大豆叶绿素缺乏突变体发育过程中光合特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆是我国最重要的油料作物。在现有基础上提高大豆的光能利用效率对于揭示光合作用的光能转化机理、大幅度增加单位面积的大豆产量具有极其重要的意义。
     本文中突变体属田间自然突变。对突变体和野生型两个大豆品种的光合色素组成进行比较,结果表明突变体幼叶的叶绿素含量显著低于野生型,呈现明显的芽黄性状。进一步研究幼叶、功能叶不同发育阶段光合作用以及叶绿素荧光特性,以期了解突变体和野生型在不同生育期大豆叶片光合作用的特性及规律,为大豆高产育种和栽培提供理论依据。
     幼叶阶段,研究了田间条件下大豆叶绿素缺乏突变体以及野生型叶片逐步展开过程中的叶绿素含量、气体交换、叶绿素荧光动力学等特性,并分析了二者在叶片展开过程中吸收光能分配的差异。结果表明:在幼叶阶段,影响光合速率降低的因素主要是叶绿素含量的降低。叶绿素缺乏导致突变体大豆有活性的PSⅡ反应中心数目减少,每个反应中心的光能吸收和激发能捕获增加,但是PSⅡ电子传递受阻,致使每个反应中心的激发能耗散增加。与野生型相比,突变体大豆叶片所吸收的能量中分配给热耗散的能量较多,而过剩的激发能较少;同时随着叶绿素含量降低,光合电子传递中向光呼吸分配的比例增大。
     为了进一步探讨该大豆叶绿素缺乏突变体功能叶光合作用的特性,本研究选择不同生育期测定了田间自然条件下大豆的光响应曲线、光合速率、气体交换参数的日变化和叶绿素荧光特性。结果表明:田间自然条件下突变体功能叶的光合速率高于野生型,制约光合速率的主要因素不再是叶绿素含量而是气孔限制.对光强的响应说明突变体在不同生育期利用光的范围更广,能够更好的利用弱光和耐受强光。比较突变体和野生型的光合功能期和日同化量,都说明了突变体更具有高产的物质基础。
Soybean is the most important crops in China. It is of great significance to increase largely crop yield per acre on the present basis and discover photosynthetic solar energy conversion mechanism by improving photosynthetic Light energy utilization efficiency.
     In this paper, the mutant soybean is a mutation in the field controlled. Soybean varieties on the two components of the photosynthetic pigments were compared, results showed that chlorophyll content of the mutant leaves was significantly lower than that of wild-type, presenting a clear yellow bud traits. Further study of leaf photosynthesis and chlorophyll fluorescence characteristics of young leaves and mature leaves at different developmental stages, with a view to explicit the relationship of photosynthesis and yield in different stages, and provide theoretical basis to the breeding and cultivation.
     The Chlorophyll contents, gas exchange and chlorophyll fluorescence kinetics were extensively studied in chlorophyll-deficient mutant soybean leaves and its wild-type from emergency to full expansion under field conditions. The difference of the absorbed light distribution between two soybean varieties during the development of leaves was also assessed. Results showed that, the impact of the factors that reduce the photosynthetic rate is the mainly reduction of chlorophyll content in young leaf stage. chlorophyll deficient induced a decrease of PSⅡreaction centers, and resulted in an increase of excited energy capture per active reaction centers. It also showed that PSⅡelectron transport was blocked apparently, and the energy dissipation increased per PSⅡreaction centers. Compared with wild-type soybean, the mutant had less excitation energy and the fraction of absorbed light allocated to energy dissipation. Furthermore, with the deficiency of the chlorophyll content allocation of photosynthetic electron transport to photorespiration was enhanced.
     In order to further explore photosynthesis characteristics of the Chlorophyll-deficient mutant, photosynthetic rate, diurnal variation of gas exchange, the light response curve and chlorophyll fluorescence were measured at different growth stages in the field. The results showed that:the photosynthetic rate of mutant was higher than wild-type, restrictions on the photosynthetic rate is no longer a major factor in stomatal limitation but the chlorophyll content. The responsive curves of Pn in leaves to photosynthetic active radiation of different development stages showed that, the range of light utilized by mutant leaves was wider than wild-type, which indicated that mutant leaves could use weak light and resisted strong light better. Comparison of mutant and wild-type function of APD and DCAC indicates that the mutant has more high-yield material basis.
引文
1. 戴新宾,曹树青,许晓明,等.低叶绿素b高产水稻突变体及其光合特性的研究[J].植物学报,2000,42(12):1289-1294
    2. 郭士伟,张云华,金永庆,等.小白菜(Brassica chinensis L.)黄苗突变体的叶绿素荧光特性[J].作物学报,2003,29(6):958-960
    3. 何瑞锋,丁毅,余金洪.水稻温敏叶绿素突变体叶片蛋白的双向电泳分析[J].作物学报,2001,27(6):876-883
    4. 洪双松,许大全.小麦和大豆叶片荧光参数对强光响应的差异[J].科学通报,1997,42:753-756
    5. 胡忠,梁汉兴,彭丽萍.一个黄绿色水稻突变体的光合作用特性[J].云南植物研究,1981,3(4):449-456
    6. 姜闯道,高辉远,邹琦.缺铁大豆叶片激发能耗散的增加[J].植物生理与分子生物学学报,2002,28(2):127-132
    7. 林宏辉,杜林方,贾勇炯,等.野生和黄化大麦类囊体膜色素蛋白的分离和比较[J].西北植物学报,1997,17(1):34-38
    8. 林宏辉,何军贤,梁厚果,等.叶绿素缺乏大麦突变体PSⅡ色素蛋白复合物的研究[J].生物化学与生物物理学报,1998,30(50):530-532
    9. 林宏辉,何礼,晏婴才,等.叶绿素缺乏大麦突变体叶绿体结构功能及生化特性的研究[J].四川大学学报(自然科学版),2001,38(6):899-904
    10.谭新星,许大全,汤泽生.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生理学报,1996,22(1):51-57
    11.翁晓燕,陆庆,毛伟华,等.水稻辐射白色转绿突变系转绿过程中光合特性研究[J].中国水稻科学,1999,13(4):251-253
    12.吴殿星,黎军英.水稻转绿型白化突变系W25的叶绿体超微结构研究[J].浙江农业大学学报,1997,23(4):451-452
    13.吴跃进,王学栋,伍敬德,等.水稻温敏型叶绿素突变体遗传及超微结构研究[J].安徽农学院学报,1991,18(4):258-262
    14.吴跃进,余增亮.水稻温敏型叶绿素突变体生理特性研究[J].安徽农业科学,1991, (1):1-3
    15.徐培洲,李云,袁澍,等.叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究[J].中国农业科学,2006,39(7):1299-1305
    16.许大全.光系统Ⅱ反应中心的可逆失活及其生理意义[J].植物生理学通讯,1999,35(4):273-276
    17.杨胜洪,杜林方,赵云,等.抽薹期叶绿素缺乏油菜突变体类囊体膜的研究[J].云南植物研究,2001,23(1):97-104
    18.张荣铣,戴新宾.叶片光合功能期与作物生产潜力.作物产量形成的生理学基础,2001,78-85
    19.张荣铣,程在全,方志伟.关于光合速率高值持续期的初步研究[J].南京师范大学学报,1992,15:76-86
    20.赵云,王茂林,李江,等.幼叶黄化油菜(Brassica napus L.)突变体Cr3529叶绿体超微结构观察[J].四川大学学报(自然科学版),2003,40(5):974-977
    21. Agrawal G K, Yamazaki M, Kobayashi M, et al. Screening of the rice viviparous mutants generated by endogenous retrotransposon insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC Gene [J]. Plant Physiol,2001,125:1248-1257
    22. Anderson J M, Aro E M. Grana stacking and protection of photosystem Ⅱ in thylakoid membranes of higher plant leaves under sustained high irradiance:An hypothesis [J]. Photosynth Res,1994, 41:315-326
    23. Berry J A, Downton W J S. Environmental regulation of photosynthesis [M]. In Govindjee NY(ed), Photosynthesis. VOL. Ⅱ.Academic Press.New York,1982:263-343
    24. Bjorkman O, Demming-Adams B. Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants[C]. Berlin:Springer,1994:17-47
    25. Cao J, Govindjee. Chlorophyll a fluorescence transient as indicator of active and inactive photosystem Ⅱ in thylakoid membranes [J]. Biochimica at Biophysica Acta,1990,1015:180-188
    26. Critchley C, Russell A V. Photoinhibition of photosynthesis in vivo:the role of protein turnover in PS Ⅱ [J]. Physiol Plant,1994,92:188-196
    27. Dai X B, Cao S Q, Xu X M, et al. Study on a mutant low content chlorophyll b in a high yielding rice and its photosynthesis properties [J]. Acta Bot Sin,2000,42(12):1289-1294
    28. Dan H Y, Jeanette W, Zach A, et al. Induction of acclimative proteolysis of the light-harvesting chlorophyll a/b protein of photosystem Ⅱ in response to elevated light intensities [J]. Plant Physiol, 1998,118:827-834
    29. Deming A B, Adams W W, Hebber U, et al. Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by DTT in Spinach leaves and chloroplast [J]. Plant Physiol,1990,92:293-301
    30. Demming-Adams B, Adams W W, Baker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation [J]. Physiol Plant, 1996,98:253-264
    31. Demming-Adams B, Adams W W. Xanthophyll cycle and light stress in nature:uniform response to excess direct sunlight among higher plant species [J]. Planta,1996,198:460-470
    32. Epron D, Godard D, Comic G, et al. Limitation of net CO2 assimilation rate by internal resistance to CO2 transfer in the leaves of two tree species (Fagus sylvatica L.and Castanea sativa Mill.) [J]. Plant Cell Environ,1995,18:43-51
    33. Fambrini M, Castagna A, Vecchia F D. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS Ⅱ activity and low endogenous level of abscisic acid [J]. Plant Sci,2004,167:79-89
    34. Farquhar G D, Sharkey T D. Stomatal conductance and phtotosynthesis [J]. Ann Rev Plant Physiol, 1982,33:317-345
    35. Freeman T P, Duysen M E, Olson N H, et al. Electron transport and chloroplast ultrastructure of a chlorophyll deficient mutant of wheat [J]. Photosynth Res,1982,3:179-189
    36. Frier V. The relationship between photosynthesis and tuber growth in Solanum tuberosum L. [J].J Exp Bot,1997,28:999-1007
    37. Greene B A, Allred D R, Morishige D T, et al. Hierarchical response of light harvesting chlorophyll-proteins in a light sensitive chlorophyll b-deficient mutant of maize[J]. Plant Physiol, 1988,87:357-364
    38. Havaux M, Tardy F. Thermostability and photostability of photosystem Ⅱ in leaves of the Chlorina barley mutant deficient in light-harvesting chlorophyll a/b protein complexes [J]. Plant Physiol, 1997,113:913-923
    39. Henson I E, Jensen C R, Turner N C. Influence of leave age and light environment on the gas exchange of lupins and wheat [J]. Physiol Plant,1990,79:771-777
    40. Hidema J, Makino A, Mae T, et al. Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through senescence[J].Plant Physiol,1991,97:1287-1293
    41. Highkin H R. Chlorophyll studies on barley mutants [J]. Plant Physiol,1950,25:294-306
    42. Jarvis P, Li H M, Chen L J, et al. An Arabidopsis mutant defective in the plastid general protein import apparatus [J]. Science,1998,282(5386):100-103
    43. Jiang C D, Gao H Y, Zou Q. Enhanced thermal energy dissipation depending on xanthophyll cycle and D1 protein turnover in iron-deficient maize leaves exposed to high light [J]. Photosynthetica, 2001,39 (2):269-274
    44. Jiang C D, Gao H Y, Zou Q. Increase in excitation energy dissipation by iron deficiency in soybean leaves[J]. Plant Physiol,2002,28(2):127-132
    45. Keck R W, Dilley R A, Allen C F. Chloroplast composition and structure differences in soybean mutant [J]. Plant Physiol,1984,46:692-699
    46. Krall J P, Edward G E. Relationship between photosystem Ⅱ activity and CO2 fixation in leaves [J]. Physiol Plant,1992,86:180-187
    47. Kruger G H J, Tsimilli-Michael M, Strasser R J. Light stress provokes plastic and elastic modification in structure and function of photosystem Ⅱ in camellia leaves [J]. Physiol Plant, 1997,101:265-277
    48. Leverenz J W, Gunnar O, Gunnar W. Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light [J]. Physiol Plant,1992,85:495-502
    49. Leverer L J, Gunnar O, Gunnar W. Photosynthesis and photoihibition in leaves of chlorophyll b-less barley in relation to absorbed light [J]. Physiol Plant,1992,85:495-499
    50. Lin Z F, Peng C L, Lin G Z, et al. Photosynthetic characteristics of two new chlorophyll b-less rice mutants [J]. Photosynthetica,2003,41:61-67
    51. Lokstein H, Hartel H, Hoffmann P, et al. Comparison of chlorophyll fluorescence quenching in leaves of wild-type with a chlorophyll b-less mutant of barley(Hordeum vulgare L.) [J]. Photochem Photobiol,1993,19:217-225
    52. Markwell J P, Danko S J, Bauwe H, et al. A temperature-sensitive chlorophyll b deficient mutant of sweefclover (Melilotus alba) [J]. Plant Physiol,1986,81:329-334
    53. Masaharu C K, Kouki H, Tadaki H. Photoinactivation and recovery of photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability [J]. Funct Plant Biol,2002,29(7):787-795
    54. Stroch M, Cajanek M, Kalina J, et al. Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorine barley mutant grown under different irradiances[J]. Photochem Photobiol,2004,75(2):41-50
    55. Miles C D, Markwell J P, Thornber J P. Effect of nuclear mutation in maize on photosynthetic activity and content of chlorophytl-protein complexes [J]. Plant Physiol,1979,64:690-694
    56. Ogren E. Prediction of photoinhibition of photosystems from measurements of fluorescence quenching components [J]. Planta,1991,184:538-544
    57. Osborne B A, Raven J A. Light absorption by plants and its implications for mutant in oilseed rape, Brassica napus, for utilization in Fl hybrid production [J]. Bio Rev,1986,61:1-61
    58. Osmond C B, Grace S C. Perspective on photoinhibition and photorespiration in the field: Quintessential inefficiencies of the light and dark reactions of photosynthesis [J]. Exp Bot,1995, 46:1351-1362
    59. Parks B M, Quail P H. Phytochrome-deficient hyl and holing hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis [J]. Plant Cell,1991,3:1177-1186
    60. Pather U V, Singh K K, Sane P V. Gas exchange and stomatal conductance in Acacia Auriculiform is:effect of leave position [J]. Photosynthetica,1990,24(1):151-154
    61. Plumley F G, Schmidt G W. Light-harvesting chlorophyll a/b complexes:interdependent pigment synthesis and protein assembly [J]. Plant Cell,1995,7:689-704
    62. Simpson D J, Machold O, Hoter-Hansen, et al. Chlorlna mutants of barley (Hordeum vulgare L) [J]. Plant cell,1985,50:223-233
    63. Strasser B J, Strasser R J. Measuring fast fluorescence transients to address environmental questions:The JIP test [M]. Kluwer Academic, Dordrecht,1997:977-980
    64. Strasser B J. Donor side capacity of photosystem Ⅱ probed by chlorophyll a fluorescence transients [J]. Photosynth Res,1997,52:147-155
    65. Thomber J P, Peter G F, Morishige D T, et al. Light harvesting in photosystems Ⅰ and Ⅱ [J]. Biochem Soc T,1993,21:15-18
    66. Viktor R T, Ilona M, Szilvia V, et al. Effects of the available nitrogen on the photosynthetic activity and xanthophyll cycle pool of maize in field [J]. Plant Physiol,2002,159(6):627-634
    67. Xu D Q, Chen X M, Zhang L X, et al. Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient soybean mutant [J]. Photosynthetica,1993,29(1):103-112
    68. Yuan Shu, Yan Ying-Cai, Lin Hong-Hui. Plant regeneration through somatic embryogenesis from callus cultures of Dioscorea zingiberensis [J]. Plant Cell,2005,80:157-161
    69. Zhao Y, Du L F, Yan S H, et al. Chloroplast composition and structural differences in a chlorophyll-reduced mutant of oilseed rape of seedlings[J]. Acta Bot Sin,2001,43:877-880
    70. Zhao Y, Wang M L, Zhang Y Z, et al. A chlorophyll-reduced seedling composition and content of LHCⅡ and the cab gene transcription in chlorophyll-reduced mutant of oilseed rape seedlings[J]. Acta Bot Sin,2004,24(3):484-487
    71. Zhou X S, Shen S Q, Wu D X, et al. Introduction of a xantha mutation for testing and increasing varietal purity in hybrid rice [J]. Field Crops Res,2006,96(1):71-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700