经验影响捕食者的选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引入非本土的植物、动物和病原体是当今全球环境最紧迫的挑战。引入种群的建立会对新生的生态系统产生不良影响,且对其他物种发挥显著的生态意义、演化和经济影响。政府机构已经通过设计和组织管理策略做出响应,旨在减少外来物种所产生的负面效应。
     本文利用两种外来入侵生物克氏原螯虾和大瓶螺作为捕食者和捕食者,研究非本土物种克氏原螯虾对入侵种大瓶螺的生态影响。为了验证螯虾捕食大瓶螺是否受螺体型大小的影响,因此我们以亚成体克氏原螯虾和体型不同的大瓶螺作为受试生物研究两者之间的选择性捕食与被捕食关系。试验中设置了3种等级(小,中,大)的大瓶螺幼体供螯虾选择;为了验证螯虾捕食过程中是否受GAS遇见率(Encounter Rate, ER)的影响,试验中设置了GAS生物量相同和数量相同两组试验;为证明经过学习获得捕食经验的螯虾捕食效率较无知虾有所提高,我们设置了经验虾(EPC)和无知虾(NPC)试验,通过克氏原螯虾选择性捕食试验显示螯虾对大瓶螺的种群结构有一定影响,试验结果如下:
     (1)亚成体的克氏原螯虾倾向于捕食小型螺。
     (2)在GAS生物量相同试验中,根据GAS生物量相同投入一定比例的大、中、小3种类型的螺,在GAS生物量相同的情况下,即小螺的数量远大于中型螺和大型螺时,螯虾只捕食小型螺,没有出现捕食中、大型螺的现象。在GAS数量相同的试验中,每种体型的螺数量相同,大螺和中螺的体积要远大于小螺,这也就增加了捕食者螯虾的搜寻效率。试验结果显示,在GAS数量相同的试验中,出现了螯虾捕食大型螺和中型螺的现象,说明螯虾在捕食过程中受到遇见率的影响。
     (3)为证明经过学习获得捕食经验的螯虾捕食效率较无知虾有所提高,我们设置了经验虾(EPC)和无知虾(NPC)试验,通过对两种虾的相对捕食率(RPR)的比较发现,RPR EPC > RPR NPC。说明捕食经验的获得可以提高捕食效率。
     试验结果显示螯虾倾向于捕食体型小的大瓶螺,因此,在非本土入侵初期引入其有效捕食者可以达到较为理想的防治效果。利用两种外来入侵生物作为捕食者和捕食者,不仅是出于防治目的的考虑,而且对研究两种入侵生物的捕食行为有着重要的意义。
The introduction of non-native plants, animals and pathogens is currently the most seriouse environmental threat globally. The colonization of invasive species in new territory might cause notorious impact to the invaded ecosystem, so do to local species.
     I used two invasive species, namely the red swamp crayfish Procambarus clarkii (from Nanjing) and the golden apple snail Pomacea canaliculata (from Hainan) as the predatory-prey pair to study when this two lineages of invasive species which never encounter each other before were brought together, what will happen. To test the hypotheses that the predation will be influenced by the size of prey, or influenced by encounter rate, I designed the experience where the prey were composed of three size-rank (small-sized, middle-sized and large-sized). Two experiments respectively examined one with prey consisted of three size groups with the same biomass, another with prey consisted of three size groups with the same individual numbers. The second part of the experiments is to test the hypothesis that experience of the predator will influence its subsequent predation. The results of the present studies are,
     (1) Subadult crayfish have the tendency of predating GAS of small sizes.
     (2) In the same biomass where small-sized snails are much more than middle-sized and large-sized snails in number PC always consumed small-sized GAS. In same-snail-number experiments, encounter rate were relatively enhanced, therefore PC consumed GAS prey other than of small-sized.
     (3) The crayfish with the experience of GAS consumption showed a more efficient predation rate, in comparision to the crayfish without such experience.
     The results showed that the small size of crayfish tend to feed Golden apple snail , so in the early invasive stage introduction the non-native predator can be achieved more satisfactory effective control results. Use of the two invasive species as predator and prey, not only for the purpose of consideration of control, and the study of the predatory behavior of two invasive species has important significance.
引文
[1] Mack RN, Simberloff D, Lonsdale WM, Evans E, Clout M, Bazzaz FA. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl , 2000, 10:689– 710.
    [2] Lodge DM, Williams SL, MacIsaac H, Hayes K, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A. Biological invasions: recommendations for US policy and management. Ecol Appl, 2006, 16:2035–2054.
    [3] Byers JE, Reichard SH, Randall JM, Parker IM, Smith CS, Lonsdale WM, Atkinson IAE, Seastedt TR, Williamson M, Chornesky E, Hayes D. Directing research to reduce the impacts of nonindigenous species. Conserv Biol, 2002, 16:630–640.
    [4] Bruno JF, Fridley JD, Bromberg KD, Bertness MD. Insights into biotic interactions from studies of species invasions. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer, Sunderland, 2005, 13–40
    [5] Grosholz ED. Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proc Natl Acad Sci USA, 2005, 102:1088–1091.
    [6] Griffen BD, Guy T, Buck JC. Inhibition between invasives: a newly introduced predator moderates the impacts of a previously established invasive predator. J Anim Eco, 2008, l 77:32–40.
    [7] Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham W, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L. Impact: towards a framework for understanding the ecological effects of invaders. Biol Inv, 1999, 1:3–19.
    [8] Nystro¨m P, Bro¨nmark C, Grane′li W. Patterns in benthic food webs: a role for omnivorous crayfish? Freshw Biol , 1996, 36:631–646.
    [9] Chambers PA, Hanson JM, Burke JM, Prepas EE. The impact of the crayfish Orconectes virilis on aquatic macrophytes. Freshw Biol, 1990, 24:81–91.
    [10]Geiger W, Alcorlo P, Baltanas A, Montes C. Impact of introduced crustacean on the trophic webs of Mediterranean wetlands. Biol Invasions, 2005, 7:49–73.
    [11] Gherardi F. Crayfish invading Europe: the case study of Procambarus clarkii. Mar Freshwat Behav Physiol, 2006, 39:175–191.
    [12] Gherardi F, Acquistapace P. Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshw Biol, 2007, 7:1249– 1259.
    [13] Nystr¨om P. Ecology. In: Holdich DM (ed) Biology of Freshwater Crayfish. School of Life and Environmental Sciences, 2002, 192–235.
    [14] Gherardi F, Baldaccini GN, Barbaresi S, Ercolini P, De Luise G, Mazzoni D and Mori M. In: Gherardi F and Holdich DM (eds) Crayfish in Europe as Alien Species: How to Make the Best of a Bad Situation?1999, 107–128.
    [15] Lindqvist OV and Huner JV. Life history characteristics of crayfish: What makes some of them goodcolonizers? In:Gherardi F and Holdich DM (eds) Crayfish in Europe as alien species. How to make the best of a bad situation? 1999, 23–30.
    [16] Hazlett BA . Information use by an invading species: do invaders respond more to alarm odors than native species? Biological Invasions, 2000, 2: 289–294
    [17] Gherardi F, Acquistapace P, Hazlett BA and Whisson G. Behavioural responses to alarm odours indigenous and nonindigenous crayfish species: a case study from Western Australia. Marine & Freshwater Research, 2002, 53: 93–98
    [18] Naylor, R. Invasions in agriculture: assessing the cost of the golden apple snail in Asia[J]. Ambio, 1996, 443-448.
    [19] Wada, T. Introduction of the apple snail Pomacea canaliculata and its impact on rice agriculture[J]. Biol Invasions, 1999, 143-151.
    [20] Carlsson, N., Kestrup, A., Martensson, M., Nystrom, P. Lethal and non-lethal effects of multiple indigenous predators on the invasive golden apple snail Pomacea canaliculata[J]. Freshwater Biology, 2004, 49(10): 1269-1279.
    [21] Wu, M., Xie, Y. The golden apple snails Pomacea canaliculata in China. In: Global Advance in Ecology and Management of Golden Apple Snails[M]. 2006. Editors Ravindra C. Joshi & Leocadio S. Sebastian. Nueva Ecija: Philippine Rice Research Institute, Philippines.
    [22] Ishii, Y. and M. Shimada. The effect of learning and search images on predator¨Cprey interactions. Population Ecology, 2010, 52(1): 27-35.
    [23] Aronhime, B.. Predator-prey Interaction in Estuarine Bivalves: Size Selection, Effects of Salinity, and Indirect Interactions, 2010.
    [24] Dirk Draulans. Foraging and size selection of mussels by the tufted duck, aythya fuligula. Journal of Animal Ecology, 1982, 51: 943-956.
    [25] Krebs, J. R. & R. H. McCleery. Optimization in Behavioural Ecology. In J. R. Krebs J. R & N. B. Davies (eds), Behavioural Ecology. 2nd edn. Blackwell, Oxford: 1984, 91–121.
    [26] Pyke, G. H. Optimal foraging theory: a critical review. Ann.Rev.Ecol.Syst, 1984, 15(1): 523-575.
    [27] Barnard, C. and C. Brown. Prey size selection and competition in the common shrew (Sorex araneus L.). Behavioral Ecology and Sociobiology , 1981,8(3): 239-243.
    [28]MacLeod, C., M. Santos, et al.. Relative prey size consumption in toothed whales: implications for prey selection and level of specialisation. Marine Ecology Progress Series, 2006, 326: 295-307.
    [29]Brzezi ski, M., A. Zalewski, et al. Feeding habits of Great Grey Shrike Lanius excubitor wintering in north-eastern Poland: does prey abundance affect selection of prey size? Ornis Fennica, 2010, 87: 1-14.
    [30] Trejo, A. and N. Guthmann. Owl selection on size and sex classes of rodents: activity and microhabitat use of prey. Journal of Mammalogy, 2003, 84(2): 652-658.
    [31] Guiral, D. and C. Rougier. Trap size and prey selection of two coexisting bladderwort (Utricularia) species in a pristine tropical pond (French Guiana) at different trophic levels, edpsciences. Org, 2007.
    [32] Brooks, J. The effects of prey size selection by lake planktivores. Systematic Zoology, 1968, 273-291.
    [33] Chrzanowski, T. and K. imek. Prey-size selection by freshwater flagellated protozoa. Limnology and Oceanography, 1990, 35(7): 1429-1436.
    [34] Jakobsen, H. and P. Hansen. Prey size selection, grazing and growth response of the small heterotrophic dinoflagellate Gymnodinium sp. and the ciliate Balanion comatum-a comparative study. Marine Ecology Progress Series, 1997, 158: 75-86.
    [35] Thompson, D.. Prey size selection by larvae of the damselfly, Ischnura elegans (Odonata). The Journal of Animal Ecology, 1978, 769-785.
    [36] Pastorok, R.. Prey vulnerability and size selection by Chaoborus larvae. Ecology, 1981, 62(5): 1311-1324.
    [37] Allan, J., A. Flecker, et al. Prey size selection by carnivorous stoneflies. Limnology and Oceanography, 1987, 32(4): 864-872.
    [38] Rashed, A., C. Beatty, et al. Prey selection by dragonflies in relation to prey size and wasp-like colours and patterns. Animal Behaviour, 2005, 70(5): 1195-1202.
    [39] Farji-Brener, A. Microhabitat selection by antlion larvae, Myrmeleon crudelis: effect of soil particle size on pit-trap design and prey capture. Journal of insect behavior , 2003, 16(6): 783-796.
    [40] Juanes, F. and E. Hartwick. Prey size selection in Dungeness crabs: the effect of claw damage. Ecology, 1990, 744-758.
    [41] Seed, R. and R. Hughes. Criteria for prey size-selection in molluscivorous crabs with contrasting claw morphologies. Journal of experimental marine biology and ecology, 1995, 193(1-2): 177-195.
    [42] Behrens Yamada, S. Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs. Journal of experimental marine biology and ecology, 1998, 220(2): 191-211.
    [43] Kaiser, M., R. Hughes, et al. Chelal morphometry, prey-size selection and aggressive competition in green and red forms of Carcinus maenas (L.). Journal of experimental marine biology and ecology, 1990, 140(1-2): 121-134.
    [44] Brousseau, D., A. Filipowicz, et al. Laboratory investigations of the effects of predator sex and size on prey selection by the Asian crab, Hemigrapsus sanguineus. Journal of experimental marine biology and ecology , 2001, 262(2): 199-210.
    [45] Wong, M., C. Peterson, et al. Prey size selection and bottom type influence multiple predator effects in a crab¨Cbivalve system. Marine Ecology Progress Series, 2010, 409: 143-156.
    [46] O'Brien, W., N. Slade, et al. Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirus). Ecology, 1976, 57(6): 1304-1310.
    [47] Schmitt, R. and J. Coyer. The foraging ecology of sympatric marine fish in the genus Embiotoca (Embiotocidae): importance of foraging behavior in prey size selection. Oecologia , 1982, 55(3): 369-378.
    [48] Gill, A. and P. Hart. Stomach capacity as a directing factor in prey size selection of three?\spinedstickleback. Journal of fish biology , 1998, 53(4): 897-900.
    [49] Turesson, H., A. Persson, et al. Prey size selection in piscivorous pikeperch (Stizostedion lucioperca) includes active prey choice. Ecology of Freshwater Fish , 2002, 11(4): 223-233.
    [50] Bence, J. and W. Murdoch. Prey size selection by the mosquitofish: relation to optimal diet theory. Ecology , 1986, 67(2): 324-336.
    [51] Vince, S., I. Valiela, et al. Predation by the salt marsh killifish Fundulus heteroclitus (L.) in relation to prey size and habitat structure: consequences for prey distribution and abundance. Journal of experimental marine biology and ecology , 1976, 23(3): 255-266.
    [52] Truemper, H. and T. Lauer. Gape limitation and piscine prey size?\selection by yellow perch in the extreme southern area of Lake Michigan, with emphasis on two exotic prey items. Journal of fish biology , 2005, 66(1): 135-149.
    [53] Floeter, J. and A. Temming. Key process I: Diet selection a) Explaining diet composition of North Sea cod (Gadus morhua L.): prey size preference vs. prey availability. An investigation of key processes affecting trophic interactions in the North Sea fish assemblage and their significance for multi species fisheries assessment: 21.
    [54] Arnott, S. and L. Pihl. Selection of prey size and prey species by 1-group cod Gadus morhua: effects of satiation level and prey handling times. Marine Ecology Progress Series , 2000, 198: 225-238.
    [55] Simon, C. Size selection of prey by the lizard, Sceloporus jarrovi. American Midland Naturalist , 1976, 96(1): 236-241.
    [56] D¨aaz, J. and L. Carrascal. Variation in the effect of profitability on prey size selection by the lacertid lizard Psammodromus algirus. Oecologia , 1993, 94(1): 23-29.
    [57] Cooper Jr, W., R. Anderson, et al. Prey Size Selection under Simultaneous Choice by the Broad?\Headed Skink (Eumeces laticeps). Ethology, 2007, 113(5): 417-425.
    [58] Barbeau, M. and R. Scheibling. Behavioral mechanisms of prey size selection by sea stars (Asterias vulgaris Verrill) and crabs (Cancer irroratus Say) preying on juvenile sea scallops (Placopecten magellanicus (Gmelin)). Journal of experimental marine biology and ecology, 1994, 180(1): 103-136.
    [59] Quinney, T. and C. Ankney. Prey size selection by tree swallows. The Auk, 1985, 102(2): 245-250.
    [60] Dit Durell, S. and J. Goss-Custard. Prey selection within a size-class of mussels, Mytilus edulis, by oystercatchers, Haematopus ostralegus. Animal Behaviour, 1984, 32(4): 1197-1203.
    [61] Kennedy, P. and D. Johnson. Prey-size selection in nesting male and female Cooper's Hawks. The Wilson Bulletin, 1986, 98(1): 110-115.
    [62] Lauro, B. and E. Nol. Feeding behavior, prey selection, and bill size of Pied and Sooty Oystercatchers in Australia. The Wilson Bulletin, 1995, 107(4): 629-640.
    [63] Gotmark, F. and P. Post. Prey selection by sparrowhawks, Accipiter nisus: relative predation risk for breeding passerine birds in relation to their size, ecology and behaviour. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences , 1996, 351(1347): 1559.
    [64] Ieno, E., D. Alemany, et al. Prey Size Selection by Red Knot Feeding on Mud Snails at Punta Rasa(Argentina) during Migration. Waterbirds, 2004, 27(4): 493-498.
    [65] Padilla, D., M. Nogales, et al. Prey size selection of insular lizards by two sympatric predatory bird species. Acta Ornithologica, 2007, 42(2): 167-172.
    [66] BOURNE, G.. Field tests of micropatch and prey-size selection by Snail Kites Rostrhamus sociabilis. Ibis, 1985, 127(2): 141-147.
    [67] Cayford, J. A field test of the accuracy of estimating prey size-selection in oystercatchers from recovered mussel shells. Wader Study Group Bulletin, 1988.
    [68] Fisher, D. and C. Dickman. Diets of insectivorous marsupials in arid Australia: selection for prey type, size or hardness? Journal of Arid Environments, 1993, 25(4): 397-410.
    [69] Nystr¨om, P. a. P. e., J. R.. Crayfish predation on the common pond snail (Lymnaea stagnalis): the effect of habitat complexity and snail size on foraging efficiency. Hydrobiologia , 1998, 368: 201-208.
    [70] Kwang-Hyeon Chang·Takayuki Hanazato. Prey handling time and ingestion probability for Mesocyclops sp. predation on small cladoceran species Bosmina longirostris, Bosminopsis deitersi, and Scapholeberis mucronata. Limnology and Oceanography, 2005, 6: 39-44.
    [71] Turner, A. M., Turner, S. E., & Lappi, H. M. Learning, memory and predator avoidance by freshwater snails: effects of experience on predator recognition and defensive strategy[J]. Animal Behaviour, 2006, 72(6) : 1443-1450.
    [72] N. Hughes and R. Seed . Size Selection of Mussels by the Blue Crab Callinectes sapid us: Energy Maximizer or Time Minimizer? MARINE ECOLOGY , 1981, 6: 83-89.
    [73] Alexander Jr, J. and A. Covich. Predation risk and avoidance behavior in two freshwater snails. The Biological Bulletin , 1991, 180(3): 387.
    [74] Abrahamsson, S. Dynamics of an isolated population of the crayfish Astacus astacus Linn¨|. Oikos, 1966, 17(1): 96-107.
    [75] Lodge, D. M. & J. G. Lorman. Reductions in submersed macrophyte biomass and species richness by the crayfish. Orconectes rusticus. Can. J. Fish. aquat. Sci, 1987, 44: 591–597.
    [76] Lodge, D., M. Kershner, et al. Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology, 1994, 75(5): 1265-1281.
    [77] Turner, A. M., Fetterolf, S. A., & Bernot, R. J. Predator identity and consumer behavior: differential effects of fish and crayfish on the habitat use of a freshwater snail[J]. Oecologia, 1999, 118(2) : 242-247.
    [78] Julian D. Olden Eric R. Larson Meryl C. Mims. Home-field advantage: native signal crayfish (Pacifastacus leniusculus) out consume newly introduced crayfishes for invasive Chinese mystery snail (Bellamya chinensis). Aquat Ecol, 2009, 43: 1073-1084.
    [79] Josh R. Auld ? Rick A. Relyea. Adaptive plasticity in predator-induced defenses in a common freshwater snail: altered selection and mode of predation due to prey phenotype. Evol Ecol, 2010, Published online: 22 May.
    [80] Lodge, D. M., R. A. Stein, K. M. Brown, A. P. Covich, C. Br¨onmark, J. E. Garvey & S. P.Klosiewski. Predicting impact of freshwater exotic species on native biodiversity: Challenges in spatial scaling. Aust. J. Ecol, 1998, 23: 53–67.
    [81] Mikheev, V. and J. Wanzenb ck. Satiation-dependent, intra-cohort variations in prey size selection of young roach (Rutilus rutilus). Oecologia , 1999, 121(4): 499-505.
    [82] Turesson, H. and C. Bronmark. Foraging behaviour and capture success in perch, pikeperch and pike and the effects of prey density. Journal of fish biology, 2004, 65(2): 363-375.
    [83] Arnott, S. and L. Pihl. Selection of prey size and prey species by 1-group cod Gadus morhua: effects of satiation level and prey handling times. Marine Ecology Progress Series, 2000, 198: 225-238.
    [84] Savolainen, R. Interference by wood ant influences size selection and retrieval rate of prey by Formica fusca. Behavioral Ecology and Sociobiology, 1991, 28(1): 1-7.
    [85] Olberg, R., A. Worthington, et al. Prey size selection and distance estimation in foraging adult dragonflies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191(9): 791-797.
    [86] Khadka, R. and T. Rao. Prey size selection by common carp (Cyprinus carpio var. communis) larvae in relation to age and prey density. Aquaculture , 1986, 54(1-2): 89-96.
    [87] Virnstein, R. W. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology, 1977, 58: 1199– 1217.
    [88] Leber, K. M.. The influence of predatory decapods, refuge and microhabitat selection on seagrass communities. Ecology, 1985, 66: 1951–1964
    [89] Raffaelli, D., A. Conacher, H. McLachlan & C. Ernes, 1989. The role of epibenthic crustacean predators in an estuarine food web. Estuar. coast. shelf Sci. 28: 149–160.
    [90] Elner, R.W. & R. N. Hughes. Energy maximization in the diet of the shore crab Carcinus maenas. J. anim. Ecol, 1978, 47: 103–116.
    [91] Jubb, R. N., R. N. Hughes & T. Ap Rheinallt. Behavioural mechanisms of size-selection by crabs Carcinus maenas feeding on the mussel Mytilus edulis. J. exp. mar. Biol. Ecol , 1983, 66: 81–87.
    [92] Rheinallt, T. Ap. Size selection by the crab Liocarcinus puber feeding on mussels Mytilus edulis and on shore crabs Carcinus maenas: the importance of mechanical factors. Mar. Ecol. Prog. Ser, 1986, 29: 45–53.
    [93] Hughes, R. N. & R. Seed. Behavioural mechanisms of prey selection in crabs. J. exp. mar. Biol. Ecol, 1995, 193: 225–238.
    [94] Hughes, R. N. Optimal Foraging Theory in the Marine Context. Oceanogr. mar. biol. Ann. Rev , 1980, 18: 423–481.
    [95] Juanes, F. Why do decapod crustaceans prefer small-sized molluscan prey? Mar. Ecol. Prog. Ser, 1992 ,87: 239–249.
    [96] Creswell, P. D. & C. L. McLay. Handling times, prey size and species selection by Cancer novaezelandiae feeding on molluscan prey. J. exp. mar. Biol. Ecol, 1990, 140: 13–28.
    [97] Seed, R. & R. N. Hughes. Chelal characteristics and foraging behaviour of the blue crab Callinectessapidus Rathbun. Estuar. coast. shelf Sci, 1997, 44: 221–229.
    [98] Holdich DM. The danger of introducing alien animals with particular reference to crayfish. Freshwater Crayfish, 1987, 7:15–30
    [99] Momot, W. T. Redefining the role of crayfish in aquatic ecosytems. Reviews in Fisheries Sciences, 1995, 3: 33–63.
    [100] Foster J and Slater FM. A global review of crayfish predation with observations on the possible loss of Austropotamobius pallipes in the Welsh wye due to crayfish plague. Freshwater Crayfish , 1995, 8: 589–613
    [101] Hughes, R. N. Optimal diets under the energy maximization premise: The effects of recognition time and learning. Am. Nat, 1979, 113:209-21
    [102] Dalesman, S., Rundle, S. D., Coleman, R. A., Cotton, P. A. Cue association and antipredator behaviour in a pulmonate snail, Lymnaea stagnali[J]s. Animal Behaviour, 2006, 71(4) : 789-797.
    [103] Chivers, D. P., Mirza, R. S., Johnston, J. G. Learned recognition of heterospecific alarm cues enhances survival during encounters with predators[J]. Behaviour, 2002, 139(7) : 929-938.
    [104] Ferrari, M., Capitania-Kwok, T., Chivers, D. P. The role of learning in the acquisition of threat-sensitive responses to predator odours[J]. Behavioral Ecology and Sociobiology, 2006, 60(4) : 522-527.
    [105] Hazlett, B.A., Acquistapace, P. & Gherardi, F. Differences in memory capabilities in invasive and native crayfish. J. Crustacean Biol, 2002, 22: 439-448.
    [106] Hazlett, BA. Crayfish feeding responses to zebra mussels depend on microorganisms and learning. Journal of Chemical Ecology, 1994, 20: 2623-2630.
    [107] Hazlett, B.A. Predator recognition and learned irrelevance in the crayfish Orconectes virilis. Ethology, 2003a, 109: 765-780.
    [108] Sih, A., Crowley, P., McPeek, M., Petranka, J. Strohmeier, K.. Predation, competition, and prey communities: a review of field experiments. Ann. Rev. Ecolog. Syst, 1985, 16: 269–311. [109 ]Mascaró, M., Seed, R. Foraging behavior of Carcinus maenas (L.): comparisons of size-selective predation on four species of bivalve prey. J. Shellfish Res, 2000, 19: 283–291.
    [110] Rovero, F., Hughes, R.N., Chelazzi, G.. When time is of the essence: choosing a currency for prey-handling costs. J. Anim. Ecol, 2000, 69: 683–689.
    [111] Fryxell, J.M., Lundberg, P. Diet choice and predator-prey dynamics. Evol. Ecol, 1994, 8: 407–421.
    [112] Charnov, E.L. Optimal foraging: attack strategy of a mantid. Am. Nat, 1976, 110: 141–151.
    [113] Emlen, L.M.. The role of time and energy in food preference. Am. Nat, 1966, 100, 611–617.
    [114] MacArthur, R.H., Pianka, E.R.. On optimal use of a patchy environment. Am. Nat, 1966, 100: 603–609.
    [115] Brown, K. M. & E. S. Haight. The foraging ecology of the Gulf of Mexico stone crab Menippe adina (Williams et Felder). J. exp. mar. Biol. Ecol, 1992, 160: 67–80.
    [116] Warner, G. F., J. C. Wood & R. H. OrrErwing, Signal crayfish (Pacifastacus leniusculus) feeding onpond snails: Optimal foraging? Freshwater Crayfish, 1995, 8: 352–359.
    [117] Warner, G. F. Factors affecting the selection of pond snail prey by signal crayfish. Freshwater Crayfish 1996, 11, in press. [118 ]Mascaró, M., Hidalgo, L.E., Chiappa-Carrara, X., Simoes, N.. Size-selective foraging behaviour of blue crabs, Callinectes sapidus (Rathbun), when feeding on mobile prey: active and passive components of predation. Mar. Freshw. Behav. Physiol, 2003, 36: 143–159.
    [119] Mistri, M. Predatory behavior and preference of a successful invader, the mud crab Dyspanopeus sayi (Panopeidae), on its bivalve prey. J. Exp. Mar. Biol. Ecol, 2004, 312, 385–398.
    [120] Smallegange, I.M., Van der Meer, J. Why do shore crabs not prefer the most profitable mussels? J. Anim. Ecol, 2003, 72, 599–607.
    [121] Norris, K., Johnstone, I. The functional response of oystercatchers (Haematopus ostralegus) searching for cockles (Cerastoderma edule) by touch. J. Anim. Ecol, 1998, 67, 329–346.
    [122] Johnstone, I., Norris, K. Not all oystercatchers Haematopus ostralegus select the most profitable common cockles Cerastoderma edule: A difference between feeding methods. Ardea , 2008, 8, 137–153.
    [123] Rutten, A.L., Oosterbeek, K., Ens, B.J., Verhulst, S.Optimal foraging on perilous prey: risk of bill damage reduces optimal prey size in oystercatchers. Behav. Ecol, 2006, 17, 297–302.
    [124] Scheel, D. Watching for lions in the grass: The usefulness of scanning and its effects during hunts. Animal Behaviour , 1993, 46(4): 695-704.
    [125] Turesson, H. and C. Br nmark. Predator¨Cprey encounter rates in freshwater piscivores: effects of prey density and water transparency. Oecologia, 2007, 153(2): 281-290.
    [126] Kozak, P.. Gallardo, J. M.Garcia, J. C. E. Light preferences of red swamp crayfish (Procambarus clarkii). Hydrobiologia, 2009, 636: 499-503.
    [127] Guedes, LMLA, Fiori, AMC, Diefenbach, CO Da C. Biomass estimation from weight and linear parameters in the Apple Snail, Ampullaria canaliculata (Gastropoda: Prosobranchia). Comp. Biochem. Physiol,1981, 68(A): 285-288.
    [128] Teo, S. Evaluation of different duck varieties for the control of the golden apple snail Pomacea canaliculata in transplanted and direct seeded rice[J]. Crop Protection, 2001, 20(7) : 599-604.
    [129] Yusa, Y., Sugiura, N., Wada, T. Predatory potential of freshwater animals on an invasive agricultural pest, the apple snail Pomacea canaliculata (Gastropoda: Ampullariidae) , in southern Japan[J]. Biol. Invas, 2006, 8: 137-147.
    [130] Cook, A. Factors affecting prey choice and feeding technique in the carnivorous snail Euglandina rosea Ferussac. J. Mollusc. Stud, 1989, 55(4) : 469-477.
    [131] Shobu, S. Biology of apple snail, Pomacea canaliculata (Lamarck) , and its control[J]. Shokubutsu-boeki, 1996, 50: 211-217.
    [132] Su Sin, T. Evaluation of different species of fish for biological control of golden apple snail Pomacea canaliculata (Lamarck) in rice[J]. Crop Protection, 2006, 25(9) : 1004-1012.
    [133] Crowl, T. A. & G. D. Schnell. Factors determining population density and size of a freshwater snail in streams: effects of spatial scale. Oikos, 1990, 59: 359–367.
    [134] Weber, L. M. & D. M. Lodge. Periphytic food and predatory crayfish: relative roles in determining snail distribution. Oecologia, 1990, 82: 33–39.
    [135] Menzel R. Learning in honey bees in an ecological and behavioral context. In: Holldobler B, Lindauer M (eds) Experimental behavioral ecology and sociobiology. Sinauer Associates, Sunderland, 1985, 55–74.
    [136] Chittka L, Thomson JD. Cognitive ecology of pollination: animal behaviour and floral evolution. Cambridge University Press, Cambridge, 2005.
    [137] Kaiser L, Perez-Maluf R, Sandoz JC, Pham-Delegue MH. Dynamics of odour learning in Leptopilina boulardi, a hymenopterous parasitoid. Anim Behav, 2003, 66:1077–1084
    [138] Smid HM, Wang G, Bukovinszky T, Steidle JLM, Bleeker AMK, van Loon JJA, Vet LEM. Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proc R Soc B, 2007, 274:1539–1546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700