裂隙岩体渗流应力耦合状态下裂纹扩展机制及其模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂隙岩体中存在着大量的裂隙,这些裂隙的存在形成了它不同于其它均匀介质的复杂的力学特性和渗流特性。运用传统的渗流理论来分析岩体裂隙中水的渗流,难以反映渗流应力耦合过程中裂隙的萌生扩展过程,因此采用新的理论和方法来研究裂隙岩体渗流应力耦合特性,已成为岩石水力学研究中的热点和难点之一。
     研究裂隙岩体的渗流耦合过程,揭示其在渗流应力耦合状态下裂隙的扩展萌生规律,探求裂隙岩体在渗流耦合状态下由于其裂隙的扩展贯通而导致破坏的机理,了解裂隙岩体失稳破坏的原因。对于提高岩土工程设计水平,评价工程安全性能等,均有重要的理论意义和工程实用价值。
     本文以颗粒流理论为基础,运用PFC软件从细观力学角度研究了渗流耦合过程中裂隙岩体中裂纹的扩展萌生规律,并以此为基础运用宏观断裂力学等理论推导了渗流耦合过程中裂纹的扩展萌生公式。然后将裂纹的扩展公式代入渗透系数表达式,作为渗流场应力场之间耦合的桥梁,建立裂隙岩体的渗流应力耦合数学计算模型。主要工作如下:
     1、运用基于颗粒流理论的PFC软件从细观上对裂隙岩体在无水渗流情况下裂纹的扩展进行了模拟,重点分析了不同几何位置以及加载方式下两裂纹的扩展机制。并和实际室内试验相比较,两者结果较接近,以此验证了PFC软件模拟裂隙扩展的可行性。同时分析了PFC软件细观参数对宏观试验结果的影响。
     2、从细观上模拟了裂隙岩体中单条斜裂纹在渗流应力耦合状态下的扩展规律,分析不同水压力和侧压力对单条斜裂纹的影响。然后重点对裂隙岩体中两裂纹的扩展机制进行了研究,着重分析不同水压力对两裂纹扩展模式的影响。同时通过工程实例,数值模拟了隧道开挖过程中有水压和无水压状态下,隧道周围裂纹扩展的规律。
     3、以第二点为基础,运用断裂力学等宏观力学理论,推导了岩体中裂纹的扩展贯通的理论公式,得出裂纹在渗流耦合下的裂纹扩展长度公式,并代入渗透系数与裂纹长度的关系式,以该公式作为渗流场和应力场之间的耦合桥梁,提出本文的裂隙岩体渗流应力耦合的数学模型,并提出了宏观数值实现方案。
There are many cracks which offer good condition for groundwater's motion, rest and storage in the crack rock mass. The cracks cause rock mass' complex mechanic and seepage property which is different from homogeneous material. It is difficult to show the crack's propagation in the seepage-stress coupling process by traditional seepage theory. So using the new theory and method to research seepage-stress coupling character of crack propagation becomes an attracted and challengeable difficulty in the domain of rock hydraulics.
    Reaching the seepage-stress coupling process of crack rock mass is very important to disclose crack's initiation rule, study crack's propagation and run-through mechanism and understand the rock mass' destabilization and damage reason. This also has utmost theory and engineering significance to improve geo-technical engineering design level, appraise engineering security and optimize the construction of tunnel and dam in the seepage-stress coupling process.
    PFC software is used to research crack's initiation and propagation from the mesoscopic aspect by the theory of particle flow code. The crack's initiation and propagation formula is established by macroscopic fracture mechanics. The formula is as the bridge of stress field and seepage field. By this bridge the seepage-stress coupling mathematics model is established. In details, this dissertation includes:
    1. The crack's propagation rule of crack rock mass is simulated by PFC software from mesoscopic without seepage. Two cracks propagation mechanism is analyzed in geometric position. The results of simulating are compared to laboratory results and they are very close. This proves that the PFC software is feasible to simulate crack propagation. At the same time the effect of mesoscopic parameter to macroscopic parameter is also analyzed.
    2. The single diagonal crack's propagation rule is simulated in the condition of seepage-stress coupling. The effect of different water pressure and lateral compression to single diagonal crack's propagation rule is studied. And two cracks'
引文
[1] Amadei B. Illangasekare T A. Mathematical model for flow and solute transport in nonhomogeneous rock fracture. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994(18) :719~731
    
    [2] Ashby M F and Hallam S D, The failure of britle solids containing small cracks under Compressive stress states, Acta Metall ,1986,34(3):497~51
    [3] Atkinson B K, Meredith P G. The Theory of Subcritical crock Growth with Applications to Minerals and Rocks. Fracture Mechanics of Rock. Atkinson B Ked. London:Academic Press, 1987,111~166
    [4] Barenblatt, G..I.,et al., Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J.Appl. Math. Mech., Engl. Transl. 1960(5)
    [5] Barton N., S.Bandis, K.Bakhatr, Strength, deformation and conductivity coupling of rock joints, Int. J. Rock Meck Min. Sci.&Geomech.Abstr., 1985,22(3):121-140
    [6] Bazant Z P, Oh B H. Crack band model for concrete. Materials and Structures(RILEM), 1983(16):155~177
    [7] Bathe K, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., Englewood Clifs, New Jersey, 1982
    [8] Bazant ZP and Cedolin L. Blunt crack band propagation in finite element analysis. Journal of Engineering Mechanics Division. ASCE 1979,105, EM2: 297~315
    [9] Belytschko T, Lu Y Y, Gu L. Tabbara M. Element-free Galerkin methods for static and dynamic fracture. International Journal for solids structures. 1995a,(32):2547~2570
    [10] Belytschko T, Lu Y Y, Gu L. Crack propagation by element-free Galerkin methods. Engineering Fracture Mechanics. 1995b(51):295~315
    
    [11] Belytschko T, Tabbara M. Dynamic fracture using element-free Galerkin methods. International Journal for Numerical Methods in Engineering. 1996(39):923~938
    
    [12] Belytschko T, Organ D, Gerlch C. Element-free Galerkin methods for dynamic fracture in concrete. Comput methods Appl. Mech. Engrg. 2000(187):385~399
    [13] Blair SC, Cook NGW. Analysis of compressive fracture in rock using statistical techniques: part I. a non-linear ruled-based mode 1[J]. International Journal of Rock Mechanics and Mining Sciences, 1998a, 35(7): 837-848
    [14] Blair SC, Cook NGW. Analysis of compressive fracture in rock using statistical techniques: part II. effect of microscale heterogeneity on macroscopic deformation[J]. International Journal of Rock Mechanics and Mining Sciences, 1998b, 35(7): 849-861
    [15] Bobet A.and Einstein H.H.,Fracture coalescence in rock-type materials under uniaxial and Biaxial compression, Int. J. Rock Mech. Min. Sci.,1998,35(7):863-888
    [16] Bobet A and Einstein H H, Numerical modeling of fracture coalescence in a model rock material, Int. J. Fracture. 1998(92):221~252
    [17] Brace W F and Bombolakis E G, A note on brittle crack growth in compression, Geophys Res. 1 963(68):3709~3713
    
    [18] Broberg B K, On crack path, Engng.Fracture Mech, ,1987,28(5/6):663~679
    [19] Bruno M S, Nakagawa F M. Pore Pressure influence on tensile fracture propagation in sedimentary rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1991,28(4):261~273
    [20] Chaboche, J. L., Lifetime Predictions and cumulative Damage under High Temperature Conditions. Int. sump. On Low Cycle Fatigue and Life Prediction, Firming. France, ASTM STP 1980 (770)
    [21] Chaboche, J. L., Continuous Damage Mechanics: A Tool to Desscribe Phenomena Before Crack Initiation, Nuclear Engineering and Design. 1981(64):233~247
    [22] Chang CS, Wang TK, Sluys LJ, Van Mier JGM. Fracture modeling using a microstructural mechanics approach—II. Finite element analysis [J]. Engineering Fracture Mechanics, 2002,69:1959-1976
    [23] Chan H C M, Li V and Einstein HH, A hybridized displacement discontinuity and indirect boundary element method to model fracture propagation, Int. J. Fracture,1990(45):263~282
    [24] Coterell B, Brittle failure in compression, Int. J. Fracture, 1972,8(2) :195~208
    [25] Crouch S L. Solution of plain elastic problems by the displacement discontinuity method, Int. J. Numer. Methods in Engng.,1976(10):301~343
    [26] Curtin W.A. and Scher H., Britle fracture in disordered materials: a spring network model, J. Mater.Res., 1990,5:535-55
    [27] Curtin W.A., Ann B.K.and Taketa N., Modeling brittle and tough stress-strain behavior in Unidirectional ceramic matrix composites, Acta M ater.1998,46:3409~342
    [28] D.Elsworth. Thermal Permeability Enhancement of blocky Rocks one-dimensional flows. Int. J. Rock mech.&Min.Sci.1989,3(4):319~339
    [29] Dournary E, Mclennan et al. Poroelastic concepts explain some of the hydraulic fracturing mechanism. SPE 1990,15262
    [30] Erdogan F and Sih G C, On the crack extension in plates under plane loading and transverse shear ,J. Basic Eng., 1963,85(4):519~527
    [31] Esaki T, Du S, Mitani Y, et al. Development of ashear-flow test apparatus and determination of coupled properties for a single rock joint. International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts, 1999, 36: 641~650
    [32] Gale G. E. The effects of fracture type (induced versus natural) on the stress fracture closure permeability relationships. In: Proc.23th Symp. On Rock Mech., Berkeley, California, 1982
    [33] Griffith,A.A..The phenomena of rupture and flow in solids, Phil. Trans. Royal Soc. London, SeriesA,221,163,1921
    [34] Griffith,A.A..The theory of rupture Proceeding of 1st International congress applied M echanics,1st Delft,55-63,1924
    [35] Hamid R.Ghafouri etc. A finite element double porosity for heterogeneous deformable Porous media. Int. J. Numer. Anal. Mech.Geomech,1996,(20):831-844
    [36] Hillerborg. A., M. Modéer and P. E. Petersson.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.Cement and Concrete Research, 1976 ,6(6):773-781
    [37] Hock E and Bieniawski ZT Britle fracture propagation in rock under compression Int. J. Fracture, 1984(26):276~294
    [38] Horii,H.and Nemat-Nasser,S.,Compression-induced microcrack growth in brittle solids:axial splitting and shear failure, J. Geophys. Res.,1985,90 (B4):3105-312
    [39] Horii H and Nemat-Nasser S, Brittle failure in compression: splitting, faulting and brittle-ductile transition,Phil.Trans.Roy.Soc., 1986,319(1549):337~374
    [40] Ingrafea R A and Mann C, Stress intensity factor computation in three dimensions with Quarter point elements, Int. J. Numer, Methods in Engng, 1984,(15):1427~445
    [41] Janson J, Hult J. Fracture mechanics and damage mechanics, a combined approach. J. de Mech.Appl. 19771(1):59~64
    [42] Jeffrey R G, Mills K W. Hydraulic fracturing applied to inducing longwall coal mine goaf falls. Paciffic Rock, Girard, Liebman, Breeds, Doe(eds). Balkema, Rotterdam. 20004,23~430
    [43] J. Lemaitre, How to use Damage Mechanics, Nuclear Engineering and Design, 1984 (80) 233~245
    [44] Jones FO. A laboratory Study of the Efects of Confining Pressure on Fracture Flow and Storage Capacity in Carbonate Rocks. J. Petrol. Technol. 1975
    [45] Kachanov, L. M. Time of the Rupture Process under Creep Condition, Iiv. Akad. Nauk, S.S.R, Otd Tekh.Naul,No.8 1958
    [46] Keivan N. Discrete versus smeared versus element-embedded crack models on ring problem. Journal of Engineering Mechanics, 2000(4):307~314
    [47] Krajcinovic D, Sumaral D. A Mecsomechanical Model for Brittle Deformation Processes: Part Ⅰ and Ⅱ, ASME J Appl. Mech.1989(56):51~62
    [48] Kraicinovic, D., and Fonseka, G. U., The continuous Damage Theory of Brittle Materials Part 1 and 2, ASME J. Apple. Mech., 1981(48):809~824
    [49] Kraicinovic, D., and Silva, M.A.G., Statistical Aspects of the Continous Damage Theory, Int. J. Solids Structures, 1982 (18) :7
    
    [50] Kraicinovic, D., Continuum Damage Mechanics. Appl. Mech. Reviews, 1984(37)1
    [51] Lajtai E Z, A theoretical and experimental evaluation of the Griffith theory of brittle fracture,Tectonophysics, 1971,11(1): 129~15
    
    [52] Lajtal E. Z. Brittle Fracture in compression.Int. Frac. 1977.10(4)
    [53] Lemaitre, J., and Chaboche, J. L., Aspect Phenomenologique de la Rupture Par Endommagement, J. de Mec. Appl., 1978,2,(3)
    [54] Lemos J V. A distinct element model for dynamic analysis of jointed rock with application to dam foundation an fault motion. Minneapolis: Univ of Minnesota, 1987
    [55] Lemos J V, Lorig L J. Hydromechanical modeling of jointed rock masses using the distinct element method. In: Mechanics of jointed & faulted rock. Rotterdam: Balkema, 1990
    [56] Lomize G M. Flow in Fractured Rocks. Moscow: Gosemergoizdat, 1951
    [57] Long,J.C.S.,and P.A.Withspoon, The relationship of the degree of interconnection and permeability in a fracture network, J. Geophys Res., 1985, (90):3087~3098
    [58] Long,J.C.S., J.S.Remer, C.R.Wilson, P.A. Witherspoon, Porous media equivalentsfor networks of discontinuous fractures, Water Resour. Res., 1982,18(3):~645-658
    [59] Long,J.C.S., P. Gilmour, and RA.Withspoon, A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures, Water Resources Research, 1985, 21 (8): 1105-1115
    
    [60] Louis C. Rock Hydraulics in Rock Mechanics, Ed. By L Muller, 1974
    [61] lzumi M, Mihashi H and Nomura N, Fracture toughness of concrete for model I. Witman F.H, Fracture toughness and Fracture Energy of concrete, Amsterdam, Elsevier Science Publishers, 1986,347~354
    [62] Mao Bai. Multiporousity/multipermeability approach to the simulation of naturally fractured reservoirs. water resources research,1993,29(6):1621-1633
    [63] M. Bai. Dual-porosity poroelastic modeling of generalized plane strain. Int. J. Rock Mech. Mi n. Sci.& Geomech Abstr,1999,36,1087-109
    [64] M.Bai etc. Modeling of subsidence and stress-dependent hydraulic conductivity for intact and fractured porous media. Rock mech. Rock engng,1994,27(4):209-23
    [65] M. Bai. Numerical modeling of coupled flow and deformation in fractured rock specimens.Rock mech. Rock engng, 1999,23
    [66] M. Gutierrez. The efect of fluid content on the mechanical of fractures in chalk. Int. J. Rock ech. Min. Sci.& Geomech Abstr,2000,33,(2)
    [67] Mohamed AR, Hansen W. Micromechanical modeling of concrete response under static loading—Part I: Model development and validation [J]. ACI Materials Journal. 1999a, 96(2): 196~203
    [68] Mohamed AR, Hansen W. Micromechanical modeling of concrete response under static loading—Part II: Model predictions for shear and compressive loading. ACI Materials Journal. 1999b, 96(3): 354~358
    [69] Montheillet F. and Gilormini P.,Predicting them echanical behavior of two-phase materials With cellular automata, International Journal of Plasticity, 1996,12(4):561~574
    [70] Murakami S. Mechanical Modeling of Material Damage. ASME J. Appl. Mech., 1987(55):280~286
    [71] Nemat-Nasser S. and Horri H. Compression-induced nonplanarc rack extension with application to splitting, exfoliation and rock bursts, J. Geophys. Res., 1982,87 (B 8) :6805~6821
    [72] Noorishad J, etl al. A finite-element method for coupled stress and fluid flow analysis in fracture rock masses. Int J. Rock Mech. Sci&Geomech. Abstr, 1985,22(4) :251~281
    [73] Oda.M. Permeability tensor for discontinuous rockmass. Geotechnique,1985
    [74] Oda M. An Equivalent Model for Coupled Stress and Fluid Flow Analysis in Jointed Rock Masses. Water Resource. Res., 1986,22(13):1845~1856
    [75] Poston. T. and Stewart, I. catastrophe Theory and Its Applications. Pitman, London, San Francissco, Melbourne, 1978
    [76] Potyondy, D.O., and P. A. Cunall. "Modeling of notch formation in the URL Mine-By Tunnel: Phase IV—Enhancements to the PFC Model of Rock" Itasca Consulting Group, Inc., Report to Atomic Energy of Canada Limited(AECL), April. Issued as Ontario Hydro Nulear Waste Management Division Report No. 06819-REP-01200-10002-R00, 1999
    [77] Rabotnov Y N. On the equations of state for creep. Progress in Applied Mechanics. 1963,307~315
    [78] Schlangen E, Garboczi EJ. Fracture simulations of concrete using lattice models: computational aspects. Engineering Fracture Mechanics, 1997,57(2):319~332
    [79] Raghuprasad B.K., Bhatacharya G.S. and Mihashi H., Size effect in notched concrete plane under plane stress-a lattice model, Int. J. Of Fracture, 1994,6 7:R3~R8
    [80] Raghuprasad B. K. and Bhat D.N., Bhattacharya G. S., Simulation of Fracture in a Quasi-brittle Material in Direct Tension-a Lattice Model, Engineering Fracture Mechanics, 1998, 61,445~460
    [81] Reyes O.Experimental study an danalytical modeling of compressive fracture in brittle materials. Ph.D. thesis, Massachusets In statute of Technology,Cambridge, 1991
    [82] Reyes O.and Einstein H.H.,Fracture mechanics of fracturd rock-A fracture coalescenc model, 7th Int. Congress on Rock Mech., 1991,333~340
    [83] Scavia C, A numerical technique for the analysis of cracks subjected to normal compressive stress, Int. J. Numer Methods in Engng. 1992(33):919~942
    [84] Schlangen E. and Van Mier J. G. M., Simple latice model for numerical simulation of concrete material and structures, Material and Structure, 1992,25:534~542
    [85] Schlangen E.and Van Mier J. G.M.,Micro-mechanical analysis of fracture of concrete, Int J. Damage Mech., 1992,1:435~454
    [86] Schlangen E. and Garboczi E. J., Fracture simulations of concretes using lattice model: Computational aspects, Enging. Fracture Mech.,1997,57(2/3):319~332
    [87] Shi G, Manifold method of materials analysis, Trans.9~(th) Army Conf. on Appl. Math. and Comp., Minneapolish, Minneasoda, 1991,51~76
    [88] Shi G, Manifold method, Proc.1st Int. Forum on DDA and Simulations of Discontinuous Media, Bekerley, California,1996,158~170
    [89] Sih G C, Some basic problems in fracture mechanics and new concepts, Engng. Fracture. M ech,1973(5):365~377
    [90] Snow.D.T Rook Fracture Spacings. Openings and porosities. Soil Mech. Found., Proc. ASCE,1968
    [91] Snow D T. Rock fracture specings, opening and porosities. J. Soil Mech. Found. Div. Proc. ASCE94,1968,73~79
    
    [92] Snow.D.T., Anisotropic permeability of fractured media, Water Resour. Res., 1969,5(6)
    [93] Steif P S, Crack extension under compressive loading, Engng. Fracture Mecb., 1984,20 (3) 463~473
    [94] Tang CA, Liu H, Lee PKK, Tsui Y, Tham LG. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: effect of heterogeneity [J]. International Journal of Rock Mechanics and Mining Sciences, 2000a, 37:555~569
    [95] Tang CA, Tham LG, Lee PKK, Tsui Y, Liu H. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part II: constraint, slenderness and size effect [J]. International Journal of Rock Mechanics and Mining Sciences, 2000b, 37:571~583
    [96] Tang C.A.,Lin P,Wong R.H.C.and Chau K.T.Analysis of crack coalescence in rock-like material containing three flaws-Parti 1:Numerical approach, Int. J. Rock Mech. Min. Sci. 2001,38(7): 925~936
    [97] Thallk S, Rothenbury L, Dusseault M. Simulation of multiple hydraulic fracture in a discrete element system. Rock mechanics as a multidisciplinary science. Roegiers (eds). Balkema, Rotterdam, Proceedings of the 32nd U.S. Symposium, 1991,271~280
    [98] T.S.Nguyen etc. A model for coupled mechanical and hydraulic of rock joint. Int. J. Numer. Anal. Mech. Geomech, 1998,22
    [99] Tsang Y.W., P.A. Witherspoon, Hydromechanical behavior of a deformable rock fracture subject to normal stress, J. of Geophys.Resear., 1981,86(B10):9187~9198
    [100] Tsang Y.W., PA. Witherspoon, The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size, J. of Geophys. Research, 1983, 88(B3): 2359~2366
    [101] V. Guvanasen etc. A Three-dimension numerical model for thermohydromechanical deformation with hysteretic in a fractured rock mass. Int. J.Rock Mech.Min. Sci.&Geomech Abstr,2000,(37):89~106
    [102] Van Mier J. G. M., Mode I fracture of concrete: discontinuous crack growth crack interface Grain bridging, Cement and Concrete Research, 1991,21:1~15
    [103] Van Mier J. G. M., Facture processes of concrete: assessment of material parameters for fracture models. CRC Press, Inc., Boca Raton, Florida, U. S,1997
    [104] Van Mier J. G. M., Vervuurt A. and Van Vliet M. R. A., Materials engineering of cement-based composites using latice models, Computational Fracture Mechanics in Technology: 1997,1~32
    [105] Vandamme M, Roegiers J C. Poroelasticity in hydraulic fracturing simulators. JPT, 1990,1199~1203
    [106] Wei K H, Jean-Claude D B. Fracture Under Compression: the direction of Initiation, Int. J. Frac. 1963,(61):267~294
    [107] Wilson C R, Witherspoon P A. Steady state flow in rigid networks of fractures. Water Resources Research, 1974, 10(2) 328~335
    [108] Wittke W. Three-dimensional penetration in fissured rock. Proc open pit mining symp. Johannesburg. 1970. 181~191
    [109] Wong R. H. C. and Chau. K. T, Crack coalescence in a rock-likematerial containing two c racks Int. J. Rock Mech.Min.Sci.,1998,35(2):147~16
    [110] Wong R. H.C.,Chau K T, Tang C. A. and Lin P. Analysis of crack coalescence in rock-like material containing three flaws-Part1: experimental approach, Int. J. Rock Mech. Min. Sci, 2001, 38(9):909~924
    [111] Wong RHC, Tang CA, Chau KT, Lin P. Splitting failure in brittle rocks containing pre-exiting flaws under uniaxial compression[J]. Engineering Fracture Mechanics, 2002, 69: 1853~1871
    [112] ZHOU Jian, CHI Yong. Simulation of sand properties by particle flow code[J]. Geotechnical Engineer, 2002a, 14(3): 1~6
    [113] ZHOU Jian, CHI Yong. The application of particle flow code in geotechnical engineer[J]. Geotechnical Engineering, 2002b, 14(2): 1~4
    [114] A.班恩,B.A马克西莫夫等,张朝琛译,岩石性质对地下液体渗流的影响,石油工业出版社,1981,191-231
    [115] 曹国金.无单元法进展、改进及其应用.河海大学博士论文.2003
    [116] 车法星,黎立云,刘大安.类岩材料多裂纹体断裂破坏实验及有限元分析.岩石力学与工程学报.2000,19(3)259-298
    [117] 蔡永昌.无网格方法及其在颜体工程中的应用.同济大学博士后研究工作报告.2003
    [118] 陈平,张有天.裂隙岩体渗流与应力耦合分析.岩石水力学与工程学.1994,13(4)299-308
    [119] 陈卫忠.节理岩体损伤断裂时效机理及其工程应用.武汉.中科院武汉岩土所博士论文,1996
    [120] 国家自然科学基金委员会.自然科学发展战略调研报告—水利科学,北京:科学出版社.1994,139-148
    [121] 黄凯珠,林鹏,唐春安,周锦添.双轴加载下断续预制贯通机制的研究.岩石力学与工程学报,2002,21(6):808~816
    [122] 黄明利.脆性材料三维裂纹扩展贯通机制试验研究.中国科学院武汉岩土力学研究所博士后研究工作报告.2003
    [123] 黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析。岩石力学与工程学报,2000(9):573~576
    [124] 黄涛等.隧道裂隙岩体温度—渗流耦合数学模型研究.岩土工程学报,1999,21(5):554-558
    [125] 赖远明等.,寒区隧道温度场,渗流场和应力场耦合问题的非线性分析.岩土工程学报.1999,21(5):529-533
    [126] 黎水泉等.双重孔隙介质非线性流固耦合渗流.力学季刊,2000,21(1):96-101
    [127] 李定方等.裂隙岩体渗流新模型.水利水运科学研究,1996,(4):283-29
    [128] 李广平,陶震宇.真三轴条件下的岩石细观损伤力学模型.岩土工程学报.1995,17(1):24~31
    [129] 李广平,类岩石材料微裂纹损伤模型分析,岩石力学与工程学报,1995,14(2):10711
    [130] 李明田.岩石破裂过程数值模拟的格构细胞自动机方法研究.武汉.中科院武汉岩土所博士论文,2004
    [131] 李术才.加锚断裂节理岩体断裂损伤模型及其应用.中科院武汉岩体所博士论文.1996
    [132] 李银平.岩石类材料损伤断裂机制研究.博士学位论文.华中科技大学.2003
    [133] 李银平,王元汉,肖四喜.类岩石材料中压剪裂纹的相互作用分析.岩石力学与工程学报.2003(4)
    [134] 李新平,朱维中.多裂隙岩体的损伤断裂分析与工程应用.岩土工程学报.1992,14
    [135] 李卧东等.模拟裂纹传播的新方法—无网格伽辽金法.岩土力学.2001,22(4):33~36
    [136] 李卧东,王元汉,谭国焕.无网格法在弹塑性问题中的应用.固体力学学报.2001,22(4)361~366
    [137] 凌建明.节理岩体损伤力学及时效损伤特征的研究.上海同济大学博士论文,1992
    [138] 刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究.岩石力学与工程学报,2003,22(10):1651~1655
    [139] 刘继山.单裂隙受正向应力作用时的渗流公式.水文地质工程地质.1987,(2)
    [140] 刘继山.结构面力学参数与水利参数耦合关系及其应用.水文地质工程地质.1988,(2)
    [141] 刘亚晨,蔡永庆,刘泉声.岩体裂隙结构面的温度-应力-水力耦合本构关系.岩土工程学报.2001,23(2):196~200
    [142] 缪协兴.刘卫群.陈占清.采动岩体渗流理论.北京.科学出版社 2004
    [143] 刘庭金.混凝土及岩土材料破坏过程的弹塑性各向异性损伤数值模型及其应用.同济大学博士论文.2004
    [144] 寇晓东,周维恒.无单元法及其应用.力学学报.1998a,30(2):193~202
    [145] 寇晓东.无单元法追踪结构开裂及拱坝稳定研究.清华大学博士论文.1998b
    [146] 寇晓东,周维恒.应用无单元法近似计算拱坝开裂.水利学报.2000(10):28~35
    [147] 聂志宏.裂隙渗流场中隧道结构与流场间相互作用的研究.北方交通大学硕士论文.2000
    [148] 任大春.有限解析法在渗流计算中的应用.长江科学院院报.1991(3)
    [149] 盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述.岩土力学,1998,19(2):92~98
    [150] 盛金昌.三维裂隙岩体渗流应力耦合数值分析及工程应用.河海大学博士学位论文 2000.6
    [151] 沈洪俊,张奇,夏颂佑.单裂隙辐向流试验的初步探讨.河海大学学报.1995,23(2):94~98
    [152] 沈洪俊,高海鹰,夏颂佑.应力作用下裂隙岩体渗流特性的试验研究.长江科学院院报.1998,15(3):35~39
    [153] 速宝玉,詹美礼,赵坚.光滑裂隙水流模型实验及其机理初探.水力学报.1994(5):19~24
    [154] 速宝玉等.仿开然岩体裂隙渗流的实验研究.岩土工程学报.1995
    [155] 速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究.岩土工程学报.1997(5)
    [156] 速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究.岩土工程学报,1995,17(5):19~24
    [157] 速宝玉,詹美礼,赵坚.裂隙渗流与应力耦合特性的试验研究.岩土工程学报.1997(4):73-74
    [158] 唐春安,岩石破裂过程中的灾变,北京:煤炭工业出版社,1993
    [159] 唐春安,王述红,傅宇方.岩石破裂过程数值试验.北京.科学出版社.2003a
    [160] 唐春安,朱万成.混凝土损伤与断裂—数值试验.北京.科学出版社,2003b
    [161] 陶连金,姜德义,孙广义,张东日.节理岩体中地下水流动的离散元模拟.煤炭学报.2000,25(1):1~4
    [162] 田开铭,对裂隙岩石渗透性的初步研究地质研究.1980,(2):137-143
    [163] 田开铭,万力.各向异性裂隙介质渗透性的研究与评价.北京.学苑出版社.1989
    [164] 田开铭,陈明佑,王海林.裂隙水偏流.北京.学苑出版社.1989
    [165] 王宝庭.基于刚体—弹簧元法的全级配混凝土本构行为模拟.大连理工大学博士学位论文.1997
    [166] 王洪涛.裂隙网络渗流与离散元耦合分析充水岩质高边坡的稳定性.水文地质与工程地质.2002,(2):30~33
    [167] 王水林,葛修润.流形元方法在模拟裂纹扩展中的应用.岩石力学与工程学报.1997,16(5):405~410
    [168] 王泳嘉,麻凤海.岩层移动的复合介质模型及其工程验证.东北大学学报(自然科学版),19971,18(3):229-233
    [169] 王媛.裂隙岩体渗流及其与应力的全耦合分析.河海大学博士学位论文,1995
    [170] 王媛等.复杂裂隙岩体渗流与应力弹塑性全耦合分析.岩石力学与工程报.2000,19(2)
    [171] 仵彦卿,张卓元.岩体水力学.成都.西南大学出版社.1995
    [172] 仵彦卿.岩体渗流场与应力场耦合的离散介质模型.水文地质与工程地质.1997,(3):10-14
    [173] 仵彦卿.岩体渗流场与应力场耦合的裂隙网络模型.水文地质与工程地质.1997,(3):10-14
    [174] 仵彦卿.岩体渗流场与应力场耦合的双重介质模型.水文地质与工程地质.1998,(3):10-14
    [175] 夏熙伦,任放.在压缩载荷下岩石和水泥试样的复合型断裂试验及判据.水力学报.1984,9
    [176] 谢和平.大理岩微观断裂的分形模型研究.科学通报.1989,34:(5)
    [177] 谢和平,高峰.岩石类材料损伤演化的分形特征.岩石力学与工程学报.1991,10(1):1~9
    [178] 谢和平,D.J.Sanderson,D.C.P.Peacock.雁行断裂分形模型和能量耗散.岩土工程学报.1994,16(1):1~7
    [179] 许光祥,张永兴,哈秋舲.粗糙裂隙渗流的超立方和次立方定律及其试验研究.水力 学报.2003,(3):74~79
    [180] 徐靖南.压剪应力作用下多裂隙岩体的力学特性——理论分析与模型试验.中科院武汉岩土所博士论文.1993
    [181] 杨庆生,杨卫.断裂过程的有限元模拟.计算力学学报.1997,(4):79~88
    [182] 杨天鸿,岩石破裂过程的渗流特性—理论、模型与应用.北京.科学出版社.2004
    [183] 杨卫.宏微观断裂力学.北京.国防工业出版社.1995
    [184] 杨卫.细观损伤理论进展.固体力学发展趋势.黄克智,徐秉业.主编.北京:北京理工大学出版社,1995
    [185] 叶黔元.岩石的内时损伤本构模型.第四届全国岩土力学数值方法与解析方法会议论文集,武汉,武汉测绘技术科技大学出版社,1991,85~90
    [186] 易顺民,朱珍德.裂隙岩体损伤力学导论.科学出版社.2005
    [187] 尹双增.断裂损伤理论及应用.北京.清华大学出版社.1992
    [188] 余恒文,宋锦良,冯德益,蒋淳.压剪应力场中组合裂纹非共面破裂特征的实验研究.地球物理学报.1995,38(5):683~68
    [189] 余天庆,钱济成.损伤理论及其应用.北京.国防工业出版社.1993
    [190] 张有天.用边界元求解有排水孔的渗流场..水力学报.1982(7)
    [191] 张有天.王镭陈平边界元法及其在工程中的应用.水力水电出版社 1989
    [192] 张有天,张武功.裂隙岩体渗流特性、数学模型及系数量测岩石力学.1982(8):41-52
    [193] 张有天.裂隙岩体渗流的路论和实践.岩土与水工建筑物相互作用研究成果汇编.1990
    [194] 张有天.岩石水力学与工程中国水利水电出版社.北京.2005
    [195] 张有天.裂隙岩体渗流的理论和实践.中国岩石力学与工程学会第二届岩石力学数值分析会议论文集.上海.同济出版社.1990
    [196] 张有天.裂隙岩体渗流数学模型研究现况.人民长江 1991,(3):1~10
    [197] 张有天.裂隙岩体中水的运动及其与水工建筑物的相互作用.天津.天津大学出版社.1992.205-284
    [198] 张文杰,周创兵,李俊平,李向阳.裂隙岩体渗流特性物模试验研究进展.岩土力学.2005,26(9):1517~1524
    [199] 张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究.岩土力学.1997,18(4):59~62
    [200] 郑少河.裂隙岩体渗流场一损伤场耦合理论研究及工程应用武汉.中国科学院武汉岩土力学研究所博士论文,2004
    [201] 曾亿山,卢德唐,曾清红,董虎.单裂隙流—固耦合渗流的试验研究.试验力学.2005,20(1):11~16
    [202] 周创兵.裂隙岩体渗流场与应力场耦合分析研究.武汉.武汉水利电力大学博士论文.1995
    [203] 周健,池水,池城蔚.颗粒流方法及PFC2D程序.岩土力学,2000,(3):271~274
    [204] 周健,池永,廖雄华.颗粒流理论及其工程应用简介.岩土工程师,2001a,13(4):1~4
    [205] 周健,池毓蔚,池永.砂土双轴试验的颗粒流模拟.岩土工程学报,2001b,(6):701~704
    [206] 周健,廖雄华,池永.土的室内平面应变试验的颗粒流模拟.同济大学学报,2002,30(9):1044~1050
    [207] 周群力,余泳琼,王良之.岩石压剪断裂核的实验研究.固体力学学报.1991,12(4):329~336
    [208] 周群力,刘振洪,王良之.岩石压剪断裂核的扩容效应.岩石力学与工程学报.1999,18(4):444~446
    [209] 周维恒,杨若琼等.流形元法及其在工程中的应用.岩石力学与工程学报.1996,15(3):211~218
    [210] 赵阳升,杨栋,郑少河.三维应力作用下岩石裂缝水渗流物性规律的试验研究.中国科学.1999,29:(1)
    [211] 朱维申,陈卫忠,申晋.雁行裂纹扩展的模型试验及断裂机制研究.固体力学学报.1998,19((4):355~360
    [212] 朱维申,张强勇.节理岩体脆弹性断裂损伤模型及其工程应用.岩石力学与工程学报,1999,18(3):245~249
    [213] 朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应与工程应用.北京.科学出版社.2002
    [214] 朱万成,唐春安,杨天鸿,梁正召.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报,2003,22(1):24~29
    [215] 朱维申,陈卫忠,李术才.加锚节理裂隙岩体的本构关系研究.中国科学院武汉岩土力学研究所科研报告.1995,5
    [216] 朱珍德,孙均.裂隙岩体非稳定渗流场与损伤场耦合分析模型.水文地质工程地质.1999,26(2):35~42
    [217] 朱珍德等 裂隙岩体的渗流场与损伤场耦合分析及其工程应用.长江科学院院报.1999,16(2):22-27
    [218] 朱珍德,胡定.裂隙水压力对岩体强度的影响.岩体力学.2000,21(1):64~67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700