Rho/ROCK信号通路对舌癌F-肌动蛋白细胞骨架的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舌癌是口腔颌面部恶性肿瘤中最常见的口腔癌,其构成比在国内外均居第一。一般恶性程度较高,生长快,浸润性强。舌癌常早期发生颈淋巴结转移,且转移率较高,有文献报道高达60—80%,严重影响治疗效果,危害极大。近来的统计资料表明,舌癌的发病率有逐年上升的趋势,而且发病年龄趋向年轻化。但因其部位和功能的特殊,手术治疗容易造成毁伤和功能障碍,对人体的身心健康危害较大。因此,为提高舌癌的治愈率和生存率,提高患者的生活质量,分子靶向药物治疗作为生物治疗的重要组成部分也越来越受到重视,使得肿瘤的生物学治疗成为继手术、放疗和化疗之后的第四种治疗方法。故对舌癌侵袭机制和转移机制的研究越来越重视。尤其在细胞分子水平上,对舌癌细胞的侵袭和转移,从不同的方面取得了令人注目的进展。近年来发现Rho/ROCK信号转导通路是一个重要的信号通路,它的主要功能是调节肌动蛋白和细胞骨架重组,而细胞骨架的变化影响细胞的形态和结构,从而调节细胞的形态变化和运动。F—肌动蛋白细胞骨架不仅在细胞形态改变、细胞运动中有重要作用,还在细胞的各种生命活动如细胞增殖、细胞转录、细胞转化方面发挥重要作用。此外,Rho/ROCK通路还参与细胞周期的调控和抑制细胞凋亡等。侵袭和转移是肿瘤恶性程度的重要标志,也是患者死亡的主要原因。由于舌癌早期易发生颈部淋巴结转移,因而对于舌癌转移机制的研究成为肿瘤学家和口腔医学专家研究的热点。
     本实验研究旨在通过应用Rho/ROCK信号通路的特异性抑制剂Y—27632,用不同的浓度作用于体外培养的人舌癌Tca8113细胞,阻断Rho/ROCK信号转导通路,使用免疫荧光技术,通过激光扫描共聚焦显微镜,观察舌癌细胞内F—肌动蛋白数量和排列分布的变化、细胞骨架的重构和细胞形态的变化。同时,采用流式细胞术,对细胞内DNA含量进行检测,分析G_1、S和G_2/M期的细胞分布,观察Rho/ROCK通路对细胞周期的调控的影响,探讨其作用机制,为预防和治疗舌癌的侵袭、转移提供一种新的治疗思路和方法。
     目的
     应用Rho/ROCK信号通路的特异性抑制剂Y—27632,探讨Rho/ROCK信号转导通路对舌鳞癌F—肌动蛋白细胞骨架及对细胞周期的调控的影响。
     材料与方法
     用不同药物浓度的Rho/ROCK通路特异性抑制剂Y—27632(5μmol/L,10μmol/L,25μmol/L,50μmol/L)作用于体外培养的人舌鳞癌Tca8113细胞株24小时,用FITC标记的鬼笔环肽标记F—肌动蛋白,PI标记细胞内DNA,通过激光扫描共聚焦显微镜和免疫细胞化学法,观察舌癌细胞形态和细胞内F—肌动蛋白排列、分布和含量的变化。同时,采用流式细胞术,对细胞内DNA含量进行检测,分析细胞周期G_1、s和G_2/M各期的细胞分布。
     结果
     1.倒置显微镜下观察培养细胞为上皮样细胞形态,呈扁平、多角形、圆形、不规则性、梭性等多种形态,细胞异型性明显,多核、核分裂像少见;核浆比例增加,可见少量巨核细胞。
     2.激光扫描共聚焦显微镜下舌癌细胞的形态:Tca8113细胞为不规则形,细胞内微丝为粗大的较长的束状纤维,细胞膜伸出大量突起,其中许多微丝深入到细胞突起,即F-actin小体。细胞内F-actin微丝形成束状纤维,平行排列或纵横交错成网状贯穿整个细胞。Tea8113细胞actin聚集形成F-actin小体,大量的F-actin趋向于胞周分布,形成F-actin环,细胞核大,极性增强,偏向一侧,可见多个核仁。微丝在细胞的表面突起,排列形成许多微刺突、丝状伪足和片状伪足。经5μmol/L和10μmol/L处理后,细胞形态略有收缩,与对照组相比,变化不甚明显;经25μmol/L和50μmol/L处理后,细胞形态收缩,细胞生长稀疏,形状变规则,呈椭圆形或圆形,绿色荧光染色的F-actin显著减少,胞浆中所显示的微丝较短或消失,多呈直纤维状线型荧光,且数量明显减少,排列较稀疏,不规则,细胞边缘显示较强的荧光带或荧光环。
     3.SP免疫细胞化学法光镜下舌癌细胞的形态:见细胞呈圆形、椭圆形,细胞异型性不明显,核浆比例增加,胞核偏向一侧,可见少量巨核细胞,多核、核分裂像少见。
     4.平均荧光强度法和免疫细胞化学法测定F—肌动蛋白含量:实验组与对照组相比,均明显降低(P值均<0.01),差异具有显著性意义。
     5.流式细胞术检测细胞周期G_1、S和G_2/M各期的细胞分布结果:与对照组相比,除实验组(5μmol/L)P>0.05外,其他各实验组,随Y-27632浓度的增大,使滞留在G_1期的细胞数量显著增多,经统计学分析,差异有显著性(P值均<0.01),说明G_1期的变化与抑制剂Y—27632浓度呈正相关系,与细胞内微丝结构发生改变相一致。
     结论
     1.Rho/ROCK信号通路参与人舌鳞癌Tca8113细胞F-肌动蛋白细胞骨架的重构和细胞形态的改变:
     2.F—肌动蛋白含量的变化与Rho/ROCK信号通路的特异性抑制剂Y—27632的浓度呈负相关系;
     3.Rho/ROCK信号通路也参与人舌鳞癌Tca8113细胞周期的调控。
Carcinoma of tongue is common cancer of malignant tumor of oral and maxillofacial region,whose constituent ratio is the first at home and abroad.Tongue cancer usually has serious malignancy and invasion,high growth velocity.And it has high metastatic frequency of neck lymph node in early stage,which was reported to reach up to 60%-80%.Its harm to body is serious and therapeutic efficacy is seriously influenced.Recently,statistic data showed:the incidence rate of tongue cancer has gradually increasing tendency year by year.And age of onset tends to be younger.Because of special place and function,disfiguration and functional disturbance are easily caused by operation,and the health of body and mind is easily influenced.Therefore,for increasing healing rate and survival rate and raising quality of life of patients of tongue cancer,molecular targeted drug therapy is more and more important as the significant part of biotherapy.And biotherapy has gradually become the fourth choice for treatment of cancer after operation,radiotherapy,chemotherapy. So,studies on invasion and metastasis mechanisms of tongue cancer is more and more important,especially at cellular and molecular level,a noticeable advancement has been obtained in each aspect.In the past few years,Rho/ROCK signal transduction pathway was discovered as an important signal pathway,whose main function is to regulate actin and reconstruction of cytoskeleton,and the cellular shape and construction are influenced by the change of cytoskeleton,thus,Rho/ROCK signal pathway regulate the cellular morphologic change and motion.F-actin plays important role not only in the cellular morphologic change and motion,but also in the various kinds of cellular life activities,such as cell proliferation,cell transcription, cell transformation.In addition,Rho/ROCK signal transduction pathway mediates the regulation of cell cycle and apoptosis,et al.Invasion and metastasis are important marker of malignancy degree of tumor,and also are main reason of death of patients. Because of high metastatic frequency of neck lymph node of tongue cancer in early stage,as a result,studies on invasion and metastasis mechanisms of tongue cancer by oncologists and oral experts have become an investigative hot spot in medicine territory.
     The aim of this empirical study is to observe the changes of arrangement and distribution and content of F-actin,reorganization of F-actin cytoskeleton and the changes of morphology in human tongue squamous carcinoma Tca8113 cell lines with different concentration of Y-27632 to block Rho/ROCK signal pathway,by using the specific inhibitor Y-27632 of Rho/ROCK signal transduction pathway and immunofluorescent technique and laser scanning confocal microscopy.Meanwhile, the contents of DNA are detected by Flow cytometry and the distribution of G_1,S, G_2/M stage of cell cycle is analyzed and the effect of Rho/ROCK signal transduction pathway on regulation of the cell cycle is observed and analyzed in human tongue squamous carcinoma Tca8113 cell lines cultured in vitro.A kind of new therapeutic thinking and approach to prevent and cure invasion and metastasis of tongue squamous carcinoma may be put forward by investigating their mechanisms.
     Objective
     To investigate the effect of Rho/ROCK signal transduction pathway on F-actin cytoskeleton and regulation of the cell cycle in human tongue squamous carcinoma Tca8113 cell lines cultured in vitro by using the specific inhibitor Y-27632 of Rho/ROCK signal transduction pathway.
     Materials and methods
     The Tca8113 cells are treated with different concentration of Y-27632 (5μmol/L,10μmol/L,25μmol/L,50μmol/L) for 24h.Cellular F-actin stained with FITC-phalloidin and DNA stained with Propidium Iodide are examined by laser scanning confocal microscopy(LSCM) and immunocytochemical S-P method.Then the changes of arrangement and distribution and content of F-actin,and the changes of morphology are observed in Tca8113 cell lines.Meanwhile,the contents of DNA are detected by Flow cytometry and the distribution of G_1,S,G_2/M stage of cell cycle are analyzed in Tca8113 cell lines.
     Results
     1.The morphology of the Tca8113 cells cultured in vitro under inverted microscope is observed:the epithelial cellular shape,such as thin and flat,polygon, round and ellipse,irregularity and spindle,the significant heteromorphism,the seldom seen polynucleation and karyodieresis.And the morphology of the Tca8113 cells stained by HE method under common microscope shows:the cellular shape looks like round and ellipse,the nucleus is obviously manifested,the karyoplasmic ratio is raised,a few of the giant nucleus cell are seen.
     2.The cellular morphology and arrangement and distribution of the cellular F-actin of the Tca8113 cells under laser scanning confocal microscopy(LSCM) are observed:the irregular cellular shape,the bundle fibers of intra-cellular gross and long microfilament,protrusion of a great quantity cell processes on cellular membrane and a lot of microfilaments penetrated deeply in cell processes,that's F-actin body.Of parallel arrangement and cross overlapping reticulated bundle fibers formed by F-actin micro filament appear in the whole cell.A great quantity of F-actin bodies assembled and formed by actin of the Tca8113 cells tend to distribute in cellular surrounding and form F-actin cycle with cell nucleus increasing and polarity strengthening,while the nucleus deviate to one-side,the Multiple nucleoli appear.A great quantity of microspikes,filopodium and lamellipodium are formed by a lot of surface projection of microfilaments on cellular membrane.In comparison with control group,the change of morphology in Tca8113 cell lines treated by Y-27632 with concentration of 5μmol/L and 10μmol/L is not obvious,but the others are obvious by Y-27632 with that of 25μmol/L and 50μmol/L,the shrinks of the cellular shape,the rarefaction of cell growth,the cellular shape appearing to be regular,such as round and ellipse,virent F-actin stained with FITC-phalloidin is obviously decreased,the microfilaments in kytoplasm becomes short or disappears or becomes straight and fibriform fluorescence,the F-actin microfilaments are rarefied and arranged irregularly;the brighter fluorescence band or fluorescence ring appear on the cellular margin.
     3.The morphology of human tongue squamous carcinoma Tca8113 cells stained by immunocytochemical S-P method under common microscope is observed:the cellular shape is round and oval,the heteromorphism is not manifest,the karyoplasmic ratio is raised,the nucleus deviate to one-side,there are a few of the giant nucleus cells and seldom polynucleation and karyodieresis.The shape of typical epithelial cell is not of significant difference.
     4.The results of the contents of F-actin detected by mean fluorescence intensity (MFI) and immunocytochemical S-P method in Tca8113 cells show:contrasted to control group,experiment groups is significantly induced(p<0.01),the deviation of the contents of F-actin between control group and all experiment groups is significant.
     5.The results of the distribution of G_1,S,G_2/M stage of cell cycle are analyzed by Flow cytometry in Tca8113 cell lines showed:contrasted to control group,the number of Tca8113 cells detained at G_1 stage of the experiment groups is significantly increased with growing drug concentration,except the experiment group (5μmol/L)(P>0.05),the deviation of the number of Tca8113 cells between control group and the others is significant.And the results suggest:the change of the number at G_1 stage of human tongue squamous carcinoma Tca8113 cell lines cultured in vitro is of positive correlation with the concentration of the specific inhibitor Y-27632,and is coincided with the changes of the construction of the cellular F-actin microfilament cytoskeleton in Tca8113 cells.
     Conclusions
     1.Rho/ROCK signal transduction pathway participates in the reorganization of F-actin cytoskeleton and morphological changes in Tca8113 cell lines.
     2.The change of the content of F-actin in Tca8113 cells is of negative correlation with the concentration of the specific inhibitor Y-27632 of Rho/ROCK signal transduction pathway.
     3.Rho/ROCK signal transduction pathway participates in the regulation of cell cycle.
引文
[1]张永福主编,实用口腔颌面外科学[M].南昌,江西科学技术出版社.1992,150-158.
    [2]德维塔(美)主编,徐从高译,癌-肿瘤学原理和基础[M].第五版,济南,山东科学技术出版社.2001,688-798.
    [3]王兆元,李俊林.口腔内癌肿396例临床病理分析.口腔医学.1999,19(1):26-27.
    [4]于世凤主编,口腔组织病理学[M].第四版,北京,人民卫生出版社.2000,198-215.
    [5]吴军正,陈建元,李焰,等,舌癌脑转移细胞系的Tb建立及形态和生长特性.实用口腔医学杂志.1999,15(6):452-453.
    [6]Reiehard KW,Joseph KT,Cohen M,et al,squamous cell carcinoma of the tongue:Experience with 86 consecutive cases[J].J Surg Oncol.1993,54(4):239-242
    [7]Al-Rajhi N,Khafaga Y,El-Husseiny J,et al.A Early stage carcinoma of oral tongue:Prognostic factors for local control and survival[J].Oral Oncol.2000,36(6):508-514.
    [8]Myers JN,Elkins T,Roberts D,et al.Otolaryngol Squamous cell carcinoma of the tongue in young adults:Increasing incidence and factors that Predict treatment outcomes[J].Head Neck Surg.2000,122(1):44-51.
    [9]Veness MJ,Tongue cancer in younger patients[J].Australas-Radiol.1999,43(1):76-81.
    [10]Mathew E,Pandey M,Mathew A,et al,squamous cell careinoma of the tongue among young Indian adults[J].Neoplasia.2001,3(4):273-277.
    [11]高进.中国癌症侵袭与转移研究的回顾和展望.中华肿瘤杂志.2001,23(4):265-268
    [12]黄文林,朱孝锋,主编.信号转导[M].北京,人民卫生出版社.2005:77-81.
    [13]Sahai E,Marshall CJ.Rho-GTPases and cancer[J].Nat Rev Cancer.2002,2(2):133-142.
    [14]Pawlak G,Helfman DM.Regulation of Ras-related RhoB protein expression during the cell cycle[J].Current Opinion Genetics Development.2001,11:141-147.
    [15]张志愿主编,口腔颌面肿瘤学[M].济南,山东科学技术出版社.2004,324-325.
    [16]Hynes RO.Integrins:bidirectional,allosteric signaling machines[J].Cell.2002,110(6):673-687.
    [17]Shimaoka M,Taka J,Springer TA.Conformational regulation of integrin structure and function[J].Biophys Biomol Struct.2002,31:485-516.
    [18]Loffek S,Zigrno P,Mauch C.Tumor-stroma interactions:their role in the control of tumor cell invasion and metastasis[J].J Dtseh Dermatol Ges.2006,4(6):496-503.
    [19]Ishizaki T,Uehata M,Tamechika I,et al.Phamacological propertics of Y-27632,a specific inhibitor of Rho-associated kinase[J].Mol Pharmacol.2000,57(5):976-983.
    [20]Narumiya S,Ishizaki T,Uehata M.Use and properties of ROCK specific inhibitor Y-27632[J].Methods Enzymol.2000,325:273-284.
    [21]Shih JY,Lee YC,Yang SC,et al.Collapsin response mediator protein-1:a novel invasion-suppressor gene[J].Clin Exp Metastasis.2003,20(1):69-76.
    [22]林珏龙,陈耀文,李璟,等.细胞内微丝骨架的变化对人肝癌Bel-7402细胞形态的影响.激光生物学报.2004,13(3):224-227.
    [23]何荣根,徐秀祺,张秀丽,等.人舌鳞状细胞癌Tca8113细胞系的建立及其生物学特性.肿瘤.1983,3(3):97-100.
    [24]Boivin D,Bilodeau D,Beliveau R.Regulation of cytoskeletal functions by Rho small GTP-binding proteins in normal and cancer cells[J].Can J Physiol Pharmacol.1996,74(7):801-810.
    [25]林仲翔,徐光炜,朝亚玲.人乳癌原代培养细胞内F-肌动蛋白小体和微丝微管的研究.中华肿瘤杂志.1993,15(1):8-11
    [26]Gerharz CD,Moll R,Meister P,et al.Cytoskeletal heterogeneity of an epithelioid sarcoma with expression of vimentin,cytokeratin,and neurofilaments[J].Amer J Surg Pathol.1990,14(3):274-283
    [27]Zachary JM,Cleveland G,Kwock L,et al.Actin filament organ-ization of the Dunning R3327 rat prostatic adenocarcinoma system:correlation with metastatic potential[J].Cancer Res.1986,46(2):926-932
    [28]Young M R.Protein phosphatases-1 and -2A regulate tumor cell migration, invasion and cytoskeletal organization[J].Adv Exp Med Biol.1997,407:311-318
    [29]Cowell H E,Garrod D R.Activation of protein kinase C modulates cell-cell and cell-substratum adhesion of a human colorectal carcinoma cell line and restores ‘normal' epithelial morphology[J].Int J Cancer.1999,80(3):455-464.
    [30]Itoh K,Yoshioka K,Akedo H,et al.An essential part for Rho-associate kinase in the transcellular invasion of tumor cells[J].Nat Med.1999,5(2):221-225.
    [31]沈志忠,林志雄,李曼红,等.三氧化二砷对鼻咽癌细胞周期和细胞骨架微丝的影响.中国耳鼻咽喉头颈外科杂志.2006,13(1):9-12.
    [01] Pasqualato S, Cher fils J. C rystallographic evidence for substrate -assisted GTP hydrolysis by a small GTP binding protein [J]. Structure. 2005,13(4): 533- 540.
    [02] Etienne-Manneville S, Hall A. Rho GTPases in cell biology [J]. Nature. 2002, 420:629-635.
    [03] Wettschureck N, Ofermanns S.Rho/Rho kinase mediated signaling in physiology and pathophysiology[J].J Mol Med. 2002,80(10):629-638.
    
    [04] Burridge K, Wennerberg K.Rho and Rac take center stage[J]. Cell.2004,116: 167.
    [05] Sah VP, Seasholtz TM, Sagil SA, et al. He role of Rho in G protein -couple receptor signal transduction [J]. Annu Rev Pharmacol T oxicol. 2000, 40: 459-489.
    [06] Pawlak G, Helfman DM. Regulation of Ras-related RhoB protein expression during the cell cycle [J].Current Opinion Genetics Development. 2001, 11: 141-147.
    [07] Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells [J]. Annu Rev Biochem. 1999,68:459-486.
    [08] Gauthier-Rouviere C, Vignal E, Meriane M, et al. RhoG GTPase controls a pathway that independently activates Racl and Cdc42Hs[J]. Mol Biol Cell. 1998 ,9(6):1379-1394.
    
    [09] Clark EA, Golub TR, Lander ES, et al. Motility and invasion are differentially modulated by Rho family GTPases [J]. Nature. 2000 , 406:532-535.
    [10] Zalcman G, Closson V, Camonis J, et al. RhoGDI-3 is a new GDP dissociation inhibitor (GDI). Identification of a non-cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG[J]. J Biol Chem. 1996, 271(48): 30366-30374.
    [11] Reif K, Cantrell DA. Networking Rho family GTPases in lymphocytes [J]. Immunity. 1998 , 8(4):395-401.
    
    [12]Mackay DJG, HallA. Rho GTPases [J]. J Biol Chem. 1998, 273(33): 20685-20688.
    [13] Anne J, Ridley. Rho proteins: linking signaling with membrane trafficking [J] . Traffic. 2001, 2:303-310.
    [14] Pervaiz S, Cao J, Chao OS, et al . Activation of the Rac GTPase inhibits apoptosis in human tumor cells [J]. Oncogene. 2001 ,20 (43): 6263-6268.
    [15] Meriane M, Mary S, Communale F, et al. Cdc42Hs and Racl GTPases induce the collapse of the vimentin intermediate filament network [J]. J Biol Chem. 2000, 275(42):33046-33052.
    [16] Bito H, Furuyashiki T, lshihara H,et al .A critical role for a Rho-associated kinase,p160Rock,in determining axon outgrowth in mammalian CNS neuron [J].Neuron.2000,26:431.
    [17] Shimizu Y, Dobashi K, Iizuka K, et al.Contribution of small GTPase Rho and its target protein rock in a murine model of lung fibrosis. Am J Crit Care Med.2001,163(1):210-217.
    [18] Doran JD, Liu X, Taslimi P, et al.New insights into the structure -function relationships of Rho-associated kinase: a thermodynamic and hydrodynamic study of the dimer-to-monomer transition and its kinetic implications. Biochem J.2004, 384(Pt 2):255-262.
    [19] Bishop A, Hall A.Rho GTPases and their effector proteins [J]. Biochem J. 2000, 348(2):241-255.
    [20] Riento K, Ridley AJ. ROCKS: multifunctional kinases in cell behaviour [J].Nat Rev Mol Cell Biol.2003, 4:446-456.
    [21] Carola H,Lars HK,Felix K,et al.Adhesiveness of human uterine epithelial RL95-2 cells to trophoblast:Rho protein regulation [J].Mol Hum Reprod. 2002,8(II):1414-1422.
    [22] Fukata M,Nakagawa M,Kaibuchi K.Roles of Rho-family Gtpases in cell polarisation and directional migration[J].Curr Opin Cell Biol. 2003,15: 590-597.
    
    [23] Song Y, Hoang BQ, Chang DD.ROCK-II-induced membrane blebbing and chromatin condensation require actin cytoskeleton [J].Exp Cell Res. 2002, 278:45-52.
    [24] Kimura K, lto M,Amano M,et al.Regulation of myosin phosphatase by Rho and Rho-associated kinase(Rho-Kinase)[J]. 1996, 273:245-248.
    [25] Olofsson B. Rho guanine dissociation inhibitors: pivotalmolecules in cellular signalling. Cell Signal. 1999,11:545-554.
    [26] Zheng Y. Db1 family guanine nucleotide exchange factors. Trends Biochem Sci.2001, 26:724-732.
    [27] Fukuhara S, Chikumi H, Gutkind JS.RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho. Oncogene. 2001,20: 1661-1668.
    [28] Williams CL. The polybasic region of Ras and Rho family small GTPases: a regulator of protein interactions and membrane association and a site of nuclear localization signal sequences [J].Cell Signal. 2003,15:1071-1080.
    [29] Ridley AJ, Schwartz MA,Burridge K,et al.Cell migration:integrating signals from front to back[J].Science.2003,302(5651): 1704-1709.
    [01] Wettschureck N, Ofermanns S.Rho/Rho kinase mediated signaling in physiology and pathophysiology [J].J Mol Med. 2002, 80(10):629-638.
    [02] Burridge K, Wennerberg K.Rho and Rac take center stage [J]. Cell. 2004, 116-167.
    [03] Suetsugu S, Takenawa T. Regulation of cortial actin networks in cell migration.Int Rev Cytol.2003, 229:245-286.
    [04] Pawlak G, Helfman DM. Regulation of Ras-related RhoB protein expression during the cell cycle [J].Current Opinion Genetics Development.2001, 11: 141-147.
    [05] Bito H,Furuyashiki T,lshihara H,et al.A critical role for a Rho-associated kinase,p160Rock,in determining axon outgrowth in mammalian CNS neuron [J].Neuron.2000,26:431.
    [06] Shimizu Y, Dobashi K, Iizuka K, et al.Contribution of small GTPase Rho and its target protein rock in a murine model of lung fibrosis. Am J Crit Care Med.2001, 163(1):210-217.
    [07] Doran JD,Liu X,Taslimi P, et al.New insights into the structure-function relationships of Rho-associated kinase: a thermodynamic and hydrodynamic study of the dimer-to-monomer transition and its kinetic implications. Biochem J.2004, 384(Pt 2):255-262.
    [08] Sah VP, Seasholtz TM, Sagil SA, et al. He role of Rho in G protein-couple receptor signal transduction [J]. Annu Rev Pharmacol Toxicol.2000, 40:459-489.
    
    [09] Riento K, Ridley AJ. ROCKS: multifunctional kinases in cell behaviour [J]. Nat Rev Mol Cell Biol 2003, 4(6): 446-456.
    [10] Brown JH, DelRe D P, Sussman M A. The Rac and Rho hall of fame: a decade of hypertrophic signaling hits[ J]. Circ Res, 2006, 98(6): 730-742.
    [11] Mao J, Yuan H, Xie W, et al. Specific involvement of G proteins in regula- tion of serum response factor-mediated gene transcription by different receptors. J Biol Chem.1998, 273: 27118-27123.
    [12] Ridley AJ, Schwartz MA, Burridge K, et al.Cell migration:integrating signals from front to back[J].Science.2003,302(5651): 1704-1709.
    [13] Hughes-Fulford M, Fitzgerald J. Mechanically induced c-fos expression is mediated by cAMP in M3T3- El osteoblasts. FASEB J .1999,13 (3) :553-557.
    [14] Akisaka T, Yoshida H, Inoue S, et al. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast In Process Citation. J Bone Miner Res. 2001,16(7):1248-1255.
    [15] Hughes-Fulford M, Lewis ML. Effects of microgravity on osteoblast growth activation. Exp Cell Res. 1996, 224 (1): 103-109.
    [16] Carpenter CL. Actin cytoskeleton and cell signaling. Crit Care Med. 2000, Apr, 28 (4Suppl): N 94-N 99.
    [17] Chellaiah MA,Biswas RS,Rittling SR,et al. Rho-dependent Rho kinase activation increases CD44 surface expression and bone resorption in osteoclasts. J Biol Chem. 2003, 278(31): 29086-29097.
    [18] Matsumura F. Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol. 2005, 15(7):371-377.
    [19] Ridley AJ.Rho GTPaass and cell migration [J].J Cell Sci. 2001, 114(15): 2713-2722.
    [20] Zhou H, Krainer RH.Integrin engagement differentially modulates epithclial cell motility by Rho/ROCK and PAKI [J].J Biol Chcm.2005, 280(11): 10624-10635.
    
    [21] Wang R, Clark RA, Mosher DF, et al .Fibronectin's central cell-binding domain supports focal adhesion formation and Rho signal transduction [J]. J Biol Chem.2005,280(31):28803-28810.
    [22] LOffek S, Zigrno P, Mauch C.Tumor-stroma interactions: their role in the control of tumor cell invasion and metastasis [J].J Dtseh Dermatol Ges. 2006, 4(6): 496-503.
    
    [23] Winder SJ, Ayscough KR.Actin-binding proteins [J].Cell Sci.2005,118:651-654.
    [24] Remedios DCG,Chhabra D,Kekic M,et al.Actin binding proteins:regulation of cytoskeletal microfilaments[J].Physiol Rev.2003,83:433-473.
    [25] Ikoma T,Takahashi T,Nagano S,et al. A definitive role of RhoC in metastasis of orthotopic lung cancer in mice [J].Clin Cancer Res.2004, 10 (3):1192-1200.
    [26] Croft DR,Sabai E,Mavria G,et al .Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis[J].Cancer Res.2004, 64(24): 8994-9001.
    [27] Pille JY,Denoyelle C,Varet J,et al.Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation an dinvasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo[J].Mol Ther.2005,11(2):267-274.
    
    [28] Eigo S,Renu W,Hiroaki W,et al.LIM kinase-2 targeting as a possible anti- metastasis therapy [J].J Gene Med.2004,6:357-363.
    [29] Hynes RO.Integrins: bidirectional, allosteric signaling machines [J].Cell. 2002, 110:673-687.
    [30] Shimaoka M,Taka J,Springer TA.Conformational regulation of integrin structure and function[J].Biophys Biomol Struct.2002, 31:485-516.
    [31] Yoshioka K, Foletta V, Bernard O, et al. A role for LIM kinase in cancer invasion [J]. Proc Natl Acad Sci USA. 2003, 100: 7247-7252.
    [32] Yamazaki D, Kurisu S, Takenawa T. Regulation of cancer cell motility through actin reorganization [J]. Cancer Sic. 2005, 96:379-386.
    [33] Erik Sahai, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis [J]. Nature Cell Biology. 2003, 5:711-719.
    [34] Salhia B, Rutten F, Nakada M, et al. Inhibition of Rhokinase affects astrocytoma morphology, motility, and invasion through activation of Racl [J]. Cancer Res. 2005, 65:8792-8800.
    [35] Kamai T, Tsujii T, Arai K, et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer[J]. Clin Cancer Res. 2003, 9:26— 32.
    [36] Itoh K, Yoshioka K, Akedo H, et al. An essential part for Rho- associate kinase in the transcellular invasion of tumor cells [J]. Nat Med. 1999, 5(2): 221- 225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700