Domanico M J, Phillips R B, Oakley T H. Phylogenetic analysis of Pacific salmo using nuclear and mitochondrial DNA sequence[J]. Can.J, Fish. Aquat. Sci,1997,5(4):1865-1872
    6. Einar E, Nielsen L, Michael M Hansen, et al. Looking for a needle in a haystack:discovery of indigenous Atlantic salmon(Salmo salar L.) in stocked populations[J]. Conservation Genetics,2001, 2:219-232
    7. Emandez A F, Atcia T G, Sensio L A, et al. PCR-AFLP Analysis of the internal transcribed spacer (ITS) region for identification of 3 clam species[J]. Journal of food science,2001,66(5):657-661
    8. Farmer A S. A new technique applied to the chromosomes of Nephrops norvegicu (L) (Decpoda,Nephropidae)[J]. Crustaceana,1974,27:17-20
    9. Finely L. M, Haley L. The genetics of aggression in the juvenile American lobsters, Homarus americanus[J]. Aquaculture,1983,33:135-139
    10. G. J. Vandemark, J. J. Ariss, G A. Bauchan, et al. Estimating genetic relationships among historical sources of alfalfa germplasm and selected cultivars with sequences related amplified polymorphism[J]. Euphytica,2006,15(2):9-16
    11. Ge Ding, Daizhen Zhang, Xiaoyu Ding, et al. Genetic variation and conservation of the endangered Chinese endemic herb Dendrobium officinale based on SRAP analysis[J], Plant Systematics and Evolution.2008,276(3):149-156
    12. Harris D. J, Crandall K. A. Intragenomic varation within ITS-1 and ITS-2 of freshwater crayfishes: Implication for phylogenetic and microsatellite studies[J]. Mol. Biol. Evol.2000,17(2):284-291
    13. Hayashi K, Fujiwara. A new method for obtaining metaphase chromosomes from the regeneration blastema of Penaeus(Marsupenaeus) japonicus[J]. Nippon Suisan Gakkaishi,1998,54:1563-1565
    14. Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life:cytochromec oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society of London Series B: Biological Sciences,2003,270(S):96-99
    15. Hedgecock D. Growth differences among families of the lobester, Homarus americanu[J]. Proc World Mari Soci,1976,7:347-361
    16. J P Thorp. The Molecular Clock Hypothesis:Biochemical Evolution, Genetic Differentiation and Systematics [J]. Annual Review of Ecology and Systematics,1982,13:139-168
    17. Jiexia Quan, Xue-mei LU, Zhimeng Zhuang, et al. Low Genetic Variation of Penaeus chinensis as Revealed by Mitochondrial COI and 16S rRNA Gene Sequences[J]. Biochemical genetics,2001, 8(39):7-8
    18. Joe Sambrook, David Russell. Molecular Clonging A Laboratory Manual[M]. Beijing:Science Press,2002,597-601
    19. K.H. Chu, C.P. Li, H.Y. Ho.The First Internal Transcribed Spacer (ITS-1) of Ribosomal DNA as a Molecular Marker for Phylogenetic and Population Analyses in Crustacea[J]. Marine Biotechnology, 2001,7(1):55-361
    20. King T L, Bachles M S, Gjetvaj B, et al. Intraspecific phylogeography of Lasuigona subviridis: convervation implicaiton of runge discontinuity [J]. Mol. Eool,1999,8(S):76-78
    21. Lester L J. Population genetics of penaeid shrimp from the Gulf of Mexio[J]. Hered,1979,70: 175-180
    22. Lester. Differences in larval growth among families of Penaeus stylirostris Stimpson and Penaeus vannamei Boone[J]. Aquacul and Fish Manag,1988,19:243-251
    23. Li, G, C. F. Quiros. Sequence-Related Amplified Polymorphism (SRAP), a new marker system based on a simple PCR reaction:Its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet,2001,10(3):455-461
    24. Lioe K G, La variabilite et al. defferenciation genetique de quelaues especes peneides[J]. thesis Univ Sci techniques Languedoc de Montpelier,1984
    25. LU Yong-quan, WU Wei-ren. Identification of salt-responsive genes in English cordgrass (Spartinaanglica) roots using SRAP technique[J].浙江大学学报(农业与生命科学版)2006,32(5):511-514
    26. LX Qiao, HY Liu, BT Guo, et al. Molecular identification of 16 porphyra lines using sequence-related amplified polymorphism markers[J]. Aquatic Botany,2007,8(7):203-208
    27. M. A. Esposito, L. Milanesi, E. Martin, et al. Augmenting the Genetic Base in Pea (Pisum sativum L)[J]. Biotechnology,2007,6(4):573-577
    28. Malecha S. R, Masuno S, Onizuka D. The feasibility of mearsuring the heriability growth pattern variation in juvenile freshwater prawns, Macobrachium rosengergiii(de Man)[J]. Aquacul,1984,38: 347-363
    29. Miller AD, Murphy NP, Burridge CP, et al. Complete Mitochondrial DNA Sequences of the Decapod Crustaceans Pseudocarcinus gigas (Menippidae) and Macrobrachium rosenbergii (Palaemonidae)[J]. Mar Biotechnol,2005,7(4):339-349
    30. Milligan D J. A method for obtaining metaphase chromosome spreds from marine shrimp with notes on the karyotypes of Penaeus aztecus, setiferus and penaeus duorarum [C]. Proceedings of the World Mariculture Society,1996,7:327-332
    31. Mulley J C, Latter B. Genetic variation and evolutionary relationships within a group of thirteen specise of penaeid prawns[J]. Evolution,1980,34:904-916
    32. Murofushi M, Deguchi Y, Yosida T. Karyological study of the red swamp crayfish and the Japanese lobster by air-drying method[J]. Proc Japan Acad Ser B,1984:22-25
    33. Murofushi M, Deguchi Y. A method for obstaining metaphase chromosome from large shrimp-like curstaceans[J]. Pepmishima Res Inst Sci Liv, Nihon Univ,1983,6:31-34
    34. Murofushi M, Deguchi Y. karyotype evolution in Decapoda Crustacea, In hirano R. Hanyu I, eds[C]. Proc Second Asian Fisheries Forum. Asian Fisheries society, Tokyo, Japan,1990,549-553
    35. Murofushi M, Deguchi Y. Species specifiy in Karyotypeof Pacific Ocean spiny lobsters[C]. Pacific Sci Assoc 16th congr.1987,171
    36. Murofushi M. Y, Odagaki M. Inoue T. Chromosomes of eleven crab soecies[J]. Pepmishima Res Inst Sci Liv, Nihon Univ,1989,12:25-34
    37. Nelson K, Hedgecock D. Enzyme polymorphism and adaptive strategy in the decapod crustacea[J]. Am Nat,1980,116(2):238-297
    38. Nichols K M, young W P, Danzmann R G, et al. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss)[J]. Anita Genet,2003,34(2):102-105
    39. Niiyama H. The chromosomes of the crayfish, Cambaroides japonicus(De Haan)[M]. J Fac Sci Hokkaido Imp. Univ, ser Ⅵ Zoology,1934,3:41-53
    40. OR Ortega, E Duran, C Arbizu, et al. Pattern of genetic diversity of cultivated and non-cultivated mashua TROpaeolum tuiberosum in the Cusco region[J]. Genet Resour Crop Evol,2007, (54): 807-821
    41. Osman Gulsen, Suleyman Karagul, Kazim Abak. Diversity and relationships among Turkish okra germplasm by SRAP and phenotypic marker polymorphism[J]. Biologia,2007,62(1):41-45
    42. Proctor R R, Marvin K, Lansford L, et al. Phsphoglucomutase polymorphism in brown shrimp, Penaeus aztecus[J]. Fish Res Boad Can,1974,31:1405-1407
    43. Redfied J A, Hedgecock D, Nelson K, et al. low heterozygosities in tropical marine curstaceans of Austrulia and the trophic stability hypothesis [J]. Mar Biol Lettm,1981,1:303-313
    44. Ruiz, Juan J, Garcia-Martinez, Carlos F, et al. Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR markers[J]. Journal of the American Society for Horticultural Science,2005,1(30):88-94
    45. Sbordoni V, Matthaeis E, Cobdli S, et al. Bottleneck effects and the depression of genetic variabiity in hatchery stocks of Penaeus Japonicus(Crustacea,Decapoda) [J]. Aquaculture,1986,57:239-251
    46. Shripathi Bhat, Alok Patel, Paramananda Das, et al. Isolation and characterization of microsatellite loci in giant freshwater prawn, Macrobrachium rosenbergii[J]. Molecular Ecology Notes,2006, 6(3):823-825
    47. Shu-Jing Sun. Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP[J]. Applied Genetics and Molecular Biotechnology,2006,72(3):537-543
    48. SL Sajdak, RB Phillips. Phylogenetic relationships among Coregonus species inferred from the DNA sequence of the first internal transcribed spacer (ITS1) of ribosomal DNA[J]. Canadian Journal of Fisheries and Aquatic Sciences,1997,54:1494-1503
    49. Soto-Hernandez J, Grijalva-Chon J M. Genetic differentiation in hatchery strains and wild white shrimp Penaeus (Litopenaeus) vannamei (Boone,1931) from northwest Mexico[J].2005,12(6): 593-601
    50. Strauss W M. Preparation of genomic DNA from mammalian issues, Current Protocols in Molecular Biology[M]. New York:John Wiley and Sons,1989
    51. Tam Y K, Chu K. Electrophoretic study on the phylogenetic relations hips of some species of Pwnaeus and Metaplenaeus (Decapoda:Penaeidae) from the south china sea[J]. Journal of Crustacean Biology,1993,13(4):697-705
    52. Tautz D. Renz M. Simple sequences are ubiquitous repetitive components of eukaxyotic genomes[J].Nul Acids Res,1984,12:4127-4138
    53. Toro J E. Molecular identification of four species of mussels from sourthern Chile by PCR-based molecular clear markers:the potential use in studies involving planktonic surveys[J]. Shellfish Res, 1998,17:1203-1205
    54. Vos P, Hogers R, Bleer M, et al. AFLP:a new technique for DNA fingerprinting[J]. Nucleic Acids Research,1995,23(21):4407-4414
    55. Wang H, Li F, Xiang J, et al. Microsatellite-centromere distances and microsatellite diversity in different ploidy classes of Chinese shrimp(Fenneropenaeus Chinensis)[J]. Genetica,2008,132(1): 43-50
    56. WANG Wei—Ji, KONG Jie, BAO Zhen-Min, et al. Isozyme variation in four populations of Penaeus chinens Shrimp[J]. Biodivers Science,2001,9(3):241-246
    57. Wayne Powell, Michele Morgante, Chaz Andre. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis[J]. Mol Breed,1996,12:223-225
    58. Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res,1990,18:6531-6353
    59. Woese CR, Gutell RR, Gupta R, et al. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids[J]. Microbiol Rev,1983,47:621-669
    60. Wright S. Evolution and the Genetics of populaitons. Variability within and among natural population[M]. Chicago:University of Chicago Press,1978:79-103
    61. Yu Shanshan, Kong Xiaoyu, Li Yulong, et al. The complete sequence of mitochondrial COII gene of Fenneropenaeus chinensis and its applicability as a marker for phylogenetic analysis[J]. Journal of Ocean University of China (English Edition),2007,6(2):187-192
    62. Zudong Sun, Zining Wang, Jinxing Tu, et al. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers[J].2007,114(8):1305-1317
    63.安丽,刘萍,李健,等.“黄海一号”中国对虾不同世代间AFLP分析[J].2008,38(6):921-926
    64.车未艾,张铁明.DNA序列在苔藓分子系统学研究中的应用[J].西北植物学报,2006,26(6):1277-1281
    65.陈婵娟,张鑫,许志强,等.江苏地区青虾种质资源RAPD分析[J].江苏农业科学,2008,2:62-65
    66.陈锋,张洁夫,陈松等.甘蓝型油菜隐性核不育基因的SRAP标记[J].江苏农业学报,2007,23(4):283-288
    67.陈琳琳,孔晓瑜,周立石,等.魁蚶核糖体DNA基因转录间隔区的序列特征[J].中国水产科学,2005,12(1):104-107
    68.陈文新.细菌系统发育[J].微生物学报,1998,38(3):240-243
    69.程起群,樊强国,夏连军,等.3种沼虾的16SrRNA基因序列分析[J].《浙江海洋学院学报:自然科学版》2007,26(1):1-6
    70.程远辉,周昌华,马爱芬.重庆何首乌遗传多样性的SRAP研究[J].中国中药杂志,2007,32(8):44-47
    71.戴继勋,张全启,包振民.中国对虾的核型研究(英文)[J].青岛海洋大学学报,1989,19(4):97-104
    72.邓思立,潘俊松,何欢乐,等.黄瓜M基因连锁的SRAP分子标记[J].上海交通大学学报:农业科学版,2006,24(3),240-245
    73.邓筑虹.四种笛鲷rDNA-ITS-1测序和Cytb-PCR-SSCP初步分析[D].湛江:湛江海洋大学,2004
    74.堵南山,赖伟,薛鲁征.中华绒螯蟹染色体的研究[J].动物学研究,1986,7(3):293-296
    75.傅洪拓,龚永生,吴滟,等.青虾与海南沼虾的人工种间杂交及其同工酶分析[J].水生生物学报,2004,28(3):327-329
    76.傅洪拓.沼虾类人工种间杂交及鱼类细胞电融合研究[D].武汉:中国科学院水生生物研究所,2003
    77.戈敏生,叶奕佐,韩育章,等.罗氏沼虾和海南沼虾网箱饲养可行性初探[J].水产养殖,1991,18(4):108-110
    78.顾德平,缪可才.提高海南沼虾苗种运输成活率的措施[J].上海农业科技,1998,1:48
    79.郭庆华.与红花苞叶刺性状紧密连锁的SRAP分子标记研究[J].药学学报,2007,42(7):794-797
    80.韩建明,侯喜林,徐海明,等.不结球白菜(Brassica campestris ssp, chinensis Makino)种质资源SRAP遗传分化分析[J].作物学报,2007,33(11):1862-1868
    81.洪一江,张立明.鄱阳湖日本沼虾幼体发育及其同工酶[J].中国水产科学,2002,9(3):203-206
    82.黄付友,何玉英,李健,等.“黄海1号”中国对虾体长遗传力的估计[J].中国海洋大学学报,2008,38(2):269-274
    83.黄富友,陈彩仙,姚子亮,等.海南沼虾后期苗种的冬季暂养技术[J].水产养殖,1996,6:7-8
    84.姜叶琴,谢树海,周琴,等.秀丽白虾染色体核型的初步分析[J].水产学报,2008,27(9):470-472
    85.蒋速飞,傅洪拓,熊贻伟,等.日本沼虾不同地理群的遗传多样性研究[J].中国农学通报,2006,24(10):554-558
    86.颉晓勇,苏天凤,陈文.凡纳滨对虾6个养殖群体遗传多样性的比较分析[J].南方水产,2008,4(6):42-49
    87.雷剑,柳俊.一个与马铃薯青枯病抗性相连锁的SRAP标记筛选[J].中国马铃薯,2006,20(3):150-153
    88.李驰,卢新雄,张志娥,等.利用SRAP和SSR分子标记检测分析29份棉花种质遗传完整性[J].植物遗传资源学报,2007,8(1):46-53
    89.李纯厚,田丽霞.同工酶电泳法鉴定对虾幼体种类的研究[J].中山大学学报:自然科学版,1998,37(6):79-83
    90.李纯厚,钟振如.斑节对虾个体发育早期的同工酶变化[J].水产学报,1994,18(1):62-64
    91.李锋,林继辉,刘楚吾.凡纳滨对虾引进亲虾及其子一代的遗传多样性研究[J].海洋科学,2006,30(4):64-68
    92.李广丽,朱春华.罗氏沼虾个体发育早期的同工酶研究[J].水生生物学报,2001,25(4):338-343
    93.李慧芝,尹燕枰,张春庆,等.SRAP在葱栽培品种遗传多样性研究中的适用性分析[J].园艺学报,2007,34(4):929-934
    94.李健,刘萍,何玉英,等.中国对虾快速生长新品种“黄海号”的人工选育[J].水产学报,2005,29(1):1-5
    95.李明云,张海琪,朱俊杰,等.罗氏沼虾浙江养殖群体与缅甸自然群体遗传差异的RAPD分析[J].水产学报,2004,28(4):360-364
    96.李晓慧,孔杰,王伟继,等.中国对虾连续两代的DNA随机扩增多态性及其遗传规律分析[J].水产学报,2007,31(5):598-606
    97.李晓静,王伟继,孔杰,等.利用中国对虾单对杂交亲本及其F2群体构建RAPD连锁遗传图谱[J].中国水产科学,2007,49(15):770-777
    98.李严,张春庆.西瓜杂交种遗传多态性的SRAP标记分析[J].2005,32(4):67-71
    99.林听,王鹏,杜琦,等.福建沿海不同养殖区泥蚶的ITS-1基因片段序列分析[J].福建水产,2008,1:61-65
    100.林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析[J].2004,31(6):622-626
    101.凌去非,李思发,张海军,等.丁鱥不同群体ITS-1区序列分析[J].水利渔业,2006,26(6):24-25
    102.刘波,陈清西,柯才焕,等.日本囊对虾人工诱变及子一代遗传变异的RAPD分析[J].厦门大学学报(自然科学版,增刊),2006,45:172-176
    103.刘冲,葛才林,任云英,等.SRAP、ISSR技术的优化及在甘蓝类植物种子鉴别中的应用[J].生物工程学报,2006,22(4):657-662
    104.刘建丰,王志德,刘艳华,等.应用SRAP标记研究烟草种质资源和遗传多样性[J].中国烟草科学,2007,28(5):49-53
    105.刘先宝,谭志琼,葛建军.腐烂茎线虫rDNA-ITS序列分析[J].热带作物学报,2008,29(3):385-389
    106.刘雅辉,闫红飞,杨文香,等.23个小麦抗叶锈病近等基因系SRAP多态性[J].中国农业科学杂志,2008,41(5):1333-1340
    107.卢建平,姜乃澄.罗氏沼虾胚胎发育过程中同工酶的研究[J].东海海洋,2000,18(3):34-123
    108.马爱芬,李加纳,谌利,等.甘蓝型油菜种皮色泽相关基因的cDNA-SRAP差异显示[J].作物学报,2008,34(3):526-529
    109.邱高峰,堵南山,赖伟.日本沼虾染色体及其核型的研究[J].海洋与湖沼,1994,25(5):493-498
    110.邱高峰.罗氏沼虾核型及长臂虾亚科核型演化关系的探计讨[J].水产学报,1996,20(4):294-300
    111.邱涛,陆仁后.4种沼虾的SRFA指纹研究[J].中国水产科学,1999,6(1):1-4
    112.曲绍轩,高山,黄晨阳.SRAP、ISSR和RAPD分子标记技术在银耳菌株鉴别上的应用[J].食用菌学报,2007,14(3):1-5
    113.饶小珍,陈寅山,林岗,等.日本沼虾成体发育阶段的肌肉同工酶研究[J].福建师范大学学报(自然科学版),2001,17(4):97-100
    114.申雪艳,孔杰,岳志芹,等.RAPD标记在中国对虾(Fenneropenaeus chinensis)单对交配亲本及其子一代的分离方式[J].《高技术通讯》,2004,14(9):100-105
    115.孙昭宁,刘萍,李健,等.RAPD和SSR两种标记构建的中国对虾连锁遗传图谱[J].动物学研究,2006,27(3):317-324
    116.谭树华,王桂忠,艾春香,等.斑节对虾养殖群体遗传多样性的同工酶和RAPD分析[J].中国水产科学,2005,12(6):702-707
    117.谭树华,王桂忠,林琼武,等.厦门和汕头沿海短沟对虾群体遗传结构的及分化[J].动物学报,2006,52(2):349-354
    118.谭祖猛,李云昌,胡琼,等.通过分子标记估算遗传距离预测甘蓝型油菜的杂种优势[J].中国油料作物学报,2007,29(2):126-132
    119.王鸿霞,吴长功,相建海.凡纳滨对虾繁殖中不同亲本对子代遗传贡献率的差异[J].动物学报,2005,52(1):175-181
    120.王凯伟,黄富友,孙相耀.瓯江中下游海南沼虾苗种资源开发利用探讨[J].水利渔业,1992,5:33-35
    121.王凯伟,黄富友.海南沼虾人工繁殖研究[J].水利渔业,1990(2):48-49
    122.王伟继,高焕,孔杰,等.利用AFLP技术分析中国明对虾的韩国南海种群和养殖群体的遗传差异[J].高技术通讯,2005,15(9):81-86
    123.魏晓华.栉孔扇贝和海湾扇贝的群体遗传多样性研究及扇贝科几种贝类的分子系统学研究[D].青岛:中国海洋大学,2004
    124.吴洁,谭文芳,何俊蓉,等.甘薯SRAP连锁图谱构建淀粉含量QTL检测[J].分子植物育种,2005,3(6):841-845
    125.吴群,姬可平.rRNA基因内转录间隔区作为遗传标记的应用现状及前景[J].时珍国医国药,2008,9(11):2806-2808
    126.吴滟,傅洪拓,李家乐,等.太湖日本沼虾的遗传多样性分析[J].上海水产大学学报,2008,17(5):620-624
    127.相建海.中国对虾染色体的研究[J].海洋与湖沼,1988,19(3):205-209
    128.徐田军,刘楚吾,刘丽,等.金焰笛鲷rDNA基因转录间隔区ITS-1序列分析[J].南方水产,2006,2(5):61-64
    129.杨频,张浩,陈立侨,等.利用COI基因序列分析长江与澜沧江水系的日本虾群体的遗传结构[J].动物学研究,2007,28(2):113-118
    130.杨学明,郭亚芬,陈福艳,等.罗氏沼虾3个群体线粒体COI基因的序列差异和遗传标记的研究[J].遗传,2006,28(5):540-544
    131.杨学明,黄光华,蒋钦杨,等.罗氏沼虾不同群体线粒体16SrRNA基因的序列变异及其保守性分析[J].西南农业学报,2007,20(6):96-102
    132.姚建华,傅洪拓,龚永生等.日本沼虾SRAP反应体系正交设计及优化[J].华北农学报(增刊),2008,23:122-125
    133.喻达辉,朱嘉濠.珠母贝属6个种的ITS-2分子标记研究[J].南方水产,2005,1(4):6-13
    134.喻子牛,姜艳艳,孔晓瑜,等.栉孔扇贝核糖体DNA转录间隔子序列研究及其潜在应用[J].中国水产科学,2004,11(6):506-512
    135.岳志芹,王伟继,孔杰,等.AFLP分子标记构建中国对虾遗传连锁图谱的初步研究[J].《高技术通讯》,2004,14(5):88-93
    136.岳志芹,王伟继,孔杰,等.用AFLP方法分析中国对虾抗病选育群体的遗传变异[J].水产学报,2005,29(1):13-19
    137.曾地刚,陈晓汉,李咏梅,等.凡纳滨对虾遗传多样性的SSR分析[J].水利渔业,2008,28(1):31-34
    138.张代臻,唐伯平,张华彬,等.中华豆蟹与太平大眼蟹ITS-1区较研究[J].安徽农业科学,2008,36(11):465--466
    139.张海琪,何中央,徐晓林,等.罗氏沼虾缅甸野生群体和浙江养殖群体的遗传多样性比较[J],中国水产科学,2004,11(6):506-512
    140.张洪伟.青虾ITS-1序列SNP位点筛选及其在杂交遗传分析中的应用[D].2008,南京:南京农业大学
    141.张留所,相建海.凡纳滨对虾微卫星位点在两个选育家系中遗传的初步研究[J].遗传,2005,27(6):919-924
    142.张敏莹,刘焕章,徐东坡,等.RAPD分析野生和养殖太湖秀丽白虾的遗传多样性[J].农业生物技术学报,2008,16(5):905-906
    143.张鹏,张海洋,郭旺珍,等.以SRAP和EST-SSR标记分析芝麻种质资源的遗传多样性[J].作物学报,2007,33(10):38-44
    144.张天时,王清印,刘萍,等.中国对虾人工选育群体不同世代的微卫星分析[J].海洋与湖沼,2005,35(1):72-80
    145.张天澍,王玉凤.罗氏沼虾的染色体的初步研究[J].华中师范大学学报(自然科学版),2003,37(2):231-232
    146.张晓军,周岭华,相建海.刀额新对虾染色体核型及细胞核DNA含量[J].海洋与湖沼,2002,33(3):225-231
    147.张于光,李迪强,饶力群,等.东北虎微卫星DNA遗传标记的筛选及在亲子鉴定中的应用[J].动物学报,2003,49(1):118-123
    148.浙江省丽水地区水产技术推广站瓯江课题组.瓯江海南沼虾的生物学及人工养殖初探[J].淡水渔业,1990,5:9-11
    149.郑闽泉,丁桂枝,刘伯仁.海南沼虾胚胎发育及初孵幼体的观察[J].海洋湖沼通报,1991,2:78-81
    150.周发林,江世贵,姜永杰,等.海南三亚斑节对虾野生种群mtDNA 16srRNA基因和控制区序列的多态性[J].南方水产,2006,2(6):13-18
    151.周劲松,曹哲明,杨国梁,等.罗氏沼虾缅甸引进种和浙江本地种及其杂交种的生长性状与SRAP分析[J].中国水产科学,2006,13(4):667-673
    152.周利,李靖,陈玉惠,等.3株茶藨生柱锈重寄生木霉菌的形态鉴定及ITS序列分析[J].安徽农业科学,2008,36(15):6211-6213
    153.周岭华,张晓军,相建海.鹰爪虾染色体数目与核型的研究[J].海洋与湖沼,1999,30(3):250-254
    154.朱冬发,李少菁,王桂忠.东方扁虾的染色体[J].厦门大学学报(自然科学版),2000,39(6):844-848
    155.朱坚,高巍,林伯德,等.金针菇种质资源的SRAP分析[J].福建农林大学学报(自然科学版),2007,36(2):154-158
    156.朱银安,单红,王庆,等.长江、高邮湖、太湖青虾遗传多样性RAPD分析[J].水产养殖,2008,29(1):5-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700