再生丝蛋白纤维的人工纺丝及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物丝,特别是蜘蛛丝近年来由于其优异的综合力学性能而倍受关注。但是天然动物丝的应用由于种种原因而受到各种限制,因此人们期望通过人工纺丝来获得性能与天然动物丝相近的再生丝蛋白纤维。本论文在本课题组已有的人工纺丝的基础上(即采用高浓度的再生丝蛋白水溶液作为纺丝原液,以硫酸铵水溶液为凝固浴,通过湿法纺丝的方法制备出性能较好的再生丝蛋白纤维,进一步研究了纺丝工艺参数,如卷绕速度、拉伸倍率及不同阶段拉伸倍率的分配等对最终获得的再生丝蛋白纤维结构和性能的影响,并成功地采用连续机械化过程纺制得到六倍后拉伸再生丝蛋白纤维,其断裂强度为0.39 GPa。断裂伸长为32.1%,断裂能为80.8 kJ/kg,其综合力学性能已经可以和天然蚕茧丝相媲美。
     在工艺方面,本论文首先讨论了不同的起始卷绕速度对再生丝蛋白纤维的影响。研究发现,即使在可纺的浓度范围之内,不同的再生丝蛋白纺丝液浓度所对应的适宜的起始卷绕速度也不同,较低的纺丝液浓度对应的初始卷绕速度较低。对于相同的拉伸倍数,采用相对较慢的起始卷绕速度获得的再生纤维的力学性能较差,其原因可能在于较慢的拉伸速度不利于破坏丝蛋白分子链的缠结,从而影响到分子链沿纤维轴方向的取向排列。其次,本论文讨论了第二辊与第三辊上拉伸倍率的分配对再生丝蛋白纤维的影响。结果表明,以50 rpm→150 rpm→300rpm方式获得的六倍拉伸纤维的力学性能要明显高于以50 rpm→200 rpm→300rpm方式获得的六倍拉伸纤维。因此我们得出再生丝蛋白纤维纺丝过程中一个重要的参数,即在整个纺制过程中,第二辊相对于第一辊拉伸倍率不能大于3,要获得高拉伸倍率的纤维,必须通过增长纺程,通过逐步增加拉伸倍率来得到最终的纤维。
     热力学性能分析结果表明,随温度增加,丝蛋白纤维(包括天然蚕茧丝和再生丝蛋白纤维)在140-160℃之间分子链之间的结合水被破坏,此过程为不可逆转变;在160-180℃之间分子链发生运动,出现一相转变过程,此过程为可逆转变;在210-225℃之间规整区域发生了转变,导致力学性能下降;在280-310℃之间丝蛋白分子链开始降解,最终的残留量为40-50%。从热力学的分析结果可以看出天然蚕丝结构仍然较再生丝蛋白纤维来得完善,表现在其降解峰出现在较高温度,且要使其发生分解需要较大的能量。同时热力学分析结果也表明随着拉伸倍数的增加,再生纤维的结构会趋于完善。
     本论文还首次采用同步辐射红外光谱对动物丝单丝进行了表征,结果表明通过凝固浴和初步拉伸两个过程之后,再生丝蛋白纤维中β-折叠的含量与天然蚕茧丝已相差无几,并且不同拉伸倍数所获得的再生丝蛋白纤维的β-折叠含量几乎相同,这表明后拉伸过程对于提高再生丝蛋白纤维力学性能主要起到破坏分子链的缠结,改善分子链沿纤维轴的取向上,而对于增加丝纤维中的规整结构,即β-折叠含量的作用很小。
Natural silk, especially spider dragline silk, has been noted for its excellent comprehensive mechanical properties in recent years, though it is limited to apply them in life for kinds of reasons. So researchers are committed to prepare regenerated silk whose properties could be comparable with natural ones by artificial spinning. Regenerated silk fibroin (RSF) fibers were obtained by extruding of concentrated silk fibroin aqueous solution into ammonium sulphate coagulation bath. A custom-made simplified industrial wet-spinning device with continuous mechanical post-drawn was used in our trial spinning. It is interesting to note that the draw down ratio of 6 producing the best molecular orientation and tensile properties in the present work after modulation of rolling rate, draw ratio and step distribution. Its break strength is 0.39 GPa, break elongation is 32.1% and break energy is 80.8 kJ/kg.
     As to wet-spinning, firstly, in the range of spinning dope concentration, low concentration requires slow rolling rate, resulted in bad mechanical properties even underwent the same draw down ratio. It is possible that slow rolling rate is not useful to destroy the entanglement of molecular chain. Secondly, to the draw down ratio of 6, the mechanical properties of RSF fibers produced by 50 rpm→150 rpm→300 rpm surpass those of 50 rpm→200 rpm→300 rpm. So in the whole spinning line, the optimal draw down ratio of second roller is no more than 3, then adding spinning step to obtain high drawn-down RSF fibers.
     For RSF fibers with different drawn ratio and degummed silk, the molecular chain underwent a transformation with temperature increasing. As to range of 140 to 160℃, bound water between molecular chains is destroyed. It is an irreversible process. Change between 160 and 180℃is attributed to the movement of molecular chain in RSF fibers, corresponding to a phase transition. While DMA peak between 210 and 225℃is owe to transition in regular region. The degradation of molecular chain take place in the range of 280-310℃. At last, the residual fiber weight percent is 40-50%. In conclusion, degummed silk possess a more orientedβ-sheet conformation than RSF fibers. And with increase the draw down ratio, molecular alignment in RSF fibers is improved.
     In this dissertation, synchrotron FTIR is used to characterize single fiber firstly. As a result, after coagulation and post-draw in spinning line, the content ofβ-sheet in RSF fibers is close regardless of different draw down ratio, approaching that of natural silk. It is possible that post-draw could destroy the entanglement of molecular chain to improve the alignment in fibers, while could not increase the content of regular conformation.
引文
[1]Shao,Z.Z.and E Vollrath.Materials:Surprising strength of silkworm silk.Nature,2002,418(6899):741-741.
    [2]Anderson J.P.,Stephenhassard M.,and Martin D.C..Structural Evolution of Genetically-Engineered Silklike Protein Polymers,in Silk Polymers.1994:137-147.
    [3]Asakura T..Nmr Characterization of Silk Proteins,in Silk Polymers.1994:148-154.
    [4]Fossey S.A.and Kaplan D..Molecular modeling studies on silk pepides,in Silk Polymers.Materials Science and Biotechnology,D.Kaplan,et al.,Editors.American Chemical Society:Washington.1994:270-282.
    [5]Kaplan D..Silk:biology,structure,properties,and genetics.,in Silk Polymers.Materials Science and Biotechnology,D.Kaplan,et al.,Editors.American Chemical Society:Washington.1994:2-16.
    [6]Lazaris A..Spider silk fibers spun.from soluble recombinant silk produced in mammalian cells.Science,2002,295(5554):472-476.
    [7]Lotz B.and Cesari F.C..The chemical struture and the crystalline structures of Bombyx mori.Biochimie.,1979,61:205-214.
    [8]Akai H..The Structure and Ultrastructure of the Silk Gland.Experientia,1983,39(5):443-449.
    [9]Magoshi J..Biaspinning(silk fiber formation,multiple spinning mechanisms).Polymeric Materials Encyclopedia,1996,21:667-679.
    [10]Liu Y..PIXE analysis of silk.Journal of Applied Polymer Science,1997,66:405-408.
    [11]Liu Y.C..Polymer bulletin,1998,3:17.
    [12]Li Z T.A.,Huang Y.E,Shao Z.Z.,Chen X..Metal element contents in silk gland and silk fiber of Bombyx mori silkworm.Acta Chim Sinica,2005,63(15):1379-1382.
    [13]Lucas F..Spiders and their silks.Discovery,1964,25:20-26.
    [14]Kovoor J..Comparative Structure and Histochemistry of silk-producing organs in Arachnids,in Ecophysiology of Spiders,W.Nentwig,Editor.Springer:Berlin-Heidelberg-New York.1987:160-186.
    [15]Vollrath F..Spider webs and silk.Sci.Am.,1992,266(3):70-76.
    [16]Hinman M.B.,Jones J.A.,and Lewis R.V..Synthetic spider silk:a modular fiber.Trends in Biotechnology,2000,18(9):374-379.
    [17]ExPASy,Expert Protein Analysis System:p.P05790;P07856.
    [18]Chen X.,Shao Z.Z..Conformation transition of silk protein membranes monitored by time-resolved FT-IR spectroscopy - Conformation transition behavior of regenerated silk fibroin membranes in alcohol solution at high concentrations(in chinese).Acta Chimica Sinica,2003,61(4):625-629.
    [19]Hirai Y.,Ishikuro J.,and Nakajima T..Some comments on the penetration of water vapor into regenerated silk fibroin.Polymer,2001,42(12):5495-5499.
    [20]Hossain K.S..Dilute-solution properties of regenerated silk fibroin.Journal of Physical Chemistry B,2003,107(32):8066-8073.
    [21]Liu Y..Regenerated silk fibroin membrane as immobilization matrix for peroxidase and fabrication of a sensor for hydrogen-peroxide utilizing methylene-blue as electron shuttle.Analytica chimica acta,1995,316(1):65-72
    [22]Matsumoto K..Studies on regenerated protein fibers.3.Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method.Journal of Applied Polymer Science,1996,60(4):503-511.
    [23]Nam J.and Park Y.H..Morphology of regenerated silk fibroin:Effects offreezing temperature,alcohol addition,and molecular weight.Journal of Applied Polymer Science,2001,81(12):3008-3021.
    [24]Nazarov R.,Jin H.J.,and Kaplan D.L..Porous 3-D scaffolds from regenerated silk fibroin.Biomacromolecules,2004,5(3):718-726.
    [25]Qian J..Characterization of regenerated silk fibroin membrane for immobilizing peroxidase and construction of an amperometric hydrogen-peroxide sensor employing phenazine methosulfate as electron shuttle.Journal of electroanalytical chemistry,1995,397(1-2):157-162
    [26]Um I.C..Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.International Journal of Biological Macromolecules,2001,29(2):91-97.
    [27]Yu T..Characterization of regenerated silk fibroin membranes for immobilizing glucose-oxidase and construction of a tetrathiafulvalene-mediating glucose sensor.Journal of applied polymer science,1995,58(6):973-980
    [28]Akai H..Scanning electron microscopic observations of fibroin secretion into the lumen of the silkgland in Bombyx mori.J.seric.Sci.Jpn.,1986,55(2):163-167.
    [29]Couble P.,Garel A.,and Prudhomme J..Complexity and diversity of polyadenylated messenger-rna in the silk gland of bombyx-mori - changes related to fibroin production.Developmental biology,1981,82(1):139-149.
    [30]Lizardi P.M..Discontinous translation of siik fibroin in a reticulocyte cell-free system and in intact silk gland cells.Proc.Natl.Acad.Sci.USA,1979,76(12):6211-6215.
    [31]Sumida M..Occurrence of fibroinase in degenerating silk gland in the pharate adult of the silkworm,bombyx-mori.Comparative biochemistry and physiology b-biochemistry&molecular biology,1993,105(2):239-245
    [32]Tang H.,Cai J.,and Li Z..Yac-base transfer offibroin gene from antheraea-yamamai to domestic silkworm bombyx-mori.1.identification of fibroin clones from a yac library of antheraea-yamamai constructed from its posterior silk gland.Science in china series b-chemistry life sciences & earth sciences,1995,38(5):590-595
    [33]Asakura T..Invitro Production of Bombyx-Mori Silk Fibroin by Organ-Culture of the Posterior Silk Glands-Isotope Labeling and Fluorination of the Silk Fibroin.Biotechnology and Bioengineering,1993,41(2):245-252.
    [34]Li G..X.and Yu T.Y..The Fibrillization Mechanism of Silk Fibroin in Middle Silk Gland Chinese Science Bulletin,1990,35(10):857-861.
    [35]Shao Z.Z.,Yang Y.and Thgersen H.C..Structure and Behavior of Regenerated Spider Silk.Macromolecules,2003,36:1157-1161.
    [36]Tillinghast E.and Christenson T..Observations on the chemical composition of the web of Nephila clavipes(Araneae,Araneidae).Arachnol,1984,12:69-74.
    [37]Work R.W.and Young C.T..The Amino-Acid Compositions of Major and Minor Ampullate Silks of Certain Orb-Web-Building Spiders(Araneae,Araneidae).Journal of Arachnology,1987,15(1):65-80.
    [38]Tsukada M..Physical and chemical-properties of tussah silk fibroin films.Journal of polymer science part b-polymer physics,1994,32(8):1407-1412.
    [39]Tanaka K..Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombix mori.Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology,1999,1432(1):92-103.
    [40]Tanaka K..Homologues of fibroin L-chain and P25 of Bombyx mori are present in Dendrolimus spectabilis and Papilio xuthus but not detectable in Antheraea yamamai.Insect Biochem Mol,2001,31:665-677.
    [41]Mira K.,Ichimura S.,and James T..Highly repetitive structure and its organization of the silk fibroin gene.Journal of molecular evolution,1994,38(6):583-592.
    [42]Zhou C.Z..Fine organization of Bombyx mori fibroin heavy chain gene.Nucleic Acids Research,2000,28(12):2413-2419.
    [43]Strydom D.J.,Stead R.H..The amino-terminal sequence of silk fibroin peptide Cp-A reinvestigation.Biochem Bioph Res Co,1977:79.
    [44]Shen Y.J.and Martin D.C..Microstructural Characterization of Bombyx mori Silk Fibers.Macromolecules,1998,31:8857-8864.
    [45]Asakura T..NMR of Silk Fibroin:4.Temperature-induced and urea-induced helix-coil transitions of the-(Ala)n-sequence in Philosamia-cynthia-ricini silk fibroin protein monitored by C-13 NMR-spectroscopy.Macromolecules,1985,18(12):2614-2619.
    [46]Asakura T..Conformational characterization of Bombyx mori silk fibroin in the solid state by high-frequency carbon-13 cross polarization-magic angle spinning NMR,x-ray diffraction,and infrared spectroscopy.Macromol.,1985,18(10):1841-1845.
    [47]Asakura T.,Kashiba H.,and Yoshmizu H..NMR of silk fibroin.8.Carbon-13 NMR analysis of the conformation and the conformational transition of Philosamia cynthia ricini silk fibroin protein on the basis of Bixon-Scheraga-Lifson theory.Macromolecules,1988,21(3):644-648.
    [48]Asakura T.,Yoshimizu H.,and Yoshizawa F..NMR of silk fibroin.9.Sequence and conformation analyses of the silk fibroins from Bombyx mori and Philosamia cynthia ricini by 15NNMR spectroscopy.Macromolecules,1988,21(7):2038-2041.
    [49]Magoshi J.,Magoshi Y.,and Nakamura S..Mechanism of Fiber Formation of Silkworm,in Silk Polymers.1994:292-310.
    [50]Sehnal F.and Akai H..Insect Silk Glands - Their Types,Development and Function,and Effects of Environmental-Factors and Morphogenetic Hormones on Them.International Journal of Insect Morphology & Embryology,1990,19(2):79-132.
    [51]Yazawa S.,J Chem Soc Jpn,1960,63:1428.
    [52]Ishizaka H.,Ishida K.,Fukumoto O..J Seric Sci Jpn,1989,58:87.
    [53]Mathur A.B..The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films.Biopolymers,1997,42(1):61-74.
    [54]Um I.C..Wet spinning of silk polymer -Ⅱ.Effect of drawing on the structural characteristics and properties of filament.International Journal of Biological Macromolecules,2004,34(1-2):107-119.
    [55]Ha S.W.,Tonelli A.E.,and Hudson S.M..Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.Biomacromolecules,2005,6(3):1722-1731.
    [56]Um I.C..Wet spinning of silk polymer -Ⅰ.Effect of coagulation conditions on the morphological feature of filament.International Journal of Biological Macromolecules,2004, 34(1-2):89-105.
    [57]Lock R.L..Process for spinning polypeptide fibers.United States Patent,1992.Patent Number:5,171,505.
    [58]Lock R.L..Process for making silk fibroin fibers.United States Patent,1993.Patent Number:5,252,285.
    [59]Zhao C.H..Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system.Biopolymers,2003,69(2):253-259.
    [60]Yao J..Artificial spinning and characterization of silk fibre from bombyx mori silk fibroin in hexafluoroacetone hydrate.Macromolecules,2002,35:6-9.
    [61]Ki C.S.,Baek D.H.,Masahiro H.,Um I.C.,Park Y.H..Dissolution and Wet Spinning of Silk Fibroin using Phosphoric acid/Formic acid Mixture Solvent System.Journal of Applied Polymer Science,2007,105:1605-1610.
    [62]Ki C.S.,Oh H.J..The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament.International Journal of Biological Macromolecules,2007,41:346-353.
    [63]Zuo B.Q.,Wu Z.Y..Effect on Properties of Regenerated Silk Fibroin Fiber Coagulated with Aqueous Methanol/Ethanol.Journal of Applied Polymer Science,2007,106:53-59.
    [64]Corsini P.L.,Gustavo V.G..Influence of the Draw Ratio on the Tensile and Fracture Behavior of NMMO Regenerated Silk Fibers.Journal of Polymer Science Part B:Polymer Physics,2007,45:2568-2579.
    [65]Khan M.R.,Gotoh Y..Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds.International Journal of Biological Macromolecules,2008,42:264-270.
    [66]Xie E,Shao H.L..Effect of shearing on formation of silk fibers from regenerated Bombyx mori silkfibroin aqueous solution.International Journal of Biological Macromolecules,2006,38:284-288.
    [67]Plaza G.R.,Jose P.R..Effect of Water on Bombyx mori Regenerated Silk Fibers and Its Application in Modifying Their Mechanical Properties.Journal of Applied Polymer Science,2008,109:1793-1801.
    [68]Zhou G.Q.,Chen X.,and Shao Z.Z..The artificial spinning based on silk proteins.Progress in Chemistry,2006,18(7-8):933-938.
    [69]Zuo B.Q.,Liu L.,and Wu Z..Effect on properties of regenerated silk fibroin fiber coagulated with aqueous Methanol/Ethanol.Journal of Applied Polymer Science,2007,106(1):53-59.
    [70]Lenormant H..Infra-red spectra and structure of the proteins of the silk glands.Trans.Faraday.Soc.,1956,52:549-553.
    [71]Venyaminov S.Y.and Kalnin N.N..Quantitative Ir Spectrophotometry of Peptide Compounds in Water(H2o) Solutions.2.Amide Absorption-Bands of Polypeptides and Fibrous Proteins in Alpha-Coil,Beta-Coil,and Random Coil Conformations.Biopolymers,1990,3003-14):1259-1271.
    [72]Yoshimizu H.and Asakura T..The Structure of Bombyx-Mori Silk Fibroin Membrane Swollen by Water Studied with Esr,C-13-Nmr,and Ft-Ir Spectroscopies.Journal of Applied Polymer Science,1990,40(9-10):1745-1756.
    [73]Tsukada M..Structural-changes of silk fibroin membranes induced by immersion in methanol aqueous-solutions.Journal of polymer science part b-polymer physics,1994,32(5):961-968.
    [74]Chen X.,Shao Z.Z..Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy.Biophysical Chemistry,2001,89(1):25-34.
    [75]Liang C.X.and Hirabayashi K..Influence of Solvation Temperature on the Molecular-Features and Physical-Properties of Fibroin Membrane.Polymer,1992,33(20):4388-4393.
    [76]Ayub Z.H.,Arai M.,and Hirabayashi K..Quantitative Structural-Analysis and Physical-Properties of Silk Fibroin Hydrogels.Polymer,1994,35(10):2197-2200.
    [77]Magoshi J.,Magoshi Y.,Nakamura S..Physical properties and structure of silk:10.The mechanism of fibre formation from liquid silk of silkworm Bombyx mori.1985,26,Oct:309-311.
    [78]Zhou L.,Chen X.,Shao Z.Z..Copper in the silk formation process of Bombyx mori silkworm.Febs Letters,2003,554(3):337-341.
    [79]Zhou L.,Chen X.,Shao Z.Z.,Huang Y.F.,Knight D..Effect of metallic ions on silk formation in the mulberry silkworm,Bombyx mori.Journal of Physical Chemistry B,2005,109:16937-16945.
    [80]Kratky O.S.,Sekora A..An unstable lattice in silk fibroin.Nature 1950,165:319-320.
    [81]Marsh R.E.,Corey R.B.,and Pauling L..Biochim.Biophys.Acta,1955,16:1-34.
    [82]Takahashi Y.,Gehoh M.,and Yuzuriha K..Structure refinement and diffuse streak scattering of silk(Bombyx mori).International Journal of Biological Macromolecules,1999,24(2-3):127-138.
    [83]Magoshi J.,Magoshi Y.,and Nakamura S..Crystallization,Liquid-Crystal,and Fiber Formation of Silk Fibroin.Applied Polymer Symposia,1985,41:187-204.
    [84]Magoshi J..Crystallization of silk fibroin from solution.Thermochimica Acta,2000,352:165-169.
    [85]Magoshi J.M.,Nakamura N,,Shiego K.,Nobutami K..Physical properties and structure of silk V.Thermal behavior of silk fibroin in the random coil formation.1977,15:1675-1683.
    [86]Zhang H..Thermal properties of Bombyx mori silk fibers.Journal of Applied Polymer Science,2002,86(8):1817-1820.
    [87]Motta A.,Fambri L.,and Migliaresi C..Regenerated silk fibroin films:Thermal and dynamic mechanical analysis.Macromolecular Chemistry and Physics,2002,203(10-11):1658-1665.
    [88]Freddi G..Structure and molecular conformation of tussah silk fibroin films:effect of heat treatment.Journal of polymer science part b-polymer physics,1997,35(5):841-847.
    [89]Agarwal N.,Hoagland D.A,and Farris R.J..Effect of moisture absorption on the thermal properties of Bombyx mori silk fibroin films.Journal of Applied Polymer Science,1997,63(3):401-410.
    [90]Porter D.,and Shao Z.Z..Predicting the mechanical properties of spider silk as a model nanostructured polymer.The European Physical Journal E-Soft Matter,2005,16(2):199-206.
    [91]Samouillan V.,Dandurand J.,and Lacabanne C..Effect of Water on the Molecular Mobility of Elastin.Biomacromolecules,2004,5:958-964.
    [92]Timothy R.Noel R.P.,Stephen G.R.,Arthur S.T..The glass-transition behaviour of wheat gluten proteins.International Journal of Biological Macromolecules,1995,17(2):81-85.
    [93]Nichola J.Coleman,D.Q..Modulated temperature differential scanning calorimetry:A novel approach to pharmaceutical thermal analysis.International Journal of Pharmaceutics,1996,135(1-2):13-29.
    [94]Valerie M..Thermal behavior of native and hydrophobized wheat gluten,gliadin and glutenin-rich fractions by modulated DSC.International Journal of Biological Macromolecules,2000,27:229-236.
    [95]Lawrence F.,Drummy D.M.P.,Morley O.S.,Farmer B.L.,and Rajesh R.N..Thermally Induced α-helix to β-sheet Transition in Regenerated Silk Fibers and Films.Biomacromolecules,2005,6:3328-3333.
    [96]Hu X.,Cebe P..Effect of water on the thermal properties of silk fibroin.Thermochimica Acta,2007,461:137-144.
    [97]Cebe P..Isothermal Crystallization Kinetics Study of Regenerated Bombyx Mori Silk Fibroin Film.Polymeric Materials:Science & Engineering,2005,93:652-653.
    [1]Shao Z.Z.and Vollrath E.Materials:Surprising strength of silkworm silk.Nature,2002,418(6899):741-741.
    [2]Khan M..Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds.International Journal of Biological Macromolecules,2008,42(3):264-270.
    [3]Viney C..Inspiration versus duplication with biomolecular fibrous materials:learning nature's lessons without copying nature's limitations.Current Opinion in Solid State and Materials Science,2004,8:165-171.
    [4]Zhou G.Q.,Chen X.,and Shao Z.Z..The artificial spinning based on silk proteins.Progress in Chemistry,2006,18(7-8):933-938.
    [5]Liang C.X..Improvements of the physical properties of fibroin membranes with sodium aliginate.Journal of Applied Polymer Science,1992,45(11):1937-1943.
    [6]Phillips D.M.,Naik R.R.,Long H.C.,Fox D.M.,Trnlove P.C.and Mantz R.A..Regenerated silk fiber wet spinning from an ionic liquid solution.Journal of Materials Chemistry,2005,15:4206-4208.
    [7]Matsumoto K.and Uejima H..Regenerated protein fibers.1.Research and development of a novel solvent for silk fibroin.Journal of Polymer Science Part a-Polymer Chemistry,1997,35(10):1949-1954.
    [8]Mathur A.B..The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films.Biopolymers,1997,42(1):61-74.
    [9]Ha S.W.,Tonelli A.E.,and Hudson S.M..Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.Biomacromolecules,2005,6(3):1722-1731.
    [10]Ki C.S..Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system.Journal of Applied Polymer Science,2007,105(3):1605-1610.
    [11]Zhang Y.Q.,Xiang R.L.,Zhu L.J.,Gao W.J.and Wang W.B..Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization.Journal of Nanoparticle Research,2007,9:885-900.
    [12]Trabbic K.A.and Yager P..Comparative structural characterization of naturally-and synthetically-spun fibers of Bombyx mori fibroin.Macromolecules,1998,31(2):462-471.
    [13]Lock R.L..Process for spinning polypeptide fibers.United States Patent,1992:Patent Number:5,171,505.
    [14]Lock R.L..Process for making silk fibroin fibers.United States Patent,1993:Patent Number:5,252,285.
    [15]Zhao C.H..Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system.Biopolymers,2003,69(2):253-259.
    [16]Liivak O.,Blye A.,Shah N.and Jelinski L.W..A microfabricated wet-spinning apparatus to spin fibers of silk proteins.Structure-property correlations.Macromolecules,1998,31(9):2947-2951.
    [17]Yao J..Artificial spinning and characterization of silk fibre from bombyx mori silk fibroin in hexafluoroacetone hydrate.Macromolecules,2002,35:6-9.
    [18]Chen X.,Shao Z.Z.,Zhou L..Preparation of concentrated regenerated silk fibroin aqueous solution.Chinese Patent,2005:Patent number:ZL03142201.2.
    [19]Kim U.J..eThree-dimensional aqueous-derived biomaterial scaffolds from silk fibroin.Biomaterials,2005,26(15):2775-2785.
    [20]Um I.C..Wet spinning of silk polymer-Ⅰ.Effect of coagulation conditions on the morphological feature of filament.International Journal of Biological Macromolecules,2004,34(1-2):89-105.
    [21]Um I.C..Wet spinning of silk polymer-Ⅱ.Effect of drawing on the structural characteristics and properties of filament.International Journal of Biological Macromolecules,2004,34(1-2):107-119.
    [22]Matsumoto K..Studies on regenerated protein fibers.3.Production of regenerated silk fibroin fiber by the self-dialyzing wet spinning method.Journal of Applied Polymer Science,1996,60(4):503-511.
    [23]Ha S.W.,Park Y.H.,and Hudson S.M..Dissolution of Bombyx mori siik fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution.Biomacromolecules,2003,4(3):488-496.
    [24]Urn I.C..Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid.International Journal of Biological Macromolecules,2001,29(2):91-97.
    [25]Zuo B.Q.,Liu L.,and Wu Z..Effect on properties of regenerated silk fibroin fiber coagulated with aqueous Methanol/Ethanol.Journal of Applied Polymer Science,2007,106(1):53-59.
    [26]Chen X.,Shao Z.Z..,Knight D.P.,and Vollrath E.Conformation Transition Kinetics of Bombyx mori Silk Protein.PROTEINS:Structure,Function,and Bioinformatics,2007,68:223-231.
    [27]Chen X.,Shao Z.Z.,Zhou L.,Lin J.B..Preparation of regenerated silk fibroin fibres with salt solution as coagulation.Chinese Patent,2005:Patent number:CN1664183A.
    [28]Chen X.,Zhou L.,Shao Z.Z.,Lin J.B.and Yao J.R..Chinese Patent.2005:ZL 200510024440.1[Chem.Abstr.2005,144,332966].
    [29]Zhu Z.H..Preparation and characterization of regenerated Bombyx mori silk fibroin fiber containing recombinant cell-adhesive proteins;nonwoven fiber and monofilament.Journal of Applied Polymer Science,2008,109(5):2956-2963.
    [30]Lee K.H..Preparation and characterization of wet spun silk fibroin/poly(vinyl alcohol) blend filaments.International Journal of Biological Macromolecules,2007,41(2):168-172.
    [31]Marsano E..Regenerated cellulose-silk fibroin blends fibers.International Journal of Biological Macromolecules,2008,43(2):106-114.
    [32]Marsano E..Fibers based on cellulose-silk fibroin blend.Journal of Applied Polymer Science,2007,104(4):2187-2196.
    [33]Liu H.T..Feasibility of wet spinning of silk-inspired polyurethane elastic biofiber.Materials Letters,2008,62(12-13):1949-1952.
    [34]Zhou G.Q.,Shao Z.Z.,Knight D.P.,Yan J.P.and Chen X..Silk fiber extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts.Advanced Materials,2009,21:366-370.
    [35]Xu Y.,Zhang Y.P.and Hu X.C..Studies on spinning and rheological behaviors of regenerated silk fibroin/N-methylmorpholine-N-oxide.H2O solutions Materials Letters,2008,40:5355-5358.
    [36]Arcidiacono S..Aqueous processing and fiber spinning of recombinant spider silks.Macromolecules,2002,35(4):1262-1266.
    [37]Shao Z.Z.,Frizth V.,Yang Y.and Thgersen H.C..Structure and Behavior of Regenerated Spider Silk.Macromolecules,2003,36:1157-1161.
    [38]Seidel A..Regenerated spider silk:Processing,properties,and structure.Macromolecules,2000, 33(3):775-780.
    [39]Lazaris A..Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.Science,2002,295(5554):472-476.
    [40]Xie F..Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution.International Journal of Biological Macromolecules,2006,38(3-5):284-288.
    [41]Marsano E.,Arosio C.,Boschi A.,Mormino M.and Freddi G..Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres.International Journal of Biological Macromolecules,2005,37:179-188.
    [42]Corsini P..Influence of the draw ratio on the tensile and fracture behavior of NMMO regenerated silk fibers.Journal of Polymer Science Part B-Polymer Physics,2007,45(18):2568-2579.
    [43]Plaza G.R..Effect of water on Bombyx mori regenerated silk fibers and its application in modifying their mechanical properties.Journal of Applied Polymer Science,2008,109(3):1793-1801.
    [44]孙艳玲.超高速纺丝概况.国外丝绸,1995,2:34-37.
    [1]Chen X.,Shao Z.Z.,Knight D.P.and Vollrath F..Conformation Transition Kinetics of Bombyx mori Silk Protein.PROTEINS:Structure,Function,and Bioinformatics,2007,68:223-231.
    [2]Zhou L.,Chen X.,Shao Z.Z..Effect of metallic ions on silk formation the mulberry silkworm,Bombyx mori.Journal of Physical Chemistry B,2005,109(35):16937-16945.
    [3]Liu J.H..Preparation and characterization of chitosan/Cu(Ⅱ) affinity membrane for urea adsorption.Journal of Applied Polymer Science,2003,90(4):1108-1112.
    [4]Monti P..Raman spectroscopic characterization of Bombyx mori silk fibroin:Raman spectrum of Silk I.Journal of Raman Spectroscopy,2001,32(2):103-107.
    [5]Asakura T..Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and C-13 cross-polarization/magic angle spinning NMR.Biopolymers,2001,58(5):521-525.
    [6]Hu X.,Cebe P..Effect of water on the thermal properties of silk fibroin.Thermochimica Acta,2007,461:137-144.
    [7]Hu X.,Cebe P..Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy.Macromolecules,2006,39:6161-6170.
    [8]Tsukada M..Structure and molecular conformation of tussah silk fibroin films treated with water-methanol solutions:Dynamic mechanical and thermomechanical behavior.Journal of Polymer Science Part B-Polymer Physics,1998,36(15):2717-2724.
    [9]Kweon H.Y.,Um I.C.and Park Y.H..Thermal behavior of regenerated Antheraea pernyi silk fibroin film treated with aqueous methanol.Polymer,2000,41(20):7361-7367.
    [10]Cunniff P.M..Mechanical-Properties of Major Ampulate Gland Silk Fibers Extracted from Nephila-Clavipes Spiders,in Silk Polymers.1994:234-251.
    [11]Guess K.B.and Viney C..Thermal analysis of major ampullate(drag line) spider silk:the effect of spinning rate on tensile modulus.Thermochimica Acta,1998,315(1):61-66.
    [12]O'Brien J.P..Nylons from nature:Synthetic analogs to spider silk.Advanced Materials,1998,10(15):1185-1195.
    [13]Yang Y..Toughness of spider silk at high and low temperatures.Advanced Materials,2005,17(1):84-88.
    [14]Freddi G..Physical-properties and dyeability of naoh-treated silk fibers.Journal of applied polymer science,1995,55(3):481-487.
    [15]Tsukada M..Structural-analysis of poly(4-hydroxybutyl acrylate)-grafted silk fibers.Angewandte makromolekulare chemic,1996,241:41-56.
    [16]Lagarde P..Infrared Physics,1978,18:395-397.
    [17]Miller L.M..Chemical imaging of biological tissue with synchrotron infrared light.Biochimica et Biophysics Acta,2006,1758:846-857.
    [18]Williams G.P..关于红外同步加速器辐射特性的综述及展望[J].红外,2001,11:31-34.
    [19]李承祥,武国华,刘付轶,盛六四.NSRL红外光谱实验站及应用[J].核技术,2001,24(7):580-584.
    [20]马礼敦,杨福家.同步辐射概论[M].上海:复旦大学出版社,2000:320-332.
    [21]李承祥,王卫.电子储存环的红外边缘辐射[J].核技术,2003,26(6):25-27.
    [22]Garr G.L.,Dumas P..Spectrochemical analysis using infrared detectors.Blackwell publishing,2006:56-84.
    [23]Piccinini M..Synchrotron radiation FT-IR micro-spectroscopy of fluorophlogopite in the O-H stretching region.Vibrational Spectroscopy,2006,42(1):59-62.
    [24]Torre J..Nature of the crystalline interphase in sheared iPP/vectra fiber model composites by microfocus X-ray diffraction and IR microspectroscopy using synchrotron radiation.Macromolecules,2006,39(16):5564-5568.
    [25]Wetzel D.L.,Refiner J.A.and Williams G.P..Synchrotron-powered FT-IR microspectroscopy:Single cell interrogation.Mikrochimica Acta,1997:353-355.
    [26]陈晋阳,郑海飞,曾贻善.纤维探针红外光谱仪的发展和应用[J].应用科技,2002,29(1):21-23.
    [27]Marcelli A..Protein structure and function in the time-domain of vibrational spectroscopies.the promising applications of IR synchrotron radiation micro-spectroscopy.Acta Physica Polonica A,2006,1119(3):287-304.
    [28]Eichert D..Imaging with spectroscopic micro-analysis using synchrotron radiation.Analytical and Bioanalytieal Chemistry,2007,389(4):1121-1132.
    [29]Dumas P.,Sockalingum G.D.and Sule-Suso J..Adding synchrotron radiation to infrared microspectroscopy:what's new in biomedical applications? Trends in Biotechnology,2007,25(1):40-44.
    [30]Petra M..Synchrotron micro-FT-IR spectroscopic evaluation of normal paediatric human bone.Journal of Molecular Structure,2005,733(1-3):101-110.
    [31]Wetzel D.L.,Post G.R.and Lodder R.A..Synchrotron infrared micro spectroscopic analysis of collagens Ⅰ,Ⅲ,and elastin on the shoulders of human thin-cap fibroatheromas.Vibrational Spectroscopy,2005,38(1-2):53-59.
    [32]Wang Q..In situ characterization of prion protein structure and metal accumulation in scrapie-infected cells by synchrotron infrared and X-ray imaging.Vibrational Spectroscopy,2005,38(1-2):61-69.
    [33]Miller L.M..Combining IR spectroscopy with fluorescence imaging in a single microscope:Biomedical applications using a synchrotron infrared source(invited).Review of Scientific Instruments,2002,73(3):1357-1360.
    [34]Szczerbowska-Boruchowska M..Biomolecular investigation of human substantia nigra in Parkinson's disease by synchrotron radiation Fourier transform infrared micro spectroscopy.Archives of Biochemistry and Biophysics,2007,459(2):241-248.
    [35]Gazi E..Imaging ToF-SIMS and synchrotron-based FT-IR micro spectroscopic studies of prostate cancer cell lines.Applied Surface Science,2004,231-2:452-456.
    [36]Gazi E..Fixation protocols for subcellular imaging by synchrotron-based Fourier transform infrared microspectroscopy.Biopolymers,2005,77(1):18-30.
    [37]Walsh M.J..IR microspectroscopy:potential applications in cervical cancer screening.Cancer Letters,2007,246(1-2):1-11.
    [38]Yu P.Q..Chemical imaging of microstructures of plant tissues within cellular dimension using synchrotron infrared microspectroscopy.Journal of Agricultural and Food Chemistry,2003,51(20):6062-6067.
    [39]Schmidt M..Polarized infrared microspectroscopy of single spruce fibers:Hydrogen bonding in wood polymers.Biopolymers,2006,83(5):546-555.
    [40]Dokken K.M.and Davis L.C..Infrared imaging of sunflower and maize root anatomy.Journal of Agricultural and Food Chemistry,2007,55(26):10517-10530.
    [41]Cotte M..Synchrotron FT-IR microscopic study of chemical enhancers in transdermal drug delivery:example of fatty acids.Journal of Controlled Release,2004,97(2):269-281.
    [42]Kulka S..Mid-IR synchrotron radiation for molecular specific detection in microchip-based analysis systems.Analytical and Bioanalytical Chemistry,2004,378(7):1735-1740.
    [43]Xie A.H..Low frequency vibrations of amino acid homopolymers observed by synchrotron far-IR absorption spectroscopy:Excited state effects dominate the temperature dependence of the spectra.Biopolymers,1999,49(7):591-603.
    [44]Chen X.,Shao Z.Z..Conformation transition in silk protein films monitored by time-resolved Fourier transform infrared spectroscopy:Effect of potassium ions on Nephila spidroin films.Biochemistry,2002,41(50):14944-14950.
    [45]Chen X.,Shao Z.Z..Conformation transition of silk protein membranes monitored by time-resolved FTIR spectroscopy:Effect of alkali metal ions on Nephila spidroin membrane.Acta Chimica Sinica,2002,60(12):2203-2208.
    [46]Chen X.,Shao Z.Z..Conformation transition kinetics of regenerated Bombyx mori siik fibroin membrane monitored by time-resolved FTIR spectroscopy.Biophysical Chemistry,2001,89(1):25-34.
    [47]Zhou L.,Chen X.,Shao Z.Z.,Huang Y.F.,Knight D..Effect of metallic ions on silk formation in the mulberry silkworm,Bombyx mori.Journal of Physical Chemistry B,2005,109:16937-16945.
    [48]Corsini P..Influence of the draw ratio on the tensile and fracture behavior of NMMO regenerated silk fibers.Journal of Polymer Science Part B-Polymer Physics,2007,45(18):2568-2579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700