低频脉冲电磁场对大鼠心肌微血管内皮细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景和目的
     近年来磁场的作用逐渐受到人们的重视,它是一种安全有效的物理治疗手段,在治疗骨关节等疾病方面已经取得了良好的疗效,早有报道证明体外培养的人脐静脉内皮细胞以及牛主动脉内皮细胞的血管形成可以被脉冲磁场有效地促进,FGF-2的分泌也同样可以被磁场所促进,因此人们不断寻找一种利用磁场这种无创疗法改善心血管疾病的途径。近年来缺血性心脏病的发病率逐年上升,而治疗缺血性心脏病的主要手段就是促进内皮的再生,进一步使新的血管形成。微血管内皮细胞在功能上有许多与内皮细胞相似的地方,它可以参与血管的再生,是心脏的一个重要组成部分,对改善心血管疾病起到重要的作用。但是现在对于这方面的研究很少,我们只能在探索中前进,寻找磁场发挥生物学效应的最佳波形,强度以及时间,使磁场在治疗心血管疾病上迈出一大步,为其在临床的早日应用打下基础。
     实验方法
     实验一不同波形低频脉冲磁场对大鼠心肌微血管内皮细胞的影响
     1.心肌微血管内皮细胞的原代培养,利用胰酶以及胶原酶消化法培养,用差速贴壁原理纯化细胞。
     2.实验分为两个大组:矩形波组以及三角波形磁场组,每大组又分为对照组和处理组,每个处理组内各分为0.6mT、1.2mT、1.8mT和2.4mT四个磁场强度照射组。对照组不接受磁场辐照,其他条件辐照组均与磁场辐照组相一致。各磁场辐照组的心肌微血管内皮细胞均于第一次传代在培养箱中培养一段时间后镜下观察见细胞贴壁时开始接受磁场辐照,选用脉冲磁场频率为15Hz,辐照时间为4h/d,连续照射5d。CCK-8法检测细胞增殖情况,transwell小室法检测细胞迁移情况,流式细胞仪测定细胞各周期的变化,Hoechst33258染色鉴定细胞凋亡状况,FITC标记的鬼笔环肽对细胞骨架染色,硝酸还原酶法检测细胞培养液中NO含量的变化。
     实验二三角波形低频脉冲磁场对大鼠心肌微血管内皮细胞增殖、迁移和细胞周期的影响
     1.胰酶和胶原酶消化法培养原代的心肌微血管内皮细胞,差速贴壁法纯化细胞。
     2.取心肌微血管内皮2代细胞,将其分为4个组:即对照组、1.0mT组、1.4mT组和1.8mT组。对照组的细胞不曝磁,其他条件均与1.0mT、1.4mT及1.8mT组一致。1.0mT、1.4mT及1.8mT组的CMECs均于传代后,镜下观察见细胞开始贴壁时,接受曝磁,以频率为15 Hz的脉冲磁场刺激4 h/d,连续照射3 d。MTT法检测细胞增殖活性,transwell小室法检测细胞迁移情况,流式细胞仪测定细胞各周期的变化。
     实验结果
     实验一不同波形低频脉冲磁场对大鼠心肌微血管内皮细胞的影响
     1.成功培养出原代心肌微血管内皮细胞并成功纯化。
     2.矩形波作用后经CCK-8检测显示4个磁场强度作用后与对照组相比细胞增殖水平均有提高,其中以1.8mT组增殖最为明显(0.9679±0.057 vs 0.7552±0.0334;P<0.01)。三角形波干预后0.6mT组与1.8mT组与对照组相比差异有统计学意义(P<0.05),1.2mT组与2.4mT组与对照组相比差异无统计学意义(P>0.05)。
     3.矩形波辐照CMECs的迁移加快,各组迁移的细胞数(个/视野)与对照组比较均有显著增多,其中以1.8mT组磁场强度作用最为明显(48.00±4.18 vs 23.80±3.11,P<0.01)。三角波0.6mT组和1.8mT组与对照组相比差异有统计学意义(P<0.05),1.2mT组与2.4mT组与对照组相比没有明显增多(P>0.05)。
     4.经流式细胞仪检测,细胞经矩形波辐照后,各组与对照组比较细胞各周期(G1期,S期以及G2期)均有明显变化,(G2+S)期的细胞明显增多, (P<0.01),其中以1.8mT组变化最为显著。经三角波辐照后1.8mT组和0.6mT组对周期均有一定的影响(P<0.05),1.2mT组和2.4mT组与对照组相比细胞周期几乎没有变化(P>0.05)。
     5.在荧光显微镜下观察,矩形波辐照后各组凋亡率均有减低(P<0.05)。三角波辐照后0.6mT组和1.8mT组凋亡率同样减低(P<0.05),1.2mT组和2.4mT组凋亡率与对照组相比无明显差异(2.18±0.19 vs 2.30±0.35;2.24±0.27 vs 2.30±0.35;P>0.05)。
     6.经矩形波辐照后细胞与对照组比较细胞骨架结构发生了重组,镜下观察见绿色荧光示经FITC标记的鬼笔环肽染色的细胞骨架,红色荧光为经碘化吡啶(PI)染色的细胞核,经矩形波磁场辐照后各组的荧光染色强度均增加,细胞膜下的应力纤维增多,聚集形成了绿色束样结构,肌动蛋白清晰可见,其中0.6mT组以及1.8mT组变化最为显著,三角波辐照后0.6mT和1.8mT亦有相同表现。
     7.经矩形波辐照5d后,NO分泌能力测定显示,与对照组相比,各组NO分泌能力均有明显提高(P<0.01)。经三角波辐照后,0.6mT组与1.8mT组与对照组相比有统计学意义(P<0.05),1.2mT组与2.4mT组与对照组相比NO分泌能力未见明显提高(P>0.05)。
     实验二三角波形低频脉冲磁场对大鼠心肌微血管内皮细胞增殖、迁移和细胞周期的影响
     1.用MTT比色法测定表明,1.4mT组和1.8mT组CMECs的增殖能力与对照组相比有显著提高(P<0.05);而1.0mT组经磁场辐照后,细胞增殖与对照组相比差异无统计学意义(P>0.05)。
     2. transwell小室法检测细胞迁移能力,细胞经结晶紫染色后,显微镜(×200)下观察计数。经统计学分析可见,磁场能够促进CMECs迁移。1.4mT组和1.8mT组迁移的细胞数(个/视野)与对照组比较差异显著(P<0.05),1.0mT组与对照组相比无明显差异(P>0.05)。
     3.流式细胞仪检测细胞周期结果显示,细胞经3 d曝磁后,1.4mT组和1.8mT组与对照组比较细胞各周期(G1期、S期和G2期)均有统计学意义,细胞处于增殖分化期的数量明显增多,其中1.8mT的组变化最为显著(P<0.05)。
     结论
     在固定频率下,大鼠心肌微血管内皮细胞的增殖、细胞周期、凋亡、迁移、细胞骨架以及NO分泌能力等生物学效应与低频脉冲磁场强度以及磁场的波形都是密切相关的,改变其中任何一个条件都会造成生物学效应的改变。
Background and purpose of the experiment
     In recent years, the role of the magnetic field has been paid gradually attention, it is a safe and effective means of physical therapy in the treatment of some diseases such as bone and joints and it has achieved good effect.Some researches have already showed that with the application of electromagnetic fields (EMFs) human umbilical vein endothelial cells and bovine aortic endothelial cells culture in vitro in blood vessel formation can be effectively promoted, FGF-2 secretion can also be promoted by the magnetic field, so people are constantly looking for a non-invasive therapy using magnetic field to improve cardiovascular disease. In recent years, the incidence of ischemic heart disease increased year by year, the treatment of ischemic heart disease is to promote endothelial regeneration and angiogenesis. Microvascular endothelial cells(CMECs) have many functions similar to endothelial cells , they can participate in the regeneration of blood vessels, they are an important component of the heart, and played an important part in improve cardiovascular disease . But now few studies were reported in this area, and we can only move forward in the exploration to find biological effects of magnetic field to play the best waveform, intensity and time, so that in the treatment of cardiovascular diseases took another step forward for its in lay in the foundation for the clinical application.
     Methods
     Part 1 Effects of different waveforms of pulsed electromagnetic fields on myocardial microvascular endothelial cells
     1.Using trypsin and collagenase digestion method isolated cardiac microvascular endothelial cells , with differential adhesion method purified adherent cells.
     2. The cells were randomly divided into two sections: the rectangular and the triangular waveform group,each large group was divided into control and treatment groups ,and each treatment group were divided into four magnetic fields intensity,they are 0.6mT, 1.2mT, 1.8mT and 2.4mT .Control group did not receive magnetic field exposure, and other conditions of control group were consistent with the treatment group. The treatment groups were passaged and then cultured in the incubator for a period of time, when cell adhesion were observed we start to radiat. The frequency of pulsed magnetic field is 15Hz, irradiation time was 4h / d, continuous exposure 5d. CCK-8 was used to detected cell proliferation,cell migration was detected by transwell, the flow cytometry assayed cell cycle changes, FITC labeled phalloidin staining of the cytoskeleton and NO secretion was measured by Griess assay.
     Part 2 Effects of triangular waveform pulsed magnetic field on proliferation, migration and cell cycle of myocardial microvascular endothelial cell
     1. Using trypsin and collagenase digestion method isolated cardiac microvascular endothelial cells , with differential adhesion method purified adherent cells.
     2. Cardiac microvascular endothelial cells were divided into four groups: control group, 1.0mT group, 1.4mT group and 1.8mT group. Control group did not receive magnetic field exposure, and other conditions of control group were consistent with the treatment group. When cell adhesion were observed we start to radiat. The frequency of pulsed magnetic field is 15Hz, irradiation time was 4h / d, continuous exposure 3d. MTT was used to detected cell proliferation,cell migration was detected by transwell, the flow cytometry assayed cell cycle changes. Results
     Part 1 Effects of different waveforms of pulsed electromagnetic fields on myocardial microvascular endothelial cells
     1. Successfully cultured cardiac microvascular endothelial cells and successfully purified.
     2. CCK-8 detected that after exposuring to the rectangular waveform magnetic field the levels of cell proliferation had raised compared with the control group, the most significant proliferation group is 1.8mT group (0.9679±0.057 vs 0.7552±0.0334; P <0.01 ).
     Triangle waveform magnetic filed significantly accelerated the proliferation of 0.6mT group and 1.8mT group compared with the control group (P <0.05) ,but 1.2mT group and 2.4mT group compared with the control group showed no significant difference (P> 0.05).
     3. Rectangular waveform magnetic field accelerated the migration of CMECs in each group (pre/view) .Compared with the control group the migrated number of CMECs significantly increased, in which the 1.8mT group was the most effective (48.00±4.18 vs 23.80±3.11, P <0.01).
     Compared with the control group, triangle waveform magnetic filed accelerated the migration of 0.6mT group and 1.8mT group significantly (P <0.05), compared with the control group 1.2mT group and 2.4mT group did not significantly increased (P> 0.05).
     4. By flow cytometry, cells irradiated by rectangular waveform magnetic field compared with the control group cells G1 phase, S phase and G2 phase were significant changes, (G2 + S) phase cells were increased ( P <0.01), the most significant change group is 1.8mT group.
     Triangle waveform magnetic filed of 1.8mT group and 0.6mT group had some effects on the cell cycle (P <0.05), the cell cycle of 1.2mT group and 2.4mT compared with the control group is almost no change (P> 0.05).
     5. With the fluorescence microscope, rectangular waveform magnetic field reduce the rate of apoptosis in each group (P <0.05). Triangle waveform magnetic filed of 1.8mT group and 0.6mT group had similar effect in reduce the apoptosis rate of CMECs(P <0.05), The apoptosis rate of 1.2mT group and 2.4mT group show no significant difference compared with the control group (2.18±0.19 vs 2.30±0.35; 2.24±0.27 vs 2.30±0.35; P> 0.05).
     6. After expose to the rectangular waveform magnetic field cells the cytoskeletal structure of the CMECs reorganized compared with control group , Immunofluorescent staining of each group showed that the stress of fiber membrane increased, the changes of 0.6mT group and 1.8mT group is the most significant, Triangle waveform magnetic filed of 0.6mmT group and 1.8mT group also has the same performance.
     7. After 5d, NO secretion tests showed that compared with the control group, NO secretion in each group were significantly increased (P <0.01).
     Triangle waveform magnetic filed of 0.6mT group and 1.8mT group compared with the control group were also accelerated (P <0.05), 1.2mT group and 2.4mT showed no significant increase on NO secretion compared with the control group (P>0.05).
     Part 2 Effects of triangular waveform pulsed magnetic field on proliferation, migration and cell cycle of myocardial microvascular endothelial cell
     1. MTT colorimetric assay showed that, the proliferation of 1.4mT group and 1.8mT group of CMECs were significantly increased compared with the control group (P <0.05); No obvious difference were detected in the 1.0mT group of proliferation(P>0.05).
     2. Transwell assaied the migration of CMECs, cells were treated with crystal violet staining. The statistical analysis shows that the magnetic field can promote the migration of the cells. The migration of 1.4mT group and 1.8mT group was significantly different compared with the control group (P <0.05), 1.0mT group and the control group showed no significant difference (P> 0.05).
     3. Cell cycle by flow cytometry showed that cells exposed to 3 days, The G1 phase, S phase and G2phase of 1.4mT group and 1.8mT was statistically difference, cell proliferation and differentiation increased significantly. The change of 1.8mT group is the most significant (P <0.05).
     Conclusion
     At a fixed frequency, the biological effects of rat cardiac microvascular endothelial cell are closely related to the intension and the waveforms of pulsed magnetic fields.
引文
1. SekinoM, YamaguchiK, IriguchiN, et a.l Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. Appl Phys,2003, 93(10): 6730-6732.
    2. Kazakova RT,Badakva AM.Effects of isolated and combined effects of a constant magnetic field and antiorthostatic hypokinesia on central hemodynamics in rats. Kosm Biol AviakosmMed,1991,25(5):48-49.
    3. Ramon C,Powell MR.Preliminary report: modification of cardiac contraction rate by pulsed magnetic fields.Bioelectromagnetics,1992,13(4):303-311.
    4.李俊峡,张卓立,赵勇军.恒定均匀磁场对异丙肾上腺素引起的大鼠心肌损伤的影响.中华物理医学与康复杂志, 2001, 23 (4): 235-236.
    5. Orlov LL,Makoeva LD,GlezerMG,et al.Evaluation of antianginal effects of running pulse magnetic field and drug therapy on the physicalworking capacity and hemodynamics in patientswith stable angina pectoris. Kardiologiia, 1992, 32(2):23-26.
    6. Nossol B,Buse G, Silny J.Influence of weak static and 50 Hz magnetic fields on the redox activity of cytochrome-C oxidase Bioelectromagnetics,1993,14 (4):361-372.
    7. Vasil’eva EM,Danilova NV,Smirnov IE,et al.The effect of a low-frequen-cy magnetic field on erythrocyte membrane function and on the prostanoid level in the blood plasma of children with parasystolic arrhythmia . Vopr Kurortol Fizioter Lech FiKult,1994 Mar-Apr;(2):18-20.
    8.任东青,柴玉波,赵涛,等.电磁场诱导小鼠心肌组织sis和GH基因的特异表达.第四军医大学学报,2001,22(1):85-86.
    9. Ptitsyna N G, Kudrin V A, Villoresi D. Electric traction magnetic fields of ultra-low frequency as an occupational risk factor of ischemic heart disease. Med Tr Prom Ekol, 1996, (12): 22-25.
    10.柯文棋,李振杰,乐秀红,等.长波脉冲电磁场对作业人员血流动力学参数的影响.解放军预防医学杂志,2001,19(4):250-251.
    11.Villoresi G, Ptitsyna N G, Tiasto M I, et al. Myocardial infarct and geomagnetic disturbances: analysis of data on morbidity and mortality. Biofizika, 1998, 43 (4): 623-631.
    12.Grassi-Schultheiss PP,Heller F,Dobson J.Analysis of magnetic material in the human heart,spleen and liver.Biometals,1997,10:351-355.
    13. Gmitrov J,Ohkubo C,OkanoH.Effect of 0.25 Tstatic magnetic field on micro-circulation in rabbits. Bioelectromagnetics, 2002,23 (3): 224-229.
    14.李国栋,磁场对微循环的影响,生物磁学—应用、技术、原理,国防出版社,1993,12:76-77
    15.周万松,磁场对微循环的影响,新编磁疗学,科学出版社,1995,8:51-56
    16. Xu SZ, Okano H, Ohkubo C. Acute effects of whole-body exposure to static magnetic fields and 50-Hz electromagnetic fields on musclem icrocirculation in anesthetized mice.Bioelectrochemistry, 2000, 53: 127-135.
    17. Kamau SW,Hassa PO, Steitz1 B, eta.l Enhancementofthe efficiency of nonviral gene delivery by application of pulsed magnetic field. Nucleic Acids Res, 2006, 34(5): 40.
    18. Yen-Patton GP, Patton WF, Beer DM, et al. Endothelial cell response to pulsed electromagnetic fields: stimulation of growth rate and angiogenesis in vitro. Cell Physiol. 1988, 134: 37-46.
    19 . Matsumoto H,Kira K,Kondoh K.Effects of alternately aligned static micromagnetic fields on intravascular endothelial lining. Angiology, 1992, 43(9): 757-764
    20.李飞,贾国良,张荣庆,等.弱恒磁场对人脐静脉及兔主动脉内皮细胞增殖的影响.Chin J Pathophysiol 2003, 19(6): 772-777.
    21. Okano H,Onmori R,Tomita N, eta.l Effects of a moderate-intensity static magnetic field on VEGF-A stimulated endothelial capillary tubule formation invitro. Bioelectromagnetics, 2006, 7(8): 632-635.
    22.Lu AL, Jia GL,Gao G, eta.l The effect of magnetic stent on coronary restenosis after percutaneous transluminal coronary angioplasty in dogs. ChinMed J,2001, 114(8): 821-823.
    23.冯旭阳,贾国良,张荣庆,等.恒磁场对人脐动脉平滑肌细胞增殖的抑制效应.第四军医大学学报,2001,22(21):1989-1991
    24. Nossol B, Buse G, Silny G. Influence of weak50Hz magnetic fields on the activity of cytochrome-C oxidase. Bioelectromagnetic,1993,4:361-372.
    25.吕安林,高歌,贾国良,等.低频电磁场对兔动脉平滑肌细胞增殖的抑制作用研究.高血压杂志, 2000, 8(2): 162-164.
    26. Okano H,Ohkubo C.Modulatory effects of static magnetic fields on blood pressure in rabbits.Bioelectromagnetics, 2001, 22(6): 408-418.
    27. Zadionchenko V S, Sviridov A A. Prognostic criteria of the efficiency of magnetic and magnetic laser therapy inpatients with initial stages of hypertension. Bio Med. 1997, 1: 8– 11.
    28.文峻,钟立生,等.脉冲电场和磁场对高血粘度影响的比较研究.中国医学物理学杂志,2002,19(10):48-49
    29.罗二平,张峰,张建保,等.低强度脉冲磁场对小鼠血液流变血指标的影响.第四军医大学学报,2000,21(8):932-933.
    30.阮晓声,梁中庆,张月芳,等.恒磁场环境对大鼠血液流变学特性的影响.中华理疗杂志, 2000, 23 (4): 218-220.
    31.周宁,贾国良,李成祥,等.磁化支架安置术后血浆纤溶活性变化及临床意义.心脏杂志, 2001, 13(3): 211-213.
    32.文峻,魏明,王斯刚,等.ELF脉冲电磁场对血液粘度和凝血特性的影响.微循环技术杂志, 1996, 4: 184-186
    33. Regel SJ,Tinguely G,Schuderer J,et al.Pulsed radio-frequency electromagnetic fields:dose-dependent effects on sleep,the sleep EEG and cognitive performance.第四军医大学硕士学位论文Sleep Res.2007;16(3):253-258.
    34. Piacentini R,Ripoli C,Mezzogori D,et al.Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. Cell Physiol.2008;215(1):129-139.
    35. Zhao R,Zhang S,Xu Z,et al.Studying gene expression profile of rat neuron exposed to 1800MHz radiofrequency electromagnetic fields with cDNA microassay. Toxicology.2007;235(3):167-175.
    36. Pezzetti DT, deMattei M,CarusoA,et al. Effects of pulsed electromagnetic fields on human chondrocytes: an in vitro study. CalcifTissue Int, 1999, 65 (5):396-401.
    37. De Mattei M, Pasello M, Pellati A,et al, Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. Connect Tissue Res,2003,44(3-4):154-159.
    38 . Tabrah F, Hoffmeier M, Gilbert F Jr. Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields(PEMFs). Bone Miner Res,1990,5(5):437-442.
    39. Goodman R, Wei LX, Xu JC,et al. Exposure of human cells to low-frequency electromagnetic fields results in quantitative changes in transcripts. Biochimica Biophysica Acta, 1989,1009:216-220.
    40. Goodman R, Blank M, Lin H,et al. Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem Bioenerg,1994,33:115-120.
    41.Lagroye I, Poncy JL. Influence of 50 Hz magnetic fields and ionizing radiation on c-jun and c-fos oncoproteins. Bioelectromagnetics, 1998,19:112-116
    42.张清根.电磁场对鸡胚胎生长影响的实验研究.中华物理医学杂志. 1992, 14: 88-91.
    43.Lindstrom E, Berglund A, Mild KH, et al. Intracellular calcium oscillations induced in a T cell line after exposure to ELF magnetic fields with variablefrequencies and flux densities. Bioelectromagnetics. 1995, 16: 41-47.
    44. Lin Y, Nishimura R, Nozaki K, et al. Effects of pulsing electromagnetic fields on the ligament healing in rabbits. J Vet Med Sci. 1992, 54: 1017-1022.
    45.席晓莉,吴道澄,张建保等.极低频脉冲磁场对小鼠自由基及血液流变学的影响.中华物理医学与康复杂志. 1999, 21: 185-185.
    46.Sabine Ivancsits, Alexander Pilger, Elisabeth Diem, et al. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res. 2005, 583: 184-188.
    47.王德文,彭瑞云.电磁辐射的报伤与防护.中华劳动卫生与职业病杂志.2003,2l(5):321-322.
    48.Trosko JE Human health consequences of environmentally modulated gene expression:Potential roles of ELF-EMF induced epigenetic versus mutagenic mechanism of disease. Bioelectromagnetics,20(X),21:402-406.
    49.Mutnick A, Muscat J E. Primary brain cancer in adults and the use of common household appliances: a case-control study. Rev Environ Health, 1997, 12 (2): 131.
    50.Verkasalo P K, Pukkala E, Kaprio J. Magnetic fields of high voltage power lines and risk of cancer in Finnish adults: nationwide cohort study. BMJ, 1996. 313 (7064): 1047-1051.
    51.Fam WZ, Mikhail E L. Lymphoma induced in mice chronically exposed to very strong low-frequency electromagnetic field. Cancer Lett,1996. 105 (2): 257-269.
    52.Salvatore J R, Blackinton D, Polk C, et al. Non-ionizing electromagnetic radiation: a study of carcinogenic and cancer treatment potential . Rev Environ Health, 1994, 10 (3-4): 197-207.
    53.许正平,姜槐.电磁场对生物体的影响极可能干预途径.中华劳动卫生与职业病杂志,2002,2.(4):313-317.
    54.刘斌,洪蓉,俞云梅.极低频电磁场对小鼠脑和肝细胞调亡及细胞周期的影响.中华劳动卫生与职业病杂志,2003,21(5):339-341.
    55. Zhang LM,Zhou LY,Vega-Gonzalea A,et al.Extremely Low frequency magnetic fields Promote neurite varicosity Formation and cell excitability in cultured rat chromaffin Cells.Comp Biochem Physiol,1997.118;295-299.
    56. Chen G,UPham BL,Sun W,el al.Effect of electromagnetic fields exposure on chemically induced differentiation Of friend erythroleukemia cell.Environ Health Perspect,2000,108:967-972.
    57.Wei M,Guizzetti M,Yost M,et al.Exposure to 60-Hzmagnetic fields and proliferation of human astrocytoma cell in vitro. Toxicol Appl Pharmaeol,2000,162:j66-176.
    58. Cridland NA,Hayloek RG,Saunders RD.50Hz magnetic field exposure alters onset of S-phase in normal human fibroblasts.Bioelectromagnetics,1999,20:446-452.
    59. Antonopulos A,Yang B,Stamm A,et al.Cytological effects of 50Hz electromagnetic fields on human lymphocytes in vitro.Mutat Res,1995,346:151-157.
    60. Fanelli C,Coppoal S,Barone R,et al,Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ infiux.FASEB J,1999,13:95-02.
    61. Lacy-Hulbert A , Metcalfe JC , Hesketh R.Biological responses to electromagnetic fields.FASEB J,1998,12:395-420.
    62.曾群力,胡跟林,姜槐,等.工频磁场辐照导致细胞连接蛋白Cx43的异常移位.中华劳动卫生与职业病杂志,2002,20(4):260-262.
    63.曾群力,姜槐,付一提,等.电磁噪声阻断极低频磁场对细胞缝隙连接功能的抑制效应.中华劳动卫生与职业病杂志,2002,20(4):243-245.
    64.Rao S,Henderson AS.Regulation of c-fos is affected by electromagnetic fields.J Cell Biochem,1996,63:358-365.
    65.钟涛,陈简,吴瑞英,等.极低频磁场对细胞色素氧化酶亚基1基因转录水平的影响.中华劳动卫生与职业病杂志,2002,20(4):249-251.
    66.Harrison DG., Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100 1997(9).2153-2157.
    67.Sugden PH, Clerk A.“Stress-responsive”mitogen-activated protein kinases (C-Jun N-terminal kinase and P38 mitogen-activated protein kinases) in the myocardium. Cir Res,1998,83(4):345-352.
    68. Robert V, Heymes C, Silvestre JS, et al. Angiotensin AT1receptor subtype as a cardiac target of aldosterone : role in aldosterone-salt-induced fibrosis. Hypertension, 1999,33(4):981-986
    69.纳贝哈力克,张翠玲,于戈群.缬沙坦治疗高血压的疗效观察.微循环学杂志,2006,16(3):36-37,40.
    70.赵双林,丁东平,向光大,等.血管紧张素Ⅱ1型受体拮抗剂与醛固酮受体拮抗剂对逆转高血压伴左室扩大患者心肌重塑的作用.微循环学杂志,2005,15(1):49-51.
    71.Wang J,Yu L,Solenberg PJ,et al. Aldosterone stimulates angiotensin- converting enzyme expression and activity in rat neonatal myocyte.J Card Fail, 2002, 8(3) :167-174.
    72.Lang D, Bell JP, Bayraktutan U, Small GR, Shah AM, Lewis MJ. Phenotypic changes in rat and guinea pig coronary microvascular endothelium after culture: loss of nitric oxide synthase activity. Cardiovasc Res 42 1999(3).794-804.
    73.Li JM, Mullen AM, Shah AM. Phenotypic properties and characteristics of superoxide production by mouse coronary microvascular endothelial cells. J Mol Cell Cardiol 33 2001(6).1119-1131.
    74.Johnson EK, Schelling ME, Quitadamo IJ, Andrew S, Johnson EC. Cultivation and characterization of coronary microvascular endothelial cells: anovel porcine model using micropigs. Microvasc Res 64 2002(2).278-288.
    75. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000, 6: 389-395.
    76.Nishida M, Carley WW, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW. Isolation and characterization of human and rat cardiac microvascular endothelial cells. Am J Physiol 264 1993(2 Pt 2).H639-652.
    77.Bayraktutan U, Draper N, Lang D, Shah AM. Expression of functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc Res 38 1998(1).256-262.
    78.Bouloumie A, Bauersachs J, Linz W, et al. Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. Hypertension 30 1997(4).934-941.
    79.Ando H, Kubin T, Schaper W, Schaper J. Cardiac microvascular endothelial cells express alpha-smooth muscle actin and show low NOS III activity. Am J Physiol 276 1999(5 Pt 2).H1755-1768.
    80.Gerritsen ME. Functional heterogeneity of vascular endothelial cells. Biochem Pharmacol 36 1987(17).2701-2711.
    81.King GL, Buzney SM, Kahn CR, et al. Differential responsiveness to insulin of endothelial and support cells from micro- and macrovessels. J Clin Invest 71 1983(4).974-979.
    82.Heil M,Schaper W.Influence of Mchanical,Cellular and Molecular factors on Catteral Artery Growth(arteriogenesis).Circ Res.2004 Sep 3;95(5):449-458.
    83.蔡莉蓉,李玉珍,刘秀华.鼠尾胶为贴黏剂的微血管内皮细胞培养.军事进修学院学报. 2005, 26: 464-465.
    84.李玉珍,刘秀华,蔡莉蓉.改良的心肌微血管内皮细胞分离培养方法.微循环学杂志. 2006, 16: 10-11, 14.
    85.Litwin M, Clark K, Noack L, et al. Novel cytokine-independent induction of endothelial adhesion molecules regulated by platelet/endothelial cell adhesion molecule (CD31). J Cell Biol 139 1997(1).219-228.
    86.Breviario F, Caveda L, Corada M, et al. Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 15 1995(8).1229-1239.
    87.Shah AM. Paracrine modulation of heart cell function by endothelial cells. Cardiovasc Res 31 1996(6).847-867.
    88.Bachetti T, Morbidelli L.Endothelial cells in culture: a model for studying vascular functions·Pharmacol Res, 2000, 42(1):9
    89. TepperOM, CallaghanMJ, Chang EI, et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J, 2004, 18: 1231 - 1233.
    90. Hopper RA, Verhalen JP, Tepper O, et al. Osteoblasts stimulated with pulsed electromagnetic fields increase HUVEC proliferation via a VEGF-A independent mechanism. Bioelectromagnetics, 2009, 30: 189-197.
    91. Kawamoto A, Gwon HC, Lwaguro H, et al. Therapeutic potential of ex- vivo expanded endothelial progenitor cells formyocardial ischemia. Circulation, 2001, 103: 634 - 637.
    92.KocherAA, SchusterMD, SzabolcsMJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts preventscardiomyo- cyte apoptosis, reduces remodeling and imp roves cardiac function. NatMed, 2001, 7: 430 - 436.
    93.Kalka C, Masuda H, Takahashi T, et al. Transplantation of exvivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA, 2000, 97: 3422 - 3427.
    94.郭影,李飞,郭文怡等.低频脉冲磁场对大鼠骨髓源内皮祖细胞增殖和体外血管化的影响.岭南心血管病杂志.2009 ,018(02) 131-135.
    95.Martino CF, Belchenko D, Ferguson V, et al. The effects of pulsed electromagnetic fields on the cellular activity of SaOS-2 cells. Bioelectromagnetics. 2008, 29: 125-132.
    96.Midura RJ, Ibiwoye MO, Powell KA, et al. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res. 2005, 23: 1035-1046.
    97.Strauch B, Patel MK, Navarro JA, Berdichevsky M, Yu HL, Pilla AA. Pulsed magnetic fields accelerate cutaneous wound healing in rats. Plast Reconstr Surg. 2007 Aug;120(2):425-430.
    98. Lee JS, Ahn SS, Jung KC, et al. Effects of 60 Hz electromagnetic field exposure on testicular germ cell apoptosis in mice. Asian J Androl. 2004, 6: 29-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700