聚乳酸/羟基磷灰石原位复合纤维热压成型及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对HA/PDLLA共混电纺纤维中HA载入量不大、易发生团聚等,采用原位沉积法构建复合纤维。复合纤维膜中存在于纤维表面的非化学计量的HA,使其具有优良的再矿化性能,同时在降解过程可保护纤维的形态完整。PDLLA上C=O的伸缩振动峰和HA中OH-的伸缩振动峰发生蓝移,复合纤维的玻璃化转变温度随HA载入量增加而上升,证明原位沉积HA/PDLLA复合纤维膜中PDLLA与原位生成的HA存在氢键相互作用。复合纤维膜的力学性能显著提高,HA载入量25.2wt%的原位复合纤维膜的拉伸强度为8.2±1.1 MPa,杨氏模量为63.5±5.6 MPa。细胞与支架结合良好,显著促进了细胞的增殖和分化,有望作为医疗装置的涂层材料和组织工程支架。
     为解决杂乱排列纤维力学性能低和力学各向同性问题,通过高速旋转滚筒收集定向纤维,取向度为75.4±3.6%;采用原位沉积法制备定向复合纤维,使得纤维取向后力学强度分布上主要沿轴向进行分布,当HA载入量为25.2wt%,拉伸强度为17.2±3.1 MPa。通过正交设计优化热压工艺,热压成型后不改变纤维结构的完整性,纤维收缩性小,且纤维之间形成触点式粘结结构;定向排列原位复合纤维的热压材料力学强度显著增强,且沿纤维轴向和径向呈现显著差异,当HA载入量25.2wt%,沿纤维轴向和径向的强度分别为36.2±2.2和5.5±0.2 MPa。通过空间仿生构造,将定向排列纤维进行不同角度叠合后,再优化热压成型,制备具有空间力学分布各向异性的复合制件,拟合得到单轴拉伸强度与纤维排列层间夹角的定量关系。与定向PDLLA纤维热压材料相比,定向排列原位复合纤维的热压材料具有更好的力学性能和较快的降解速率,同时由于表面亲水性增加,可促进细胞的铺展生长和增殖分化,有望作为骨修复内固定材料。
     模拟骨修复内固定材料的微动环境,采用切向微动磨损试验,初步研究复合材料的摩擦学性能。定向纤维热压材料主要表现为纤维径向方向上磨粒和磨屑的堆积和少量的裂纹生成,纤维轴向方向上为粒子的自我修复和润滑。定向排列原位复合纤维轴向具有优良的摩擦磨损性能,进入稳态磨损后,摩擦系数仅为0.22,耐磨性好,有望应用在骨组织修复领域。
Development of fibrous nanocomposites of hydroxyapatite (HA) and poly(DL-lactide) (PDLLA) offers great potential as tissue engineering scaffolds. Fibrous HA/PDLLA composites formed from in situ growth of HA within electrospun fibers were investigated with respect to the mechanical performances, biomineralization capability, degradation behaviors, cell growth and differentiation profiles. The tensile strength and Young's moduli of in situ grown composites (IGC) were 8.2 and 63.5 MPa, respectively, which were significantly higher than those of blend electrospun composites (BEC) with 25.2% of HA inoculation (p<0.05). It was due to the presence and uniform distribution of nano-HA on the fiber surface and interfacial interactions between HA and the matrix polymer. The interactions were approved by the blue-shifts of C=O stretching and OH- stretching modes and the increases in glass transition temperatures of fibrous composites. The localization of apatite phase on the fiber surface improved the biomineralization capability and enhanced the morphological stability of the fibers and fibrous mats even when the degradation of matrix polymer was detected. The results of cell culture indicated that the cell viability and activity levels of alkaline phosphatase on composites IGC were significantly higher than those of composites BEC (p<0.05). In situ grown fibrous composites acted as an excellent cell support to maintain desirable cell-substrate interactions, to provide favorable conditions for cell proliferation and to stimulate the osteogenic differentiation.
     Low mechanical properties and their homogeneous distribution were indicated for randomly arranged fibers, and aligned fibers were collected on high-speed rotating mandrel. Aligned fibrous mats of IGC were obtained with the oritentation degree of 75.4±3.6% and HA loading of 25.2wt%. The mechanical property was determined on the axial direction, and the tensile strength of 17.2±3.1MPa was indicated, which was significantly higher than that of randomly distributed fibers (p<0.05); Orthogonal table of L9(3)4 was employed to optimize the parameters of hot pressing, whose optimized temperature, pressure and duration were 60℃,2 MPa and 10 min, respectively. Point-bonded cross-linking structure was formed and minimal shrinkage of fibrous mats with the integrity of fiber structure was detected. Hot-pressed composites from aligned IGC fibrous mats indicated significanlt higher mechanical properties than those from randomly distributed IGC (p<0.05). The ultimal tessile strength was 36.2±2.2 and 5.5±0.2 MPa on the axial and radial directions, respectively. To mimetic the high-level structure of the extracellular matrix of hard tissues, aliged fibrous mats were construted layer-by-layer with the interlayer angles of 0°、30°、45°and 90°, and then processed by hot press. Composite materials with heterogeneous distribution of mechanical properties were obtained, and quantitative relations between the ultimal tessile strength and interlayer angles were drafted by combining micromechanics formulae with experiment values. The hydrophilicity enhanced by HA loading, which resulted in catalyzed the process of degradation and provided favorable conditions for cell proliferation and to stimulate the osteogenic differentiation.
     For determining the fretting friction properties of hot-pressed fibrous composites applied in bone repairement environment, tangential fretting were employed to determined friction coefficient and wear rate in air environment. The optimized parameters of fretting were normal force of 20 N, moving distance of 80±2μm, test frequency of 2 Hz and test cycles of 5×103. Hot-pressed composites from aligned IGC fibrous mats indicated indicated fretting particles and cracks on the axial direction, while self-repair and lubrication effects were detected on the radical direction. The lubrication efficiency of 0.22 was detected in the stable freeting phase, which showed potentials as bone repair subsitututes.
引文
[1]李世普.生物医用材料导论.武汉:武汉工业大学出版社,2000.
    [2]Jacobsen S, Fritz HG, Degee P. New developments on the ring opening polymerisation of polylactide. Industrial Crops and Products 2000;1:265-275.
    [3]季平,徐银宝,江志荣.聚乳酸的性能及开发现状.合成技术及应用2003;18(1):31-34.
    [4]Suljourujic E, Ignjatovic N, Uskokovic D. Gamma irradiation processing of hydroxyapatite/poly-L-Lactide composite biomaterial. Radiation Physics and Chemistry 2003;67:375-379.
    [5]Jin S, Gonsalves KE. Functionalized copolymers and their composites with polylactide and hydroxyapatite. Journal of Materials Science 1999;10:363-368.
    [6]Deng X, Hao J, Wang C. Preparation and mechanical properties of nanocomposites of poly (D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials 2001; 22:2867-2873.
    [7]Kato K, Eika Y, Ikada Y. In situ hydroxyapatite crystallization for the formation of hydroxyapatite/polymer composites. Journal of Materials Science 1997;32:5533-5543.
    [8]李海东,程凤梅,柳翱.微孔HA的制备及PLA/HA复合材料的性能研究.材料科学与工程学报2007,25:105-107.
    [9]廖凯荣,卢泽俭,薄颖慧.聚乳酸/羟基磷灰石复合材料的研究Ⅱ:聚乳酸/羟基磷灰石复合材料的取向模压增强.中山大学学报2000;39(6):59-63.
    [10]Nenad I, Simonida T, Momcilo D. Synthesis and properties of hydroxyapatite /poly-L-lactide composite biomaterials. Biomaterials 1999;20(9):809-816.
    [11]Ignjiatovid N, Delijie K, Yukcevic M. The designing of properties of hydroxyapatite/ polylactide composite biomaterials by hot pressing. Materials Research and Advanced Techniques 2001,92(2):145-149.
    [12]Li J, Lu XL, Zheng YF. Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Applied Surface Science 2007;255(2):494-497.
    [13]Verheyen CCM, Wijin JRDe, Blitterswijk CAV. Hydroxylapatite/poly(L-lactide composites:a animal study on push-out strengths and interface histology. Journal of Biomedical Materials Research 1993;27(4):433-444.
    [14]全大萍,卢泽俭,李世普.聚DL-乳酸/羟基磷灰石复合材料(Ⅰ):制备与力学性能.中国生物医学工程学报2001;20(6):485-488.
    [15]赵建华,廖维宏,王远亮.消旋聚乳酸/羟基磷灰石/脱钙骨基质的制备及其体外降解性研究.中华修复重建外科杂志2003;17(1):61-64.
    [16]吴刚,张文光,王成焘.聚乙烯醇/羟基磷灰石复合材料的摩擦磨损性能研究.摩擦学学报2007;273:214-218.
    [17]Verheyen CC, Klein CPAT, Groot K de. Evaluation of hydroxyapatite/poly(L-lactide) composites:phsico-chemical properties. Journal of Materials Science:Materials in Medicine 1993;4:58-65.
    [18]Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA). Basic Characteristics Biomaterials Part 11999;20(9):859-877.
    [19]Furukawa T, Matsusue Y, Yasunaga T. Biodegradation behavior of ultra-high strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. Biomaterials 2000;21(9):889-898.
    [20]Kesenci K, Fambri L, Migliaresi C, Piskin E. Preparation and properties of poly(1-lactide) hydroxyapatite composites. Journal of Biomaterials Science: Polymer Edition 2000;11(6):617-632.
    [21]汤顺清,毛管,石海涛.组织工程β-磷酸三钙/聚乳酸支架材料性能评价.暨南大学学报2002;23(5):67-70.
    [22]郭晓东,郑启新,杜靖远.可吸收羟基磷石/聚D,L乳酸骨折内固定材料机械强 度和生物降解性研究.中国生物医学工程学报2001;20(1):23-28.
    [23]Kasuga T, Ota Y, Nogami M. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 2001;22:19-23.
    [24]李亚军,阮建明.聚乳酸/羟基磷灰石复合型多孔状可降解生物材料.中南工业大学学报2002;33(3):261-265.
    [25]You Y, Lee SW, Lee SJ, Park WH. Thermal interfiber bonding of electrospun poly(L-lactic acid) nanofibers. Materials Letters 2006;60:1331-1333.
    [26]Roos N, Luxbacher T, Glinsner T. Nanaoimprint lithography with a commercial 4 inch bond system for hot embossing. SPIE'S microlithography,27-28 February 2001, Santa clara, CA.
    [27]Na HN, Zhao YP, Zhao CG, Zhao C, Yuan XY. Effect of hot-press on electrospun poly(vinylidene fluoride) membranes. Polymer Engineering and Science 2008;10:934-940.
    [28]Great Britain. Lubrication (tribology) education and research. (Jolt Report) Department of Education and Science, HMSO,1966.
    [29]Dowson D. History of Tribology. London:Professional Engineering Publishing Limited,1998.
    [30]Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure:A novel scaffold for tissue engineering. Journal of Biomedical Materials Research 2002;60:613-621.
    [31]Huang ZM, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 2004;45:5361-5368.
    [32]Huang L, Nagapudi K, Apkarian RP, Chaikof E. Engineered collagen-PEO nanofibers and fabrics. Journal of Biomaterials Science, Polymer Edition 2001;12:979-993.
    [33]Huang L, McMillan RA, Apkarian RP, Poudehiitri B, Conticello VP, Chaikof EL. Generation of synthetic elastin-mimetic small diameter fibers and fiber networks. Macromolecules 2000;33:2989-2997.
    [34]Pedicini A, Farris RJ. Mechanical behavior of electrospun polyurethane. Polymer 2003;44:6857-6862.
    [35]Bhattarai N, Cha DI, Bhattarai SR, KM MS, Kim HY. Biodegradable electrospun mat:novel block copolymer of poly (p-dioxanone-co-L-lactide)-block poly (ethylene glycol). Journal of Polymer Science Part B:Polymer Physics 2003; 41:1955-1964.
    [36]Lee KH, Kim HY, Ra YM, Lee DR. Characterization of nanostructured poly(e-caprolactone) nonwoven mats via electrospinning. Polymer 2003;44:1287-1294.
    [37]Lee KH, Kim HY, La YM, Lee DR, Sung NH. Influence of a mixing solvent with tetrahydrofuran and N,N-Dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal of Polymer Science Part B:Polymer Physics 2002;40:2259-2268.
    [38]KM MS, Kim HY, Kim MS, Park SY, Lee DR. Nanofibrous mats of poly(trimethylene terephthalate) via electrospinning. Polymer 2004;45:295-301.
    [39]Ding B, Kim HY, Lee SC. Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ. Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. Journal of Polymer Science Part B:Polymer Physics 2003;40:1261-1268.
    [40]Nagapudi K, Brinkman WT, Leisen JE, Huang L, McMillan RA, Apkarian RP, Conticello VP, Chaikof EL. Photomediated solid-state cross-linking of an elastin-mimetic recombinant protein polymer. Macromolecules 2002;35:1730-1737.
    [41]Wnek GE, Carr ME, Simpson DG, Bowlin GL. Electrospinning of nanofiber fibrinogen structures. Nano Letters 2003;3(2):213-216.
    [42]Shields KJ, Beckman MJ, Bowlin GL, Wayne JS. Mechanical properties and cellular proliferation of electrospun collagen type Ⅱ. Tissue Engineering 2004;10:1510-1517.
    [43]Zong X, Ran S, Fang D, Hsiao BS, Chu B. Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments. Polymer 2003;44:4959-4967.
    [44]Kim JS, Reneker DH. Polybenzimidazole nanofiber produced by electrospinning. Polymer Engineering and Science 1999;39:849-854.
    [45]Katta P. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano letters 2004;4(11):2215-2218.
    [46]Cui WG, Li XH, Zhou SB, Weng J. Degradation patterns and surface wettability of electrospun fibrous mats. Polymer Degradation and Stability 2008;93:731-738.
    [47]Cui WG, Zhu XL, Li XH, Jin Y. Blending electrospinning of poly(D,L-lactide) and poly(ethylene glycol) as fibrous scaffolds for cell growth. Mater. Sci. Eng. C 2009;doi:10.1016/j.msec.2009.02.013.
    [48]Xu XL. Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-lactide) nanocomposite fibers. European Polymer Journal 2007;43:3187-3196.
    [49]Kim HW. Gelatin-hydroxyapatite nanofibers for tissue regenation. Advanced Functional Materials 2005;15:1988-1994.
    [50]生瑜,朱德钦,陈建定.聚合物基无机纳米复合材料的制备方法:原位生成法.高分子通报2001:4:9-15.
    [51]Hu QL, Li BQ, Wang M, Shen JC. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 2004;25:779-785.
    [52]Li JJ, Chen YP, Yin YJ, Yao FL, Yao KD. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 2007;28:781-790.
    [53]Vincent JFV. Structure Biomaterials. New Jersey:Princeton University Press,1991.
    [54]Chen PY, Lin AYM, McKittrick JM, Meyers MA. Structure and mechanical properties of crab exoskeletons. Acta Biomaterials 2008; doi:10.1016/j.actbio.2007.12.010.
    [55]Chen JL, Chu B, Hsiao BS. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds. J Biomed Mater Res 2006;79:307-317.
    [56]Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications. Tissue Engineering 2006;12:1197-1211.
    [57]Murugan R, Ramakrishna S. Nano-featured scaffolds for tissue engineering:A review of spinning methodologies. Tissue Engineering 2006; 12:435-447.
    [58]Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells andinduced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007;28:316-325.
    [59]Deng XL, Sui G, Zhao ML, Chen GQ, Yang XP. Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. Journal of Biomaterials Science, Polymer Edition 2007; 18:117-130.
    [60]Kim HW, Lee HH, Knowles JC. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. Journal of Biomedical Materials Research 2006;79:643-649.
    [61]Venugopal J, Low S, Choon AT, Bharath KA, Ramakrishna S. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. Journal of Biomedical Materials Research 2008;85:408-417.
    [62]Cui WG, Li XH, Zhou SB, Weng J. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers. Journal of Biomedical Materials Research 2007;82:831-841.
    [63]He W, Ma Z, Yong T. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 2005;26(36):7606-7615.
    [64]Kukobo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006; 27:2907-2915.
    [65]Liao S, Xu GF, Wang W, Watari F, Cui FZ, Ramakrishna S, Chan CK. Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes. Acta Biomaterials 2007;3:669-675.
    [66]Li XT, Zhang Y, Chen GQ. Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials 2008;29:3720-3728.
    [67]Ramires PA, Romito A. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 2001;22:1467-1474.
    [68]Cui WG, Li XH, Zhu XL, Yu G, Zhou SB, Weng J. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 2006;7:1623-1629.
    [69]Lu X, Zhao Z, Leng Y. Calcium phospahte crytal growth under controlled atmosphere in the electrochemical deposition. Journal of Crystal Growth 2005;284:506-516.
    [70]Habibovic P, van der Valk CM, van Blitterswijk CA, de Groot K, Meijer G. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials. Journal of Materials Science:Materials in Medicine 2004;15:373-380.
    [71]Klein C, Driessen A, De Groot K, van den Hooff A. Biodegradation behavior of various calcium phosphate materials in bone tissue. Journal of Biomedical Materials Research 1983;17:769-782.
    [72]Nagano M, Nakamura T, Kokubo T, Tanahashi M, Ogawa M. Differences of bone bonding ability and degradation behavior in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating. Biomaterials 1996;17:1771-1777.
    [73]Shen WJ, Chung KC, Wang GJ, McLaughlin RE. Mechanical failure of hydroxyapatite and polysulfone coated titaniμm rods in a weight-bearing canine model. The Journal of Arthroplasty 1992;7:43-49.
    [74]Hsueh CH. Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites. Journal of the American Ceramic Society 1987;72:344-347.
    [75]Cui WG, L XH, Zhou SB, Weng J. Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of Applied Polymer Science 2007; 103:3105-3112.
    [76]Babensee JE, Anderson JM, Mclntire LV, Mikos AG. Host response to tissue engineered devices. Advanced Drug Delivery Reviews 1998;33:111-139.
    [77]Kim HW, Lee HH, Knowles JC. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regeneration. Journal of Biomedical Materials Research 2006;79A:643-649.
    [78]Boskey AL. Biomineralization:conflict challenges and opportunities. Journal of Cellular Biochemistry-Supplement 1998;30/31:83-91.
    [79]田中顺三,田口哲志.组织再生のなめの生体材料の开发.化学工业(日).2001.
    [80]Jose MV, Thomas V, Johnson KT, Dean DR, Nyairo E. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomaterialia 2009;5:305-315.
    [81]Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London A 1920;221:163-198.
    [82]瞿金平,黄汉雄.塑料工业手册:注塑、模压工艺与设备.北京:化学工业出版社,2001.
    [83]Baird DG.聚合物加工设计与原理.北京:化学工业出版社,2002.
    [84]Choi SS, Lee SG, Joo CW, Im SS, Kim SH. Formation of interfiber bonding in electrospun poly(etherimide) nanofiber web. Journal of Materials Science 2004;39:1511-1513.
    [85]Andreassen E, Myhre OJ, Hinrichsen EL, Braathen MD, Grostad K. Relationships between the properties of fibers and thermally bonded nonwoven fabrics made of polypropylene. Journal of Applied Polymer Science 1995; 58:1633-1645.
    [86]Lee KH, Kim HY, Ryu YJ, Kim KW, Choi SW. Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends. Journal of Polymer Science Part B:Polymer Physics 2003;41:1256-1262.
    [87]Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure:a potential scaffold for blood vessel engineering. Biomaterials 2004;25:877-886.
    [88]Stephane S, Barbara D, Hakim EH. Revisiting the sigmoidal curve fitting applied to quantitative real-time PCR data. Analytical Biochemistry 2008;373:370-376.
    [89]Xiao YH, Wang X, Lu LD. Nanometre-sized TiO2 as applied to the modification of unsaturated polyester resin. Materials Chemistry and Physics 2002;77:609-611.
    [90]Khedkar J, Negulescu. Sliding wear behavior of PTFE composites. Wear 2002;252:361-369.
    [91]朱旻昊,周仲荣.TiN涂层的径向微动行为.摩擦学学报2000;20:161-164.
    [92]Lamparth I, Szabo DV, Vollath D. Fluorescence from coated oxide nanoparticles. Materials Research Society Symposium-Proceeding 2002:703:303-308.
    [93]Zhang ZZ, Liu WM, Xue QJ. Effects of various kinds of fillers on the tribological behavior of polytetrafluoroethylene composites under dry and oil-lubricated conditions. Journal of Applied Polymer Science 2001,80:1891-1897.
    [94]Woydt M, Arndt J, Klaffke D. Sliding and fretting wear of hot isostatically pressed aluminium nitride. Wear 1992; 156:57-64.
    [95]周仲荣,Vincent L.微动磨损.北京:科学出版社,2002.
    [96]Mindlin RD. Compliance elastic bodies in contact. Journal of Applied Mechanics 1949;16:259-265.
    [97]Tong J, Ma YH, Arnell RD, Ren LQ. Free abrasive wear behavior of UHMWPE composites filled with wollastonite fibers. Composites:Part A 2006;37(1):38-45.
    [98]Nusbaμm HJ, Rose RM, Paul IL, Crugnola AM, Radin EL. Wear mechanisms for ultrahigh molecular weight polyethylene in the total hip prosthesis. Journal of Applied Polymer Science 1979;23:777-789.
    [99]Mallick PK. Fiber Reinforced Composites. New York: Marcel Dekker Press,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700