鹅肉盐溶蛋白凝胶及其水解产物功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鹅肉是一种低脂肪、低胆固醇、高蛋白的营养健康食品。盐溶蛋白质是肌肉蛋白质的主要成分。因此,研究鹅肉盐溶蛋白凝胶及其水解产物的功能特性,对鹅肉制品的加工过程及鹅肉高档产品的开发具有重要的理论指导意义。
     本论文主要研究了氯化钠、pH、热变温度、氯化钙及磷酸盐对鹅肉盐溶蛋白凝胶硬度和保水性的影响,通过响应面试验,分别建立了硬度和保水性回归模型,并分析了各因素对它们的影响及二者之间的关联性;此外,根据回归模型,研究了底物质量浓度、pH及水解温度对水解度及DPPH自由基清除率的影响;最后,利用超滤膜将盐溶蛋白水解产物分成分子量范围不同的组分,比较其功能特性,确定最佳组分的分子量范围。主要研究结果如下:
     一、鹅肉盐溶蛋白凝胶制备条件的优化。单因素试验结果表明,NaCl浓度、pH和热变温度是影响凝胶硬度和保水性的主要因素。根据响应面试验结果,获得较优凝胶制备条件是:NaCl浓度0.65mol/L,pH7.20,热变温度78℃。在此条件下,测得凝胶的硬度和保水性分别为88.05g、91.48%。
     二、添加剂对鹅肉盐溶蛋白凝胶的影响。选择常见的焦磷酸钠、六偏磷酸钠、三聚磷酸钠和氯化钙作为制备凝胶的添加剂。以凝胶硬度和保水性为指标,优化四种添加剂的添加量,得到复合磷酸盐的最优配比,其结果为:CaCl2浓度0.02mol/L,三种磷酸盐的添加量分别为0.21%、0.16%、0.11%,此时复合磷酸盐的配比为4:3:2。同时,扫描电镜试验结果表明这四种添加剂对凝胶超微结构的影响不同。最优条件下,凝胶超微结构致密、均匀、平滑。根据食品添加剂使用卫生标准,确定复合磷酸盐总的最佳添加量为0.3%。
     三、鹅肉盐溶蛋白水解条件的优化。本试验主要对影响DPPH自由基清除率及水解度的因素进行了选择和优化,试验表明最优的水解条件为:底物质量浓度240mg/5mL、水解温度48.5℃、pH7.80。在此条件下,测得水解度为20.35%,水解产物对DPPH自由基的清除率为74.01%,与模型的预测值基本相符。
     四、鹅肉盐溶蛋白水解产物功能特性研究。用超滤膜将水解产物分为>5kDa、3~5kDa、2~3kDa和<2kDa四种组分。分别测定它们亚铁还原能力、抑制ACE活性的能力及几种自由基的清除率,确定分子量范围2~3kDa组分的抗氧化能力较强,<2kDa组分抑制ACE活性的能力较强。可见,鹅肉盐溶蛋白水解产物成分复杂,其功能特性各异。根据消费者需求不同,可以生产具有不同功能的鹅肉深加工产品。
Goose is a kind of nutrition and health food, which is low-fat, low cholesterol and high protein. The salt-soluble meat proteins (SSMP) are the most important parts of muscle. Therefore, it is necessary to study the goose salt soluble protein gels and its hydrolysis product features, which has important theoretical significance for the processing of goose and the development of goose high-end products.
     The effect of sodium chloride, pH, temperature, calcium chloride and phosphates on gel hardness and water-holding capacity (WHC) of goose salt soluble protein were studied in this paper. The regression models of gel hardness and retention were established by the response surface experiment to analyze the impact of various factors on them and the relationship between the two. Furthermore, the effect of substrate concentration, pH and temperature on DPPH radical scavenging rate and degree of hydrolysis were studied according to the regression model. Finally, the hydrolysis products of salt soluble protein were separated roughly into several molecular components by ultrafiltration membranes. The molecular weight range of components of better functional properties was determined by comparing the features of all components. The main results were as follows:
     1. The optimization of the prepared process of goose salt soluble protein gel. The single factor test showed that NaCl concentration, pH and temperature were the main factors on hardness and water holding capacity of gel. Based on the result of response surface, the optimum preparation conditions of the gel are NaCl (0.65mol/L), pH (7.20 ) and temperature (78℃). In the optimum conditions, the gel hardness and water-holding capacity were 88.05g and 91.48%, respectively.
     2. Additives on the goose salt soluble protein gel. Tetrasodium pyrophosphate (TSPP), sodium tripolyphosphate (STPP), sodium hexametaphosphate (SHMP) and calcium chloride were selected to add into the preparation of goose salt soluble protein gel. Using the gel hardness and water retention as indicators, the addition of the four additives was optimized and the optimum ratio of compound phosphate was obtained, the results are CaCl2 (0.02mol/L), TSPP (0.21%), SHMP (0.16%), STPP (0.11%) and the ratio of compound phosphate was 4:3:2. At the same time, the scanning electron microscopy (SEM) results showed that the four additives have different degrees of impact on the ultrastructure of gels. The ultrastructure of gels at optimum conditions is more dense, uniform and smooth. The optimal addition of compound phosphate was identified as 0.3% according to the Hygiene Standards of Food Additives.
     3. The optimization of hydrolysis of goose salt soluble protein. The effect of several process parameters: substrate concentration, pH and temperature on the DPPH radical scavenging rate and degree of hydrolysis were examined. Results showed that the optimum extraction conditions are 240mg/5mL substrate concentration, 7.80 of pH value and 48.5℃of temperature. In the optimum conditions, the DPPH radical scavenging rate and degree of hydrolysis were 74.01% and 20.35% respectively, that are basically correspond to model prediction value.
     4. The functional properties of hydrolysis products for goose salt soluble protein. The hydrolysis products were divided into four components (>5kDa, 3~5kDa, 2~3kDa and <2kDa) with ultrafiltration membranes and they were measured in iron reduction capacity, the ability to inhibit the ACE activity and free radical scavenging. Results showed that the component at the molecular weight range of 2~3kDa has strong antioxidant capacity and the component of <2kDa has strong ability to inhibit the ACE activity. Thus, it is easy to see that the compositions of goose salt soluble protein hydrolysates are multiple, and its functional properties are different. According to the different needs for consumers, the deep processing products of goose can be produced with different functions.
引文
[1]建龙.鹅肉[J].中老年:健身科学,2009,(7):46-47.
    [2]倪东衍.我国养鹅业前景广阔[J].农民科技培训,2008,(10):40-40.
    [3]张响英,唐现文.我国种鹅的育种现状及展望[J].安徽农业科学,2009,37(22):10511-10513.
    [4]丁美中.我国鹅业发展状况及消费市场发展趋势[J].水禽世界,2008,(1):7-8.
    [5]闵育娜,高玉鹏,侯水生等.我国养鹅业现状及前景展望[J].中国畜牧杂志,2005,41(5):57-59.
    [6]吴军,赵志军.我国养鹅业存在的问题及对策[J].当代畜牧,2010,(1):1-3.
    [7]何大乾,侯水生.我国鹅业育种现状与未来发展方向[J].中国禽业导刊,2009,26(9):10-12.
    [8]唐修君,陈宽维,高玉时等.影响鹅肉品质的主要因素[J].水禽世界,2008, (4):38-40.
    [9]胡献国.益气补虚说鹅肉[J].东方食疗与保健,2004,(1):26-26.
    [10]尹兆正.养鹅手册[M].北京:中国农业大学出版社,2005.
    [11]冯小鹿.鹅全身是宝养殖效益高[J].农业知识,2009,(16):4-5.
    [12]韩陆奇.鹅肉生产大有可为[J].肉类研究,1995,(4):7-7.
    [13]杨勇,王存堂,任健.鹅肉嫩度的评定方法[J].黑龙江畜牧兽医,2010,(6):32-33.
    [14]谢广富.鹅肉营养成分分析及营养价值评定[J].肉品卫生,1999,(4):2-3.
    [15]何永进.我国养鹅业的优势及前景[J].湖南农业,2007,(3):8-8.
    [16]鹅肉及其副产物的深加工[J].技术与市场,2001,(05):17-18.
    [17]李良玉,曹荣安,何香伟等.香辣鹅肉干加工工艺的研究[J].肉类研究,2008,(11):35-39.
    [18]曹宏,蒋云升,包建忠等.鹅肉食用前景和消费市场初探[J].安徽农业科学,2005,33(12):2480-2480.
    [19]徐明生.鹅肉肉质分析[J].中国禽产与食品,1997,(05):87-88.
    [20] Chan, J.K., Gill, T.A. Thermal aggregation of mixed fish myosins[J].Journal of Agricultural and Food Chemistry,1994,42(12):2649-2655.
    [21] Pietrasik, Z., Jarmoluk, A., Shand, P.J. Effect of non-meat proteins on hydration and textural properties of pork meat gels enhanced with microbial transglutaminase[J].LWT-Food Science and Technology,2007,40(5):915-920.
    [22]李继红,彭增起.温度、盐浓度和pH对盐溶蛋白热诱导凝胶影响的研究[J].肉类工业,2004,(4):39-41.
    [23]郭世良,赵改名,王玉芬.离子强度和pH值对肌原纤维蛋白热诱导凝胶特性的影响[J].食品科技,2008,(1):84-87.
    [24]于巍,周坚.草鱼盐溶蛋白保水性及流变性质的研究[J].食品与发酵工业,2007,33(10):72-75.
    [25]赵春青.鸡肉盐溶蛋白质及其影响因素的研究[D].河北:河北农业大学,2002.
    [26]韩敏义.兔骨骼肌肌球蛋白浊度、溶解度及热诱导凝胶强度研究[D].江苏:南京农业大学,2003.
    [27]杨速攀.牛肉盐溶蛋白质凝胶特性及其影响因素的研究[D].河北:河北农业大学,2003.
    [28] Ferry, J.D. Protein gels[J].Advanced Protein Chemistry,1948,(1):1-2.
    [29] Liu, T.M., Ljn, T.S.,Lanier, T.C. Thermal denaturation and aggregation of actomyosin from atlantic croaker[J].Food Science,1982,(47):1916-1919.
    [30] Nauss, K.M., Kitagawa, S., Gergely, J. Pyrophosphate binding to and adenosine triphosphatase activity of myosin and its proteolytic fragments. Implications for the substructure of myosin[J].Journal of Biological Chemistry,1969,244(4):755-765.
    [31] Stangierski, J., Kijowski, J. Optimization of conditions for myofibril preparation from mechanically recovered chicken meat[J].Die Nahrung,2000,44(5):333-338.
    [32] Asghar, A., Morita, J., Samejima, K., et al. Biochemical and functional characteristics of myosin from red and white muscles of chicken as influenced by nutritional stress[J].Agricultural and Biological Chemistry,1984,48(9):2217-2224.
    [33] Fretheim, K., Samejima, K., Egelandsdal, B. Myosins from red and white bovine muscles: Part 1. Gel strength (elasticity) and water-holding capacity of heat-induced gels[J].Food Chemistry,1986,22(2):107-121.
    [34] Egelandsdal, B., Martinsen, B., Autio, K. Rheological parameters as predictors of protein functionality: A model study using myofibrils of different fibre-type composition[J].Meat Science,1995,39(1):97-111.
    [35] Lesiów, T. Apparent viscosity of chicken muscle homogenates. Influence of pH and muscle type[J].Die Nahrung,2000,44(5):328-332.
    [36] Hermansson, A.M., Harbitz, O., Langton, M. Formation of two types of gels from bovine myosin[J].Food Science and Agriculture,1986,(37):69-86.
    [37] Gill, T.A., Chan, J.K., Phonchareon, K.F., et al. Effect of salt concentration and temperature on heat-induced aggregation and gelation of fish myosin[J].Food Research International,1992,25(5):333-341.
    [38] Lefevre, F., Fauconneau, B., Ouali, A., et al. Thermal gelation of brown trout myofibrils from white and red muscles: Effect of pH and ionic strength[J].Journal of the Science of Food and Agriculture,2002,82(4):452-463.
    [39] Ayensa, M.G., Montero, M.P., Borderías, A.J., et al. Influence of some protease inhibitors on gelation of squid muscle[J].Journal of Food Science,2002,67(5):1636-1641.
    [40] Ramirez, J.A., Rodriguez-Sosa, R., Morales, O.G., et al. Preparation of surimi gels from striped mullet (Mugil cephalus) using an optimal level of calcium chloride[J].Food Chemistry,2003,82(3):417-423.
    [41] Lopez-Diaz, J.A., Rodriguez-Romero, A., Hernández-Santoyo, A., et al. Effects of Soy Glycinin Addition on the Conformation and Gel Strength of Two Pork Myosin Types[J].Journal of Food Science,2003,68(9):2724-2729.
    [42] Chin, K.B., Go, M.Y., Xiong,Y.L. Effect of soy protein substitution for sodium caseinate on the transglutaminate-induced cold and thermal gelation of myofibrillar protein[J].Food Research International,2009,42(8):941-948.
    [43] Balange, A.K., Benjakul, S. Effect of oxidised phenolic compounds on the gel property of mackerel (Rastrelliger kanagurta) surimi[J].LWT - Food Science and Technology,2009,42(6):1059-1064.
    [44]万建荣,卢菊英,骆肇尧.肌球蛋白及肌原纤维蛋白凝胶形成能的比较[J].海洋渔业,1990,(3):107-110.
    [45]何松,孙远明,孟凌华等.钙与热处理对鱼糜凝胶强度的影响[J].食品科学,2000,(2):30-32.
    [46]赵春青彭增起.肌球蛋白功能特性的研究进展[J].肉类研究,2002,(1):17-19.
    [47]严菁,熊善柏,李清亮.转谷氨酰胺酶对淡水鱼糜制品凝胶强度的影响[J].食品科学,2002,(8):59-62.
    [48]徐幸莲,韩敏义,林丽军等.兔骨骼肌肌球蛋白溶液浊度和溶解度研究[J].南京农业大学学报,2003,26(4):93-96.
    [49]韩敏义,徐幸莲,林丽军等.磷酸盐对肌球蛋白溶液浊度和溶解度的影响[J].食品工业科技,2004,(2):59-61.
    [50]徐幸莲,王霞,周光宏等.磷酸盐对肌球蛋白热凝胶硬度、保水性和超微结构的影响[J].食品科学,2005,26(3):42-46.
    [51]冯占荣.鹿肉盐溶蛋白热诱导凝胶特性研究[D].吉林:吉林大学,2007.
    [52]翟洪民.介绍八个中型鹅品种[J].当代畜禽养殖业,2008,(3):59-60.
    [53]杨速攀,彭增起.肌原纤维蛋白凝胶研究进展[J].河北农业大学学报,2003,(S1):160-162.
    [54]翁航萍,李洪军,杜杰.肉品胶凝技术[J].肉类研究,2008,(3):31-35.
    [55]占剑峰,黄文.对虾肉盐溶蛋白的提取条件对于热诱导凝胶特性的影响研究[J].食品科技,2008,33(11):126-129.
    [56] Renkema, J.M.S., Van Vliet, T. Heat-induced gel formation by soy proteins at neutral pH[J].Journal of Agricultural and Food Chemistry,2002,50(6):1569-1573.
    [57] Westphalen, A.D., Briggs, J.L., Lonergan, S.M. Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation[J].Meat Science,2005,70(2):293-299.
    [58] Renkema, J.M.S., Gruppen, H., Van, V.T. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions[J].Journal of Agricultural and Food Chemistry,2002,50(21):6064-6071.
    [59] He, J.S., Azuma, N., Yang, H. Effects of pH and ionic strength on the rheology and microstructure of a pressure-induced whey protein gel[J].International Dairy Journal,2010,20(2):89-95.
    [60] Benjakul, S., Chantarasuwan, C., Visessanguan, W. Effect of medium temperature setting on gelling characteristics of surimi from some tropical fish[J].Food Chemistry,2003,82(4):567-574.
    [61] Tornberg, E.Effects of heat on meat proteins - Implications on structure and quality of meat products[J].Meat Science,2005,70(3):493-508.
    [62]刁新平,孔保华,郑冬梅.食盐和大豆蛋白对牛肉凝胶特性的影响[J].食品科技,2003,(11):29-31.
    [63]崔旭海,孔保华.环境条件对乳清蛋白凝胶特性和微观结构的影响[J].中国农业科学,2008,(3):800-807.
    [64]徐幸莲,周光宏,黄鸿兵等.蛋白质浓度、pH值、离子强度对兔骨骼肌肌球蛋白热凝胶特性的影响[J].江苏农业学报,2004,(3):159-163.
    [65]李令平,张坤生,任云霞.鸡胸肉肌原纤维蛋白的提取及凝胶特性的研究[J].食品研究与开发,2007,(11):30-33.
    [66] Eakpetch, P., Benjakul, S., Visessanguan, W., et al. Effect of protein additives on gelling properties of pacific white shrimp (Litopenaeus vannamei) meat[J].ASEAN Food Journal,2008,15(1):65-72.
    [67]赵春青,李继红,彭增起.猪肉盐溶蛋白质热诱导凝胶功能特性的研究[J].食品工业科技,2005,26(8):84-87.
    [68] Braga, A.L.M., Azevedo, A., Julia, M.M., et al. Interactions between soy protein isolate and xanthan in heat-induced gels: The effect of salt addition[J].Food Hydrocolloids,2006,20(8):1178-1189.
    [69] Xiong, G., Cheng, W. Ye, L., et al. Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella)[J].Food Chemistry,2009,116(2):413-418.
    [70] Totosaus, A., Guerrero, I. Montejano, J.G. Effect of added salt on textural properties of heat-induced gels made from gum-protein mixtures[J].Journal of Texture Studies,2005,36(1):78-92.
    [71]罗永康,潘道东,沈慧星等.蛋白质浓度、pH、离子强度对鲢鱼肌原纤维蛋白粘度的影响[J].食品与发酵工业,2004,(7):52-54.
    [72]杨玉玲,姜攀,贾继荣等.鸡肉肌原纤维蛋白与卡拉胶混合凝胶质构特性的研究[J].食品与发酵工业,2008,(6):16-19.
    [73] Benjakul, S., Visessanguan, W., Tueksuban, J. Changes in physico-chemical properties and gel-forming ability of lizardfish (Saurida tumbil) during post-mortem storage in ice[J].Food Chemistry,2003,80(4):535-544.
    [74] Chantrapornchai, W., McClements, D.J. Influence of NaCl on optical properties, large-strain rheology and water holding capacity of heat-induced whey protein isolate gels[J].Food Hydrocolloids,2002,16(5):467-476.
    [75] Guyomarc'h, F., Jemin, M., Tilly, V.L., et al. Role of the heat-induced whey protein/κ-casein complexes in the formation of acid milk gels: A kinetic study using rheology andconfocal microscopy[J].Journal of Agricultural and Food Chemistry,2009,57(13):5910-5917.
    [76] Tajima, M., Ito, T., Arakawa, N. Heat-induced changes of myosin and sarcoplasmic proteins in beef during simmering[J].Journal of Food Science,2001,66(2):233-237.
    [77]杨文雄,高彦祥.响应面法及其在食品工业中的应用[J].中国食品添加剂,2005,(2):68-71.
    [78] Firatligil, D.E., Evranuz, O. Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens)[J].LWT - Food Science and Technology,2010,43(2):226-231.
    [79]费荣昌.试验设计与数据处理[M].无锡:江苏大学出版社,2001,59-63
    [80] Liu, G., Xiong, Y.L. Gelation of Chicken Muscle Myofibrillar Proteins Treated with Protease Inhibitors and Phosphates[J].Journal of Agricultural and Food Chemistry,1997,45(9):3437-3442.
    [81]张坤生.磷酸盐在肉制品中的作用[J].肉类工业,1991,(3):29-29.
    [82]郝为民.“磷酸盐”在肉制品中的作用[J].黑龙江农业科学,2008,(4):101-102.
    [83] Baublits, R.T., Pohlman, F.W., Brown Jr, A.H., et al. Effects of sodium chloride, phosphate type and concentration, and pump rate on beef biceps femoris quality and sensory characteristics[J].Meat Science,2005,70(2):205-214.
    [84] Baublits, R.T., Pohlman, F.W., Brown, A.H., et al. Effects of enhancement with differing phosphate types, concentrations, and pump rates, without sodium chloride, on beef biceps femoris instrumental color characteristics[J].Meat Science,2006,72(3):503-512.
    [85] Verbeken, D., Neirinck, N., Vander, M.P., et al. Influence ofκ-carrageenan on the thermal gelation of salt-soluble meat proteins[J].Meat Science,2005,70(1):161-166.
    [86] Ramirez-Suarez, J.C., Xiong, Y.L. Transglutaminase cross-linking of whey/myofibrillar proteins and the effect on protein gelation[J].Journal of Food Science,2002,67(8):2885-2891.
    [87]李宝升,王修俊,邱树毅等.复合磷酸盐对鲜切牛肉肌球蛋白凝胶保水性的影响[J].农产品加工(学刊),2009,166(3):85-86.
    [88]于巍,周坚,段纯明等.磷酸盐对草鱼盐溶蛋白保水性及流变影响规律的研究[J].农产品加工,2009,183(9):67-70.
    [89]刘海梅,刘茹,熊善柏等.变性淀粉对鱼糜制品凝胶特性的影响[J].华中农业大学学报,2007,(1):116-119.
    [90]刘士健,任发政,王建晖等.水溶性壳聚糖对猪肉盐溶性蛋白质凝胶特性影响[J].食品科学,2008,342(5):90-92.
    [91]周爱梅,潘珂,黄文华等.几种添加剂对鳙鱼鱼糜凝胶特性的影响[J].食品科学,2004,(8):50-54.
    [92]亢春雨,赵春青.鸡胸肉盐溶蛋白热诱导凝胶保水性和超微结构的研究[J].食品科学,2007,28(1):50-53.
    [93] Sheu, T.Y., Rosenberg, M. Microstructure of microcapsules consisting of whey proteins and carbohydrates[J].Journal of Food Science,1998,63(3):491-494.
    [94]屈平,彭增起,陈德倡等.牛肉制品的扫描电镜观察[J].电子显微学报,2001,(4):529-530.
    [95] Yoshida, W., Kunimi, O., Fujiura, M. Thermal gelation of salted paste from scallop striated adductor muscle[J].Fisheries Science,2003,69(5):1017-1025.
    [96]占剑峰,项俊,方元平等.金属离子对中国对虾盐溶蛋白凝胶特性的影响[J].食品与机械,2009,25(6):15-17.
    [97] Koohmaraie, M., Shackelford, S.D. Effect of calcium chloride infusion on the tenderness of lambs fed a beta-adrenergic agonist[J].Journal of animal science,1991,69(6):2463-2471.
    [98] Yongsawatdigul, J. Park, J.W. Linear heating rate affects gelation of Alaska pollock and Pacific whiting surimi[J].Journal of Food Science,1996,61(1):149-153.
    [99]赵春青,彭增起,亢春雨. CaCl2、MgCl2及ZnCl2对鸡胸肉热诱导凝胶保水性的影响研究[J].肉类工业,2005,(7):23-25.
    [100]中华人民共和国卫生部.GB2760-2007食品添加剂使用卫生标准[M].2007.
    [101]李继红,彭增起,凌巍.多聚磷酸盐对兔肉腰大肌和后腿肉盐溶蛋白凝胶特性的影响[J].肉类工业,2003,(7):29-31.
    [102] Morita, J.I., Choe, I.S., Yamamoto.Heat-induced gelatin of myosin from leg and breast muscles of chicken[J].Agricultural and Biological Chemistry,1987,51(11):2895-2900.
    [103]赵春青,亢春雨.鸡腿肉盐溶蛋白质热诱导凝胶保水性及其影响因素的研究[J].食品工业科技,2008,(9):148-151.
    [104] Thorarinsdottir, K.A., Arason, S., Bogason, S.G., et al. Effects of phosphate on yield, quality, and water-holding capacity in the processing of salted cod (Gadus morhua)[J].Journal of Food Science,2001,66(6):821-826.
    [105] Manikandan, M., Pa?i?, L., Kannan, V. Optimization of growth media for obtaining high-cell density cultures of halophilic archaea (family Halobacteriaceae) by response surface methodology[J].Bioresource Technology,2009,100(12):3107-3112.
    [106] Peri?in, D., Radulovi?, L. Trivi?, S., et al. Evaluation of solubility of pumpkin seed globulins by response surface method[J].Journal of Food Engineering,2008,84(4):591-594.
    [107]唐晓山,屈菊兰.常见扫描电子显微镜图像的缺陷和解决方法[J].湛江师范学院学报,2005,(3):123-125.
    [108] Christiansen, K.F., Krekling, T., Kohler, A., et al. Microstructure and sensory properties of high pressure processed dressings stabilized by different whey proteins[J].Food Hydrocolloids,2006,20(5):650-662.
    [109]汤晓艳,周光宏,徐幸达等.高浓度CaCl2溶液对某些肌原纤维蛋白的作用研究[J].食品科学,2007,337(12):117-121.
    [110] Gerelt, B., Ikeuchi, Y., Nishiumi, T., et al. Meat tenderization by calcium chloride after osmotic dehydration[J].Meat Science,2002,60(3):237-244.
    [111]王镜岩,朱圣庚,沈同等.生物化学(第三版)[M].北京:高等教育出版社,2002.
    [112]刘政,刘莹,王丽威,等.生物活性肽的酶法制备[J].化学与生物工程,2005,(3):7-9.
    [113]舒夏娃,王春维.动物蛋白制备生物活性肽酶解工艺的研究进展[J].饲料与畜牧,2006,(2):38-41.
    [114]刁静静,孔保华,陈洪生.骨蛋白水解物的功能特性及抗氧化性的研究进展[J].肉类研究,2007,100(6):26-29.
    [115]冯杰龙,林炜铁,徐晓飞等.生物活性肽及其蛋白酶水解法制备探索[J].广州食品工业科技,2002,(3):36-38.
    [116]刘政,马丹丹,孔庆霞等.酶法制备活性肽的讨论[J].天津农学院学报,2005,(4):40-43.
    [117] You, L., Zhao, M., Cui, C., et al. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates[J].Innovative Food Science and Emerging Technologies,2009,10(2):235-240.
    [118] Balti, R., Bougatef, A., Ali, N.E., et al. Influence of degree of hydrolysis on functional properties and angiotensin I-converting enzyme-inhibitory activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products[J].Journal of the Science of Food and Agriculture,2010,90(12):2006-2014.
    [119] Liu, Q., Kong, B., Xiong, Y.L., et al. Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis[J].Food Chemistry,2010,118(2):403-410.
    [120] Ovissipour, M., Abedian, K.A. Motamedzadegan, A. Optimization of Enzymatic Hydrolysis of Visceral Waste Proteins of Yellowfin Tuna (Thunnus albacares)[J].Food and Bioprocess Technology,2010,1-10.
    [121]王力,邱芳萍,李治民等.鹅骨蛋白水解条件的优化[J].肉类工业,2007,(10):19-22.
    [122]丁利君,黄小梅,何颖基.罗非鱼蛋白制取多肽酶解条件的优化[J].食品与机械,2008, 24(2):15-18.
    [123]顾林,孙婧.鲫鱼蛋白水解及其中性蛋白酶水解液抗氧化活性研究[J].食品科学学,2008,29(8):177-180.
    [124]郭勇.酶工程[M].北京:中国轻工业出版社,2004.
    [125]国家标准.GB/T5009系列.2003.
    [126]陆利霞,宫国君,孙芸等.Protamex复合蛋白酶酶解珠蛋白的研究[J].食品科技,2008,(2):60-62.
    [127]赵珊珊,朱志伟,曾庆孝等.不同蛋白酶酶解罗非鱼肉制备蛋白水解液的过程变化规律研究[J].现代食品科技,2008,24(2):115-119.
    [128]金嫘,王晶,李新华.应用化学发光法研究蛋清肽的抗氧化活性[J].食品科技,2009,34(1):187-190.
    [129]大连轻工业学院、华南理工大学等合编.食品分析[M].1994.
    [130] Gül?in, I., ?at, I.G., Beydemir, S., et al. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.)[J].Food Chemistry,2004,87(3):393-400.
    [131] Chang, C.Y., Wu, K.C., Chiang, S.H. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates[J].Food Chemistry,2007,100(4):1537-1543.
    [132]曹文红,吴红棉,范秀萍等.马氏珠母贝酶解产物清除自由基活性的研究[J].食品研究与开发,2009,30(1):13-17.
    [133]张晓鸣,袁信华.酶法生产鸭血水解蛋白[J].中国饲料,1998,(19):13-14.
    [134]王章存,康艳玲.碱性蛋白酶提取花生水解蛋白的研究[J].食品科技,2008,(3):63-65.
    [135] Hsu, K.C., Lu, G.H., Jao, C.L. Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis)[J].Food Research International,2009,42(6):647-652.
    [136] Woo, S.H., Jhoo, J.W., Kim, G.Y. Antioxidant activity of low molecular peptides derived from milk protein[J].Korean Journal for Food Science of Animal Resources,2009,29(5):633-639.
    [137] Mamelona, J., Saint, L.R., Pelletier, E. Nutritional composition and antioxidant properties of protein hydrolysates prepared from echinoderm byproducts[J].International Journal of Food Science and Technology,2010,45(1):147-154.
    [138]刘欢,任健,郑喜群等.碱性蛋白酶对脱脂葵花粕酶解条件的研究[J].粮油加工,2008,(1):73-75.
    [139]孙骞,王峥峥,罗永康等.猪骨蛋白生物活性肽酶法制备工艺的研究[J].肉类研究,2008,(5):37-41.
    [140]周永治.生物活性肽的种类及应用[J].江苏调味副食品,2007,(6):11-14.
    [141]王层飞,李忠海,龚吉军等.生物活性肽的保健功能及其在食品工业中的应用研究[J].食品与机械,2008,(3):128-131.
    [142]王红梅,阚娟.生物活性肽的功能特性[J].江苏调味副食品,2008,25(2):37-39.
    [143]曹文红,章超桦,秦小明.食品蛋白来源生物活性肽[J].粮食与油脂,2007,(2):3-6.
    [144]张晓楠,郭立安.超滤在蛋白质纯化中的应用[J].中国生化药物杂志,1999,20(2):97-98.
    [145]刘成梅,梁汉萦,刘伟等.罗非鱼鱼皮多肽的超滤分离及其抗氧化活性研究[J].食品科学,2008,29(5):227-230.
    [146]张笑颜,张庆义,吴永刚.超滤技术在蛋白质纯化中的应用[J].中国药师,2004,7(3):203-205.
    [147]丁青芝,马海乐,骆玲等.米糠蛋白acei活性肽的超滤分离及其稳定性研究[J].食品研究与开发,2008,29(9):48-51.
    [148]余兰,于香安..三氯乙酸沉淀法结合双缩脲比色法测定水蛭提取液中总蛋白含量[J].中国药物与临床,2004,4(9):685-686.
    [149]李培骏,袁永俊,胡婷等.胰蛋白酶水解酪蛋白进程研究[J].食品与机械,2005,21(6):23-26.
    [150] Benzie, I.F.F., Strain. J.J. The ferric reducing ability of plasma (FRAP) as a measure of 'antioxidant power': The FRAP assay[J].Analytical Biochemistry,1996,239(1):70-76.
    [151] Liu, Q., Kong, B., Jiang, L., et al. Free radical scavenging activity of porcine plasma protein hydrolysates determined by electron spin resonance spectrometer[J].LWT - Food Science and Technology,2009,42(5):956-962.
    [152]刁静静,孔保华,刁新平等.骨蛋白水解物抗氧化活性及其作用模式[J].中国农业科学,2009,42(1):238-244.
    [153] Li, Y., Jiang, B., Zhang, T., et al. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH)[J].Food Chemistry,2008,106(2):444-450.
    [154]胡雪琼,周盛华,夏杏周等.马氏珠母贝肉酶解产物清除自由基活性的研究[J].食品工业科技,2009,30(4):97-99.
    [155] Awah, F.M., Uzoegwu, P.N., Oyugi, J.O., et al. Free radical scavenging activity and immunomodulatory effect of Stachytarpheta angustifolia leaf extract[J].Food Chemistry,2010,119(4):1409-1416.
    [156]欧成坤杨瑞金.牡蛎酶解产物的ACE抑制活性和自由基活性研究[J].食品工业科技,2005,26(3):59-62.
    [157]何婷,崔春,等.蓝园鲹制备抗氧化肽酶解工艺的研究[J].食品科技,2008,(2):70-74.
    [158]潘道东.抗ACE活性之瑞士乳杆菌的筛选[J].食品科学,2007,28(2):145-148.
    [159] Nakajima, K., Yoshie, S.Y., Ogushi, M. Comparison of ACE inhibitory and DPPH radical scavenging activities of fish muscle hydrolysates[J].Food Chemistry,2009,114(3):844-851.
    [160] Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., er al. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate[J].Food Chemistry,2010,121(1):178-184.
    [161]姚成虎,王志耕,梅林等.胃蛋白酶水解珠蛋白获得ACE抑制肽的工艺优化[J].农业工程学报,2008,24(5):284-288.
    [162]吕卉卉,潘道东,吕丽爽.瑞士乳杆菌发酵乳清蛋白制备ACE抑制肽的条件优化[J].食品科学,2010,31(3):165-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700