基于概率统计的层状岩体裂隙特征分析及模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对解决科学实践问题方法的研究,自人类诞生以来就从未间断。裂隙岩体的非均质性特征,可以是随机的,也或是函数可以描述的,用哪种方式,取决于它的特征参数的平均水平随机波动性,或特征参数的函数变化形式可表达性。李华晔曾指出,裂隙岩体存在着一种无法利用因果关系加以严格控制或准确预测的现象,对于这种现象只能进行综合分析,剔除某些因素的影响而从中归纳出某些规律来。显然,裂隙岩体的离散性是可用统计函数表示的。
     本文以锦屏一级水电站坝区为研究对象,针对目前在层状岩体研究中面临的问题,以工程水文地质科学理论为指导,运用水文地质学、岩体力学、构造地质学等地球科学理论方法,结合概率统计、系统思维等数学和社会学知识,研究层状岩体的裂隙特征及其离散模型的建模方法,并探讨了离散模型裂隙连通性计算等。主要研究内容与结论为:
     1、研究区层状岩体可分为三类
     研究区发育中上三叠统杂谷脑组大理岩(T2_3Z2)和砂板岩(T2_3Z3)岩性及其组合关系认识,大理岩据颜色、结构及工程地质特性可分为8小层,砂板岩据互层关系分为4小层。遵照陈志坚对层状岩体分类的研究理论,结合野外实测裂隙发育及构造分布规律的综合分析,研究区中上三叠统杂谷脑组岩层可以划分为A、C、E三类。A类岩体中裂隙多表现为闭合隐裂隙,且层面优势作用明显,主要地层为T2-3Z3(3)、T2-3Z3(1);C类岩体中裂隙发育不受软岩限制,间距多大于50厘米,但切割深度较大,延伸较长,主要地层为TZ-3Z2(3)~2(8);E类岩体中裂隙多呈闭合隐裂隙,层面优势作用不明显,地层主要为T2-3Z2(1)~2(2)。
     2、研究区岩体裂隙发育特征与统计特征
     (1)优势裂隙组:经测量统计研究区主要发育Ⅴ级结构面,基于组裂隙分布密度,并结合前人已有研究成果,确定五组优势裂隙组;其中,左岸两组:①100~175°∠40~75°(SL组);②344~45°∠70~90°(Ⅲ-1组);右岸三组:③120~188°∠55~90°(Ⅳ组);④265~350°∠20~60°(Ⅰ组);⑤188~230°∠50~90°(Ⅲ-2组)。
     (2)裂隙间距:针对裂隙间距数据正偏特点,引入了探索性数据分析方法,用箱线图图示数据分布类型、数据分析过程和数据分析结果,提出用中值代替均值提供模型参数的思想,并参照方差概念和求算方法,定义了描述中值波动大小的中方差参数,给出了其求解公式和95%置信区间的求算法则。基于新方法的分析,得出研究区各优势组裂隙间距数据均呈负指数分布,间距均在50cm以内,据岩石与岩体鉴定和描述标准,确定裂隙密度分级为“Ⅳ级——发育”。
     (3)裂隙隙宽:用频数直方图图示分析法,得出各优势裂隙组隙宽分布类型均为负指数;经统计隙宽均值为0.33mm;据ISRM提出的裂隙隙宽分级标准,可描述为“部分张开”,其状态为“闭合”,相对渗透系数区间为“10-4~10-2cm/s”。结合野外实践的感性认识,用灰色系统初略探讨了隙宽数据的灰色属性和室内实验方法。
     (4)裂隙迹长:各优势裂隙组裂隙平均迹长,用无限长窗口广义H-H迹长估计公式估算,均在3~4m之间,据ISRM(国际岩石力学学会)提出的结构面连续性分级标准,属中等连续性;用频数直方图图示,SL和Ⅲ-1两组迹长数据呈正态分布,其余各组均属对数正态分布。
     3、研究区局域裂隙离散网络可视化及分析
     运用GeneralBlock软件再现了左右岸小范围内的裂隙三维网络,并采用“由单一到组合,层层深入”的分析思想,设计了三种方案的裂隙三维网络,对岩体裂隙发育规律、分布特征及其连通性做了初步探讨。
     (1)左岸:两组裂隙只能在模拟范围的有限局部区域内形成有效连通,且随机性很大。SL组裂隙延仲不如Ⅲ-1组裂隙,且间距大,分布零散;有效的连通网络主要出现在Ⅲ-1组发育的密集区,此时SL组裂隙起导水作用。通过统计其代表性模型剖面(Y-Z面)和平面(X-Y面)内的裂隙交叉点数,计算得出每平方米的交叉点个数,为0.01。
     (2)右岸:三组优势裂隙组构建的裂隙网络,连通性很好。剖面上Ⅳ组和Ⅲ-2组组成了条带状裂隙网络,且伴随Ⅰ组与Ⅳ组裂隙的共生,放大了该特征;平面上Ⅳ组裂隙从右上贯通至左下,Ⅰ和Ⅲ-2组合成“#”型分布于其间。从对裂隙网络的作用分析,Ⅳ组裂隙既是裂隙网络的集水廊道,又是导水通道;1组既是集水廊道,也是贮水空间;Ⅲ-2组裂隙相比于其它两组裂隙,平面和剖面都反映其不发育,主要起贮水作用。经计算,得出右岸每平方米的交叉点个数,为0.2,其连通程度远远大于左岸。
     4、裂隙网络控制参数的敏感性分析
     根据GeneralBlock软件参数输入特点,设计了控制裂隙组产状和半径参数波动的裂隙模型生成方案,探讨了裂隙在模拟区内的分布规律及连通性变化趋势。
     (1)直接以实测裂隙各特征数据的统计结果输入(A方案),成果图显示单一裂隙组随机波动大,组间裂隙形成交叉,与理论分析和野外观测均有差异;
     (2)产状参数保持稳定,控制迹长的半径参数适当加大波动(A-1方案),裂隙分布规律明显,且符合理论与野外观察;迹长波动,不影响模拟区内裂隙分布密集区和稀疏区的位置,但增加了裂隙网络的连通程度;
     (3)半径保持稳定,产状参数用四分位数扩大数据波动范围(A-2方案),不但使裂隙分布规律改变,原先的密集区可变为稀疏区,原先的稀疏区可能成了密集区,也会提升模拟区的连通性能,但与野外观察略有出入;
     (4)总结认为,半径波动只改变单一裂隙,产状波动既影响整个模拟区,也改变单一裂隙几何特征,是相当于增加了裂隙组数,因此,产状是构建模型的关键因子。不同成因的裂隙,在模拟时应该采用不同的控制方法,对于倾角较陡的构造与卸荷裂隙,由于实测时产状误差小,迹长误差大,应该控制产状,半径适当波动;而顺层裂隙组,则应该相反。基于裂隙分布特征统计分析的模型建立,其合理性应该与实际状况(如开挖平硐)进行对比检验。
     本文主要创新:(1)对描述裂隙特征参数的实测数据,根据数据分布类型采用了不同的统计分析方法,获取裂隙参数统计值;(2)基于裂隙参数统计成果,建立了“由单一裂隙组到复杂网络”的局域裂隙离散网络模拟方法,用裂隙交叉数描述模型的连通性,并探讨了裂隙参数对离散网络模型连通性的影响。
For solving the problems of scientific practicel method, since human birth has never stopped Heterogeneity of fractured rock mass characteristics, can be random or a function can also be described, in what way, depends on the parameters of its average level of random fluctuation, or the parameters can be expressed as a function of the variations. Li Huaye pointed out, there was a fractured rock can not be used causal relationship to strictly controlled or accurately predicted the phenomenon, this phenomenon can only be for a comprehensive analysis, excludes certain factors, summarizes some of the law from which. Obviously, the discrete nature of fractured rock is expressed statistical functions available.
     In this paper, as the research object of Jinping Hydropower Station, according to the current problems in the study of the rockmass, in engineering science as a guide hydrogeology, useing of hydrogeology, rock mechanics, structure theory of geology, earth science, combining probability, statistics, and philosophy of mathematics and sociology, studies the fracture characteristics of stratified rock and the discrete model modeling methods in the construction, connectivity calculation; obtains the following main conclusions:
     1,The stratified rockmass in the study area can be divided into three types
     Based on the understanding of the marble and slate rock on the sand or their combinations relation in the study area,Marbles can be divided into 8 small layer by color, structure and geological features, sandy slate can be divided into 4 small layer of stratified rock mass classification.According to the interbedded between,in accordance with Chen Zhijian's theory on the stratified rockmass, with distribution of crack development and construction of an integrated analysis of Study area,12 small layer by divided into A, C, E three types. The fractures in rock mass performance of hidden cracks closed of A, and the level of superiority obvious, the main grounds are T2-3Z3(3), T2-3Z3(1); C class from the soft rock in the fractured rock restrictions, spacing much in the 50 cm, but a larger depth of cut, a longer extension,with the main ground for the T2-3Z2(3)~2(8); E Class closes mostly hidden cracks in rock fissures, level of advantage is not obvious, the main formation T2-3Z2(1)~2(2).
     2, Fractured characteristics of the study area
     (1)The dominant fracture groups:In the study area, the paper mainly develops V grade structural surface, based on the density of fractures in each group, combins with previous research results, thinks that the dominant fracture groups are five; the left bank have two groups:①100~175°∠40~75°(SL);②344~45°∠70~90°(Ⅲ-1);the right bank have three groups:③120~188°∠55~90°(Ⅳ);④265~350°∠20~60°(Ⅰ);⑤188~230°∠50~90°(Ⅲ-2).
     (2) Fracture spacing:In view of the characteristics of crack spacing data, the paper introducts the exploratory data analysis method, data distribution shows, data analysis and data analysis results, by boxes-chart;and provids the median instead of the mean, refers to the variance and the calculation,defines the variance parameters to describe the fluctuations of the median,gives the formula and the calcalation method of 95% confidence interval. Based on the new method, in the study area, the data of the dominant fracture sets shows a negative exponential distribution,spacing are less than 50cm, confirmation crack density rating of "Ⅳ-development" by the identification and description standards of its rocks and rock.
     (3)Fracture aperture:the dominant fracture of wide data gap fracture group, with the frequency histogram icon, are negative exponential distribution,with the statistical mean gap width of 0.33mm, according to ISRM classification standard fracture, can be described "partially open", and its status is "closed", the relative permeability "10-4~10-2cm/s".With the Perceptual field, talks about the data attributes and laboratory methods of the grey system.
     (4)Trace length:the mean trace length of the dominant fracture, with an infinite window, HH trace length are between 3~4m, according to ISRM proposed the grading standards of the surface continuity of the structure, is a continuous medium sex; with frequency histogram icon, SL andⅢ-1 trace length showed normal distribution, other groups are lognormal.
     3, The study area local discrete fracture network visualization and analysis
     Using GeneralBlock software, reproducted the fracture three-dimensional network of the banks of in small-scale, and using the theought of "from a single to the combination", designs three dimensional fracture network,and does a detailed analysis of rock mass fracture law,distribution and its connectivity.
     (1)Left:two cracks form an effective connectivity only a limited range of local connectivity within the region,and very random. SL has more crack extension and the spacing thanⅢ-1, scattered distribution; the effective connectivity network is seen inⅢ-1 intensive development zone,SL conductivity effect.Type model through statistical profile of their representatives (Y-Z) and the plane (X-Y) fracture,calculats the number of intersections per square meter, is 0.01.
     (2)Right:The crack fracture network concludsed of three dominant groups has more connectivity, the fracture network characteristics ofⅣandⅢ-2 of the profile composition is significantly, and withⅠandⅣsymbiotic crack, amplies the features;Ⅳplays through upper-right to down-left,ⅠandⅢ-2 portfolie a "#" distribution in the meantime. From the role of fracture network,Ⅳfracture sets both the catchment corridor fracture network, but also guides the water channel; I is both a watershed corridor, but also storages space;III-2 compared to other groups,mainly froms the water effect. The intersection number per-square meter of the right bank, is 0.2, and its connectivity is far greater than the left bank.
     4,The fracture network control parameter sensitivity analysis
     According to GeneralBlock software, designs the fracture model generation program of the control fracture occurrence and the radius parameter fluctuations, discusses the distribution and connectivity trends.
     (1)Inputs the statistical results of the measured data directly (A program), the results chart shows a large single fracture random fluctuations remarkably, fissure between the two groups form a cross, and are inconsistent with the theory and field observations;
     (2)The occurrence parameters remains stable, the radius of the control parameters of trace length increases volatility (A-1 program), the fracture distribution significantly, and in accordance with theory and field observations; trace length fluctuations, does not affect the simulation of dense and sparse fracture zone area, but will increase the network connectivity;
     (3)The radius keeps stable and occurrence parameter fluctuations (A-2 program), not only change the distribution of cracks, the original dense areas become sparse areas, the original sparse area become a concentrated area, will also enhance the connectivity of simulation region performance, but a slight discrepancy with the field observations;
     (4)In concluded, that radius fluctuations only change a single fracture fluctuations,not only effect the simulation area, but also change a single fracture geometry is tantamount to increasing the number of the fracture group, the occurrence is the key factor to build the models. Different fracture should be used different control methods of the factor in the simulation, the construction of steep dip and unloading fissures,because the error is small and the trace length error, should control the occurrence, the radius appropriatly fluctuate; and smooth layer fracture should be the opposite.
     The major innovations:(1)the measured data of the fracture characteristic parameters, according to their different distribution types of data using different statistical methods;(2)based on data analysis, bulids a set of the discrete model simulation program to control parameters, explores the complex models and the sensitivity analysis method of its parameters.
引文
[1].朱益军,杜时贵.岩体结构面渗流现状.杭州应用工程技术学院学报[J].2000,12(增):60~66.
    [2].李华晔.钻孔吸水量随深度变化的正交多项式分析[J].华北水利水电学院学报,1987,(1):96~104.
    [3].陶振宇,唐方福,张黎明,王宏,陈铁民著.节理与断层岩石力学[M1.武汉:中国地质大学出版社.1992.p153
    [4].重庆建筑工程学院,同济大学编.岩体力学[M].北京:中国建筑工业出版社.1981.
    [5].刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999年.
    [6].岩体工程地质力学的基础和方法(论文1-45)[C].工程地质研究所.岩体工程地质力学问题(一).中国科学院地质研究所著.北京:科学出版社,1976.
    [7].中国科学院地质研究所工程地质力学开放研究实验室.岩体结构的工程地质特征-谷德振文集[C].地震出版社,1994,361~377.
    [8].孙蓉琳.玄武岩渗透系数尺度效应及顺序指示模拟[D].武汉:中国地质大学博士学位论文.2006.
    [9].薛翊国.锦屏一级水电站左岸渗流模型分析与高边坡稳定性评价[D].长春:吉林大学博士学位论文,2006.
    [10].肖裕行,王泳嘉,卢世宗等.裂隙岩体水力等效连续介质中物理量的讨论[J].岩土力学,1997,18(4):13~178.
    [11].柴军瑞,件彦卿.岩体多重裂隙网络渗流模型研究[J].煤田地质与勘探,2000,28(2):33~36.
    [12].宋晓晨,徐卫亚.裂隙岩体渗流概念模型研究[J].岩土力学,2004,25(2):226~232.
    [13].王恩志,杨成田.裂隙网络地下水流数值模型及非连通裂隙网络水流的研究[J].水文地质工程地质,1992,(1):12~14
    [14]].王恩志,孙役,黄远智,等.三维离散裂隙网络渗流模型与实验模拟[J].水利学报,2002,(5):37~40
    [15].王洪涛,立永祥.三维随机裂隙网络非稳定流模型[J].南京水利科学研究院,1997(2):139~146
    [16]. Cacas M C, Ledoux E, de Marsily G, et al. Modeling fracture flow with a stochastic discrete farcture netwok:calibration and validation. I. the flow model[J]. Water Resour Res.1990,26(3):479~489
    [17].王媛,速宝玉,徐志英.三维裂隙岩休渗流祸合模型及其有限元模拟[J].水文地质工程地质.1995,3:1~5
    [18].陈崇希.岩溶管道-裂隙-孔隙三重孔隙介质地下水渗流模型及模拟方法研究[J].地球科学.1995,20(4):361~366
    [19]. Brian Bekrowitz. Characetrizing flow and transport in fractured geological media:areview[J]. Andvance in Water Resources,2002 (25):861~884
    [20]. Barenblatt G I, et al. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J], J. Appl. Math. Mech. Engl. Thransl.1960,5
    [21].陈志坚.层状岩质边坡工程安全监控建模理论及关键技术研究[D].南京:河海大学博士学位论文.2001.
    [22].陈志坚,卓家寿.样本单元法及层状含裂隙岩体力学参数的确定[J].河海大学学报.2000,28(1):14-17.
    [23].黄向春,骆福英,熊博.层状岩体结构划分与岩体工程地质评价[J].岩土工程界.2005,8(7):30-32.
    [24].建设综合勘察研究设计院.中国工程建设协会标准:岩石与岩体鉴定和描述标准(CECS 239).北京:中国计划出版社,2008.
    [25]. Neuman S P. Trends, prospects and challenges in quantifying flow and transport through fractured roks[J]. Hydrogeology Journal,2005,13 (1):124~147.
    [26]. Snow D T. Three-hole pressure test for anisotropic foundation permeability[J]. Rock Mechanics and Engineering Geology,1966,4 (4):198~314.
    [27]. Rocha M, Franoiss F. Determination of permeability in antisotropic rockmasses form integral samples[J]. Rock Mechanics,1977,9:67~93
    [28]. Louis C. Determination of in suit hydraulic parameters in jointed rock[C]. Prceedings of Second Congress on Rock Mechanics,1970,1 (3):40~45
    [29]. Louis C. Rock hydraulics[A]. Muller L. Rock Mechanics[C]. Vienna:spinger-Verlag,1974:299~387
    [30]. Hsieh P A and Neuman S P. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media[J]. Water Resour. Res.,1985,21(11):1655~1676
    [31].徐尚壁.压水试验求测渗透系数的射渗理论与方法[J].水利水运科学研究,1996,(1): 24~33
    [32].张祯武,陈官权,徐光祥.利用吕荣试验资料计算水文地质参数的新法压水试验方法[J].工程勘察,2003,(4):19~22.
    [33].张祯武,秦刚.利用定流量非稳定流压水试验求水文地质参数[J].岩石力学与工程学报,2004,23(2):344~347
    [34].张祯武,李兴成,徐光祥.利用定压力非稳定流压水试验求水文地质参数[J].岩石力学与工程学报,2004,23(15):2543~2546
    [35].李金轩,余修日.低渗透裂隙岩体压水试验资料分析[J].岩石力学与工程学报,2004,23(9):1476~1480
    [36].蒋小伟,万力,王旭升,等.用渗透性随深度变化规律确定大尺度岩体变形模量[J].地学前缘,2007,14(6):166~171
    [37].李念军.论钻孔压水试验参数选择及成果计算方法[J].云南水力发电,2008,24(1):25~27
    [38].王新峰,梁杏,孙蓉琳,等. 一种层状岩体压水试验成果计算分析渗透性的新方法[J].水文地质工程地质,2011,38(1):46~52
    [39]. Ronald E Walpole, Raymond H Myers, Sharon L Myers, Keying Ye著.周勇,马昀蓓,谢尚宇,王晓婧译.理工科概率统计[M].北京:机械工业出版社,2010
    [40].陶振宇,朱焕春,高延法,等.岩石力学的地质与物理基础[M].武汉:中国地质大学出版社,1996
    [41].阳正熙,吴堑虹,彭直兴,严冰.地学数据分析教程[M].北京:科学出版社,2008
    [42].王新峰,梁杏,孙蓉琳,等.基于野外测量数据的裂隙间距箱线图统计方法初探—以锦屏一级水电工程厂房研究为例[J].安全与环境工程,2010,17(2):103~107
    [43].李裕奇,赵联文,王沁,等.概率论与数理统计[M].北京:国防工业出版社,2009
    [44].刘舒强.概率论与数理统计[M].天津:天津大学出版社,2003
    [45].维基百科.http://zh.wikipedia.org/wiki/%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83
    [46].王渭明,杨更社,张向东,等.岩石力学[M].徐州:中国矿业大学出版社,2010
    [47].杜时贵.岩体结构面的工程性质[M].北京:地震出版社,1999
    [48].李亚萍.甘肃北山花岗岩裂隙几何学特征研究[D].北京:中国地震局地质研究所硕士论文,2005
    [49].中国科学院地质研究所工程地质力学开放研究实验室.从节理发育之状况讨论重庆北温泉附近之地质构造及温泉成因-谷德振文集[C].地震出版社,1994,1~15
    [50].钟林君.锦屏一级水电站建基岩体结构特征分析[D].成都:成都理工大学硕士学位论文,2010
    [51]. Bingham C. Distributions on the sphere and on the projective plane [D]. New Haven, Connecticut, USA: Yale University,1964
    [52]. Kulatilake P H S W. Bivariate norm al distribution fitting on discontinuity orientation clusters[J]. Mathematical Geology,1986,18(2):181~195
    [53]. Kulatilake P H S W. Fitting fisher distributions to discontinuity orientation data[J]. Journal of Geological Education,1985,33:266~269
    [54].吴继敏,郑建青.某抽水蓄能电站下水库区岩休结构面几何参数研究[J].水利水电技术,1999,30(12):36~39
    [55].陈剑平,王清,谷宪民,等.岩体节理产状极点分布的分形维[J].岩石力学与工程学报,2007,26(3):501~508
    [56].钟嘉高.岩体裂隙的几何特征及渗透特性研究—以官地水电站厂房区玄武岩为例[D].武汉:中国地质大学博士学位论文.2008
    [57]. Matheson G D. The collection and use of field discontinuity data in rock slope design. Quar. J. Engeg, Geol.,1988,2,19~30
    [58].张人权,梁杏,靳孟贵,等.水文地质学基础[M].北京:地质出版社,2011
    [59].章荣岫.节理等角度统计[J].桂林冶金地质学院学报.1989,9(2):219~222
    [60].王青.节理裂隙统计方法研究[J].勘察科学技术.1992,(4):27~31
    [61].徐云峰,曾佐勋.一种简便的节理统计方法[J].找矿地质论从.2008,18(4):262~264
    [62].孙宪春,万力,蒋小伟.节理产状分组的K均值聚类分析及其分组结果的费歇尔分布验证法[J].岩土力学.2008,29(增):533~537
    [63]. Priest S D, Hudson J A. Discontinuity Spacings in Rock[J]. Int. J. Rock. Mech. Min. Sci.&Geomech Abstr.1976,13(1):135~148.
    [64]. Wallis P E, King M S. Discontinuity Spacing in Crystalline Rock[J]. Int. J. Rock. Mech. Min. Sci. &Geomech. Abstr.1980,17(1):63~66
    [65].潘别桐.岩体中不连续面网格的概率统计模型及其应用综述[J].四川水力发电.1985,(1):52~62.
    [66]. Barton N. Suggested method for the quantitative description of discontinuities in rock mass[J]. International Journal of Rock Mechanics and Mining Science&Geomechanics Abstracts,1978,15(6):319~348.
    [67]. Huang Q, Angelier J. Fracture spacing and its relation to bed thickness[J]. Geology Magazine,1989,126: 355~362.
    [68].伍法权.统计岩体力学原理[M].武汉:中国地质大学出版社,1993
    [69].徐光黎.节理张开度水力学分析[J].勘察科学技术,1993,(2):3~6
    [70].徐光黎,潘别桐,唐辉明,等.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993:45-47
    [71]. Snow D T. Rock fracture spacings, openings and porosities[J]. Journal Soil Mechanics and Div. Proc. ASCE,1968,94 (SM1):73~91.
    [72]. Snow D T. The frequency and apertures of fractures in rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics.Abstracts,1970,7(1):23~30
    [73].周创兵,叶自桐,何炬林,等.岩石节理张开度的概率统计模型与随机模拟[J].岩石力学与工程学报.1998,17(3):267~272
    [74].钟嘉高.岩体裂隙等效水力隙宽的统计确定方法[J].地质科技情报.2007,26(4):103~106
    [75].林宗元.岩土工程勘察设计手册[M].沈阳:辽宁科学技术出版社,1996
    [76]. Priest S D, Hudson J. A. Estimation of discontinuity spacings and trace length using scanline surveys[J]. Int. J. Rock. Mech. Min. Sci.& Geomech. Abstr.,1981,18(3):183~197
    [77]. Kulatilake P H S W, Wu T. H. Estimation of mean trace length of discontinuities[J]. Rock Mech. and Rock Engn.,1984,17(3):215~232
    [78].邓荣贵,张倬元,黄润秋,等.锦屏Ⅰ级水电站坝区岩体结构面特征研究[J].地质灾害与环境保护.1996, 7(1):35~40,53
    [79].张忠亭,景锋,杨和礼.工程实用岩石力学[M].北京:中国水利水电出版社,2009
    [80].宋胜武,冯学敏,向柏宇,邢万波,曾勇.西南水电高陡岩石边坡工程关键技术研究[J].岩石力学与工程学报.2011,30(1):1~22
    [81].仵彦卿.岩体水力学基础(七)——参数的确定方法[J].水文地质工程地质.1998,(2):42~48
    [82].黄勇,周志芳,余钟波.HydroGeoSphere在锦屏水电站坝址区水流和溶质运移模拟中的应用[J].水动力学研究与进展.2009,24(2):242~249
    [83].徐光黎.岩石结构面几何特征的分形与分维[J].水文地质工程地质.1993,(2):20~22
    [84].徐光黎.节理张开度水力学分析[J].勘察科学技术.1993,(2):3~6
    [85].丁卫华,仵彦卿,蒲毅彬,等.基于X射线CT的岩石内部裂纹宽度测量[J].岩石力学与工程学报.2003,22(9):1421~1425
    [86].赵芳,王卫星,金文标.基于角点分段算法的岩石裂隙宽度测量及分析[J].计算机应用研究.2006,(11):137~140
    [87].邓聚龙.灰色系统理论简介[J].内蒙古电力.1993,(3):51~52
    [88].邓聚龙.灰色系统综述[J].世界科学.1983,(7):1~5
    [89].黄国明,黄润秋.基于交切条件的不连续面平均迹长估算法[J].地质科技情报.1999,18(1):105~107
    [90].黄润秋,范留明,陈龙生.节理岩体不连续面广义H-H迹长估计[J].自然科学进展.2002,12(12):1321~1325
    [91]. Cruden D M. Describing the size of discontinuities[J]. Int. J. Rock Mech. Min. Sci. Geomch. Abstr.1977, 14 (3):133~137
    [92]. Laslett G M. Censoring and edge effects in area and line transect sampling of rock joint traces[J]. Mathematical Geology.1982,14 (2):125~139
    [93].史文中.空间数据与空间分析不确定性原理[M].北京:科学出版社,2005
    [94].刘杰.水工岩体结构三维精细建模与曲面块体分析理论与应用研究[D].天津:天津大学博士学位论文,2009
    [95].林学钰,廖资生.地下水水量、水质模拟及管理程序集[M].吉林:吉林科学技术出版社,1988
    [96].黄勇,周志芳.多尺度裂隙介质中溶质运移研究进展[J].河海大学学报(自然科学版).2005,33(5):500~504
    [97].杨米加,贺永年,陈明雄.裂隙岩体网络注浆渗流规律[J].水利学报.2001,(7):41~45
    [98].切尔内绍夫著.水在裂隙网络中的运动[M].北京:地质出版社,1987
    [99].娱爱祥,尹升华.堆浸过程溶质运移机理与模型[M].中南大学学报(自然科学版).2006,37(2):385~388.
    [100].程汉鼎.岩体离散裂隙网络溶质运移数值分析[D].西安:西安理工大学硕士学位论文,2008
    [101].于青春,薛果夫,陈德基.裂隙岩体一般块体理论[M].北京:中国水利水电出版社,2007
    [102].章光成.复杂裂隙岩体等效力学参数及工程应用研究[D].武汉:中国地质大学博士学位论文,2008
    [103].陈志伟,何江达,张小平.顺坡向单层岩体板裂结构模型粘弹塑性弯曲稳定分析[J].四川大学学报(工程科学版).2001,33(3):21~25
    [104].黄勇.多尺度裂隙介质中的水流和溶质运移随机模拟研究[D].南京:河海大学博士学位论文,2004
    [105].中国地下水科学战略研究小组.中国地下水科学的机遇与挑战[M].北京:科学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700