正交各向异性圆柱壳静动态特性分析及比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆柱壳是工程实际中经常使用的结构形式,深入研究它的静动力性能具有实际的工程意义。
     本文首先对圆柱壳的稳定性、自由振动、瞬态和稳态动力响应研究进行了简要回顾和评述。
    从Flügge壳体理论出发,推导出正交各向异性圆柱壳在静水压力作用下的平衡方程,把弹性失稳问题转化成为求解广义特征值问题,并讨论了正交各向异性、L/R和h/R等因素对临界失稳压力的影响。本文还使用Love-Timoshenko和Donnell壳体理论分析了临界压力,给出了3种壳体理论在平衡微分方程式、内力表达式、三个位移表达式的差异,并且使用解析方法精确计算了失稳压力,讨论了3种理论之间的差异,分析了产生差异的原因。
     基于正交各向异性圆柱壳在静水压力作用下的自由振动平衡方程,推导出在简支边界条件下壳体自由振动特征方程。分析了正交各向异性圆柱壳的自由振动特性以及静水压力对其自由振动频率的影响,详细讨论了壳体几何参数和材料特性参数对自振频率的影响,给出了最低频率随L/R变化的包络线。本文还使用Love-Timoshenko和Donnell壳体理论计算了自由振动频率。
    本文基于Flügge壳体理论,从正交各向异性圆柱壳在轴向压力作用下的自由振动平衡方程出发,推导出在简支边界条件下壳体自由振动的特征方程,分析了正交各向异性圆柱壳在轴向压力作用下的稳定和自由振动特性以及轴向压力对其自由振动频率的影响,详细讨论了壳体几何参数和材料特性参数对于自振频率的影响,给出了最低频率随L/R变化的包络线。
     使用Flügge壳体理论和振型叠加方法,分析了正交各向异性圆柱壳在静水压力作用下受到径向冲击时的瞬态动力响应问题,并且讨论了结构尺寸变化以及材料特性对响应量的影响。对振型叠加法的精度和收敛性也进行了讨论,还使用Timoshenko壳体理论分析了动力响应,讨论了2种理论之间的差异。
    Flügge壳体理论和振型叠加方法还用于正交各向异性圆柱壳受到径向简谐力作用时稳态动力响应问题分析,并且讨论了结构尺寸以及材料特性对响应量的影响。文中给出了位移和应变的响应历程。
Shell structures have been widely used in so many engineering areas; it is interesting and challengeable to study the static and dynamic characteristics of shells. Brief reviews about elastic stability, free vibration, transient dynamic response and harmonic dynamic response of circular cylindrical shells are given first.
    According to Flügge shell theory, the equations for orthotropic circular cylindrical shells under external hydrostatic pressure are given. A characteristic equation for stability can be obtained for both simply supported at the ends. Divergence loads of shell are calculated from this equation. Jacobi method is used to solve this eigenvalue problem. The effects of orthotropicity, L/R ratio and h/R ratio on the divergence load are discussed in detail. Love-Timoshenko shell theory and Donnell shell theory are also used to calculate the same example. The differences of equilibrium equations, expressions of forces and moments of these 3 theories are given in tables. The accuracy of these two theories is examined in this paper.
    An analysis is presented for the free vibration of an orthotropic circular cylindrical shell subjected to hydrostatic pressure. Based on Flügge shell theory, the equations of free vibrations of an orthotropic circular cylindrical shell under hydrostatic pressure are obtained. For shear diaphragms at both ends, the resulting characteristic equations about pressure and frequency are given. The effect of shell’s parameters (L/R, h/R) and material properties on the free vibration characteristics have been studied in detail. Differences between Love-Timoshenko, Donnell equations and that of Flügge theory are examined too.
    A study for an orthotropic circular cylindrical shell subjected to axial load is present. The effect of shell’s parameters (L/R, h/R) and material properties on the free vibration characteristics have been studied.
    Following Flügge’s exact derivation for the buckling of cylindrical shells, the equations of motion for dynamic loading of an orthotropic circular cylindrical shell under external hydrostatic pressure have been formulated. The normal mode theory is used to provide transient dynamic response for the equations of motion.
    
    
    The effect of shell’s parameters, external hydrostatic pressure and material properties on the shell response has been studied in detail. A part of tables and figures are given. The responses of displacements, strain and stress are obtained for the area of impact, while those outside the area of impact are also calculated. The accuracy of normal mode theory and Timoshenko shell theory are examined in this paper.
     The harmonic responses of an orthotropic circular cylindrical shell under external hydrostatic pressure are studied. There is a slight shift in the locations of the resonant peaks, an example is illustrated for this phenomena. The resonant response of displacements and strain are obtained.
引文
[1] E. E. Lundquist. Strength tests of thin-walled duralumin cylinders in compression. NACA report 473, 1933
    [2] L. H. Donnell. A new theory for buckling of thin cylinders under axial compression and bending. ASME Transactions, 1934, 56(11): 795~806
    [3] T. von Karman and H. S. Tsien. The buckling of thin cylindrical shells under axial compression. Journal of the Aeronautical Science, 1941, 8(8): 303~312
    [4] W. T. Koiter. On the stability of elastic equilibrium. Ph.D. Thesis (in Dutch), University of Delft, 1945. Also available in English translation as NASA TT F-10833, 1967 and AFFDL-TR-70-25, 1970.
    [5] N. Hoff. The perplexing behavior of thin circular cylindrical shells in axial compression. Israel Journal of Technology, 1966, 4(1):1~28
    [6] Anon. Colleted papers on instability of shell structures-1962. NASA TN D-1510, Dec. 1962
    [7] R. F. Harung (editor). Computer oriented analysis of shell structures. Proceedings of a conference held in Palo Alto, CA, August 10-14, 1970, AFFDL TR-71-79, 1971
    [8] Y. C. Fung and E. E. Sechler ed. Thin-shell structures-Theory, experiment, and Design. Prentice-Hall, 1974.
    [9] E. Ramm ed. Bucking of Shells. New York:Springer-Verlag, 1982.
    [10] B. Budiansky and J. W. Hutchinson. A survey of some buckling problems. AIAA Journal, 1966, 4(9):1505~1510
    [11] B. Budiansky and J. W. Hutchinson. Buckling: Progress and challenge. in: J.F. Besseling and A. M. A van der Heijden eds. Trends in Solid Mechanics 1979. Proceedings of the Symposium Dedicated to the 65th Birthday of W. T. Koiter. Delft University of Technology, June 13-15, 1979:Delft University Press, 1979. 93~116
    [12] M. Stein. Some recent advances in the investigation of shell buckling. AIAA Journal, 1968, 6(12):2239~2245
    [13] J. W. Hutchinson and W. T. Koiter. Postbuckling theory. Applied Mechanics Reviews, 1970, 23(12):1353~1366
    [14] E. E. Sechler. The historical development of shell research and design. in: Y. C. Fung and E. E. Sechler eds. Thin-walled structures-Theory, experiment, and Design. Prentice-Hall, 1974. 3~25
    
    [15] Y. C. Fung and E. E. Sechler. Instability of thin elastic shells. Proceedings of the first symposium on naval structural mechanics. Pergamon, Elmsford, N. Y., 1960
    [16] C. D. Babcock. Experiments in shell buckling. in: Y. C. Fung and E. E. Sechler eds. Thin-walled structures-Theory, experiment, and Design. Prentice-Hall, 1974. 345~369
    [17] C. D. Babcock. Shell stability, ASME Journal of Applied Mechanics, 1983, 50:935~940
    [18] R. C. Tennyson. Buckling of laminated composite cylinders:A review. Journal of Composites, 1975, 1:17~24
    [19] D. Bushnell. Computerized analysis of shells. Martinus Nijhoff Publishers, Kluwer academic, Norwell, ME, 1985. Also available as AFWAL-TR-81-3049, Wright-Patterson AF Base, OH, June, 1981
    [20] D. Bushnell. Buckling of shells-Pitfall for designers. AIAA paper No.80-0665, 1980
    [21] D. Bushnell. Computerized analysis of shells-Governing Equations. Computers and Structures, 1984, 18(3):471~536
    [22] D. Bushnell. Static collapse: A survey of methods and modes of behavior. Finite Elements in analysis and design, 1985, 1:165~205
    [23] A. K. Noor, T. Belyschko and J. C. Simo eds. Analytical and computational models of shells, ASME CED-Vol.3, 1989
    [24] G. J. Simitses. Buckling and Postbuckling of imperfect cylindrical shells: A review. ASME, Applied Mechanics Reviews, 1986, 39(10):1517~1524
    [25] J.G. Teng. Buckling of thin shells: Recent advances and trends. Applied Mechanics Reviews, 1996, 49(4):263~274
    [26] L. H. Donnell and C. C. Wan. Effect of imperfections on buckling of thin cylinders and columns under axial compression. Journal of Applied Mechanics, Trans. of ASME, 1950, 17(1):73~83
    [27] J. Arbocz and C. D. Babcock, Jr. The effect of general imperfections on the buckling of cylindrical shells. Trans. of ASME, Journal of Applied Mechanics, 1969, 36(1):28~38
    [28] J. Arbocz and C. D. Babcock. Computerized stability analysis using measured initial imperfections. Proceedings of the congress of the international council of the aeronautical sciences, Munich, Federal Republic of Germany, Oct. 12-17, 1980. 688~701
    [29] J. Arbocz. The effect of initial imperfections on shell stability, in: Y. C. Fung and E. E. Sechler eds. Thin-walled structures-Theory, experiment, and Design. Prentice-Hall, 1974. 205~245
    
    [30] J. Singer. Buckling experiments on shells-A review of recent developments. TAE report 403, Department of Aeronautical Engineering, Israel Institute of Technology, 1980
    [31] J. Singer. The status of experimental buckling investigations of shells. in: E. Ramm ed. Buckling of shells. New York :Springer-Verlag, 1982. 501~534
    [32] J. Singer and H. Abramovich. The development of shell imperfection measurement techniques. Thin-walled structures, 1995, 23(14):379~398
    [33] J. Arbocz. The imperfection data bank. A means to obtain realistic buckling loads. in:E. Ramm ed. Buckling of shells. New York:Springer-Verlag, , 1982. 535~567
    [34] J. Arbocz. The effect of initial imperfections on shell stability-an updated review. Report LR-695, Delft University of Technology, Sept. 1992
    [35] Anon. Buckling of thin-walled circular cylinders. NASA Space Vehicle Design Criteria, NASA SP-8007, 1965
    [36] E. H. Baker, A. P. Cappelli, L. Kovalevsky, F. L. Rish and R. M. Verette. Shell analysis manual. NASA CR-912, 1965
    [37] N. Hoff. Buckling of thin shells. SUDAER No. 114, Stanford University, Nov. 1961, also available as AFOSR TN-61-1422
    [38] W. Nachbar and N. Hoff. On edge buckling of axially – compressed circular cylindrical shells. SUDAER No. 115, Stanford University, Nov. 1961
    [39] M. Stein. The effect on the buckling of perfect cylinders of prebuckling deformations and stresses induced by edge support. in: Collected papers on instability of shell structures -1962, NASA TN-D-1510, Dec. 1962. 217-225
    [40] M. Stein. The influence of edge conditions on the stability of axially compressed cylindrical shells. NASA TR R-190, Feb. 1964
    [41] B. O. Almroth. Influence of edge conditions on the stability of axially compressed cylindrical shells. AIAA Journal, 1966, 4(1):134~140
    [42] B. O. Almroth. Influence of imperfections and edge constraint on the buckling of axially compressed cylinders. NASA CR-432, April 1966
    [43] L. H. Sobel. Effects of boundary conditions on the stability of cylinders subjected to lateral and axial pressures. AIAA Journal, 1964, 2(8):1437~1440
    [44] A. van der Neut. General instability of stiffened cylindrical shells under axial compression. Report S-314, National Luchvaartlab, Amsterdam, 1947
    [45] M. F. Card. Preliminary results of compression tests on cylinders with eccentric longitudinal stiffeners. NASA TM X-1004, 1964
    [46] S. Kendrick. The buckling under external pressure of ring stiffened circular cylinders. Trans. RINA, 1965, 17(1):139~154
    [47] D. L. Block, M. F. Card and M. M. Mikulas, Jr. Buckling of eccentrically
    
    
    stiffened orthotropic cylinders. NASA TN D-2960, 1965
    [48] D. L. Block. Influence of discrete ring stiffeners and prebuckling deformations on the buckling of eccentrically stiffened orthotropic cylinders. NASA TN D-4283, Jan., 1968
    [49] T. Weller , J. Singer and S. C. Batterson. Influence of eccentricity of loading on stringer-stiffened cylindrical shells. in: Y. C. Fung and E. E. Sechler eds. Thin-walled structures-Theory, experiment, and Design. Prentice-Hall, 1974. 305~324
    [50] J. Singer and A. Rosen. The influence of boundary conditions on the buckling of stiffened cylindrical shells. in: B. Budiansky ed. Buckling of structures. Berlin:Springer-Verlag, 1976. 227~250
    [51] T. T. Loo. An extension of Donnell’s equations for circular cylindrical shell. Journal of Aeronautical Sciences. 1957, 24:390~391
    [52] W. T. Koiter. A consistent first approximation in general theory of thin elastic shells. in: The theory of thin elastic shells. Amsterdam:North-Holland Publishing Company, 1960. 12~33
    [53] J. L. Sanders, Jr. An improved first approximation theory for thin shells. NASA TR R-24, June, 1959
    [54] J. L. Sanders, Jr. Nonlinear theories for thin shells. Quarterly of Applied Mathematics. 1963, 21(1):21~36
    [55] J. L. Sanders, Jr. Analysis of circular cylindrical shells. ASME Journal of applied mechanics. 1983, 50:1165~1170
    [56] B. Budiansky and J. L. Sanders, Jr. On the ‘best’ first-order linear shell theory. Progress in applied mechanics-Prager Anniversary Volume, Vol. 192. New York:Macmillan, 1963. 129~140
    [57] B. Budiansky. Note on nonlinear shell theory. Journal of Applied Mechanics, 1968, 35:393~401
    [58] E. Reissner. Linear and nonlinear theory of shells. in: Y. C. Fung and E. E. Sechler eds. Thin-walled structures-Theory, experiment, and Design. Prentice-Hall, 1974. 29~44
    [59] P. M. Naghdi. On the theory of thin elastic shells. Quarterly of Applied Mathematics. 1957, 14(4):369~380
    [60] P. M. Naghdi and R. P. Nordgren. On the non-linear theory of elastic shells under the Kirchhoff Hypothesis. Quarterly of Applied Mathematics, 1963, 21(1):49~59
    [61] J. G. Simmonds. Recent advances in shell theory. Advances in Engineering Science. NASA CP-2001, 1976, 2:617~626
    [62] J. G. Simmonds and D. A. Danielson. Nonlinear shell theory with finite rotation
    
    
    and stress-function vectors. ASME Journal of Applied Mechanics, 1972, 39:1085~1090
    [63] G. A. Wempner. A general theory of shells and complementary potentials. ASME Journal of Applied Mechanics, 1986, 53:881~885
    [64] G. A. Wempner. Finite elements, finite rotation and small stains of flexible shells. International Journal for Numerical Methods in Engineer, 1969, 5:117~153
    [65] G. A. Wempner. Shells: Mechanics and approximations-Linear and nonlinear aspects. in: F. Y. Cheng and F. Zizhi eds. Computational Mechanics in Structural Engineering:Recent developments and future trends. London: Elsevier, 1992. 114~127
    [66] S. A. Ambartsumyan. Theory of anisotropic shells. Moscow, 1961.
    [67] N. Yamaki. Elastic stability of circular cylindrical shells. Amsterdam:North-Holland, 1984.
    [68] F. I. Niordson. Shell Theory. Amsterdam:North-Holland, 1985.
    [69] L. Librescu. Refined geometrically nonlinear theories of anisotropic laminated shells. Quarterly of Applied Mathematics, 1987, 45(1):1~22
    [70] J. Arbocz. Comparison of Level-1 and Level-2 buckling and Postbuckling solutions. Report LR-700, Delft University of Technology, November, 1992.
    [71] A. N. Palazotto and S. T. Dennis. Nonlinear analysis of shell structures. Washington, D. C.:AIAA, 1992
    [72] F. B. Hildebrand, E. Reissner and G. B. Thomas. Notes on the foundations of the theory of small displacements of orthotropic shells. NACA TN-1833, March 1949
    [73] E. Reissner and Y. Stavsky. Bending and stretching of certain types of heterogeneous aeolotropic elastic plates. ASME Journal of Applied Mechanics, 1961, 28:402~408
    [74] S. B. Dong, K. S. Pister and R. L. Taylor. On the theory of laminated anisotropic shells and plates. Journal of the Aerospace Sciences, 1962, 29:969~975
    [75] C. W. Bert and H. P. Francis. Composite material mechanics: Structural Mechanics. AIAA Journal, 1974, 12(9):1173~1186
    [76] Z. Hashin. Analysis of composite materials-A survey. ASME Journal of Applied Mechanics, 1983, 50:481~505
    [77] C. C. Chamis. Mechanics of composite materials: past, present, and future. ASTM, Journal of Composite Technology and Research, 1989, 11(1):3~14
    [78] A. K. Noor and W. S. Burton. Assessment of shear deformation theory for multilayered composite plates. Applied Mechanics Reviews, 1989, 42 (1):1~12
    [79] A. K. Noor and W. S. Burton. Assessment of computational models for multilayered anisotropic plates. Computers and Structures, 1990, 14:233~265
    
    [80] J. N. Reddy and D. H. Robbins, Jr. Theories and computational models for composite laminates. Applied Mechanics Reviews, 1994, Vol. 47, Part 1:147~169
    [81] A. K. Noor, W. S. Burton and C. W. Bert. Computational models for sandwich panels and shells. Applied Mechanics Reviews, 1996, 49(3):155~199
    [82] A. W. Leissa. Buckling of laminated composite plates and shell panels. AFWAL-TR-85-3069, June, 1985
    [83] R. K. Kapania. A review on the analysis of laminated shells. ASME Journal of Pressure Vessel Technology, 1989, 111:88~96
    [84] K. Chandrashekhara and D. V. T. Pavan Kumar. Assessment of shell theories for the static analysis of cross-ply laminated circular cylindrical shells. Thin-wall structures, 1995, 22:291~318
    [85] G. J. Simitses, D. Shaw and I. Sheinman. Stability of cylindrical shells by various nonlinear shell theories. ZAMM, 1985, 65(3):159~166
    [86] G. J. Simitses, I. Sheinman and D. Shaw. The accuracy of Donnell’s equations for axially-loaded, imperfect orthotropic cylinders. Computers and Structures, 1985, 20(6):939~949
    [87] S. B. Batdorf. A simplified methods of elastic-stability analysis for thin cylindrical shells: I-Donnell’s equation. NACA TN-1341, June, 1947
    [88] M. Stein. Postbuckling of orthotropic composite plates loaded in compression. AIAA Journal, 1983, 21(12):1729~1735
    [89] M. P. Nemeth. Nondimensional parameters and equations for buckling of anisotropic shallow shells. ASME Journal of Applied Mechanics, 1994, 61:664~669
    [90] Yi-wen Li, I. Elishakoff, J. H. Starnes, Jr. and D. Bushnell. Effect of the thickness varation and initial imperfection on buckling of composite cylindrical shells: Asymptotic analysis and numerical results by BOSOR4 and PANDA2. International Journal of Solid and Structures, 1997, 34 (28):3755~3767
    [91] J. Kempner. Postbuckling behavior of axially compressed circular cylindrical shells. Journal of Aeronautical Sciences, 1954, 21 (5):329~335, 342
    [92] W. T. Koiter. Buckling and Postbuckling behavior of a cylindrical panel under axial compression. National Aeronautical Research Institute, Amsterdam, Report S-476, May 1956
    [93] A. van der Neut. Post buckling behavior of structures. NATO AGARD Report 60, August, 1956
    [94] B. O. Almroth. Postbuckling behavior of axially compressed circular cylinders. AIAA Journal, 1963, 1(3):630~633
    [95] N. Hoff, W. A. Madsen, and J. Mayers. Postbuckling equilibrium of axially
    
    
    compressed circular cylindrical shells. AIAA Journal, 1966, 4, (1):126~133
    [96] B. O. Almroth. Postbuckling behavior of orthotropic cylinders under axial compression. AIAA Journal, 1964, 2(10):1795~1799
    [97] N. S. Khot. Buckling and Postbuckling behavior of composite cylindrical shells under axial compression. AIAA Journal, 1970, 8(10):1058~1062
    [98] B. Budiansky. Theory of buckling and post-buckling behavior of elastic structures. Advances in Applied Mechanics, 1974, 14:1~65
    [99] P. Seide. A reexamination of Koiter’s theory of initial Postbuckling behavior and imperfection sensitivity of structures. in: Y. C. Fung and E. E. Sechler eds. Thin-walled structures-Theory, experiment, and Design. Prentice-Hall, 1974. 59~80
    [100] W. T. Koiter. Elastic stability, buckling and post-buckling behavior. in: D. E. Carlson and R. T. Shield eds. Proceedings of the IUTAM symposium on finite elasticity. The Hague:Martinus Nijhoff Publishers, 1982. 13~24
    [101] Y. Zhang and F. L. Mathews. Postbuckling behavior of curved panels of generally layered composite materials. Composite Structures, 1983, 1(2):115~135
    [102] J. M. Whitney. Buckling of anisotropic laminated cylindrical plates. AIAA paper No.83-0979, May 1983
    [103] D. Hui. Asymmetric Postbuckling of symmetrically laminated cross ply, short cylindrical panels under compression. Composite Structures, 1985, 3:81~95
    [104] V. Tvergaard. On the transition from a diamond mode to axisymmetric mode of collapse in cylindrical shells. International Journal of Solids and Structures, 1983, 19(10):845~856
    [105] D. Bushnell, C. R. Rankin and E. Riks. Optimization of stiffened panels in which mode jumping is accounted for. AIAA Paper No. 97-1141, 1997
    [106] V. Tvergaard. The sensitivity of a wide integrally stiffened panel under compression. International Journal of Solids and Structures, 1973, 9:173~192
    [107] W. T. Koiter and M. A. Pignataro. General theory for the interaction of local and overall buckling of stiffened panels. WTHD 83, Department of Applied Mechanics, Technical University of Delft, 1976
    [108] A. van der Neut. Modal interaction with stiffened panels. in: Proceedings of IUTAM symposium on buckling of structures, Harvard University, Spring-Verlag, 1976. 117-132
    [109] M. Stein. The phenomenon of change of buckling patterns in elastic structures. NASA TR R-39, 1959
    [110] W.J. Supple. Changes of wave-form of plates in the post-buckling range. International Journal of Solids and Structures, 1970, 6(9):1243~1258
    
    [111] R. H. Gallagher. Applications of finite element analysis. in: J. T. Oden, R. W. Clough and Y. Yamamoto eds. Advances in computational Methods in structural and design. Alabama:University of Alabama Press, Huntsville, 1972. 641~678
    [112] E. Hinton, D. R. Owen and C. Taylor eds. Recent advances in Nonlinear computational mechanics. Swansea:Pineridge Press, 1982
    [113] T. J. R. Hughes, A. Pifko and A. Jay eds. Nonlinear finite analysis of plates and shells. ASME AMD-vol.48, 1981
    [114] E. Stein, W. Wagner and P. Wriggers. Concepts of modeling and discretization of elastic shells for nonlinear finite analysis. in: J.R. Whiteman ed.The Mathematics of Finite Elements and Applications VI- MAFELAP 1987, Academic Press Limited, 1988. 205~232
    [115] R. L. Taylor. Finite element analysis of linear shell problems. in: J.R. Whiteman ed. The Mathematics of Finite Elements and Applications VI- MAFELAP 1987, Academic Press Limited, 1988. 190~203
    [116] W. B. Kratzig. Fundamentals of numerical algorithms for static and dynamic instability phenomena of thin shells. in: W. B. Kratzig and E. Onate eds. Computational Mechanics of Nonlinear Response of Shells. Berlin:Springer-Verlag, 1990. 101~124
    [117] J. C. Simo, D. D. Fox and M. S. Rifai. Formulation and computational aspects of a stress resultant geometrically exact shell model. in: W. B. Kratzig and E. Onate eds. Computational Mechanics of Nonlinear Response of Shells. Berlin:Springer-Verlag, 1990. 31~55
    [118] E. Riks, F.A. Brogan and C. C. Rankin. Numerical aspects of shell stability analysis. in: W. B. Kratzig and E. Onate eds. Computational Mechanics of Nonlinear Response of Shells. Berlin:Springer-Verlag,1990. 125-151
    [119] R. F. Hartung. Numerical solution of nonlinear structural problems. AMD-Vol.6, ASME, 1973
    [120] H. D. Hibbitt. Practical aspects of finite element computations in solid mechanics. Applied Mechanics Reviews, 1986, 39(11):1678~1681
    [121] H. D. Hibbitt. Nonlinear solid mechanics from the commercial software viewpoint. Finite elements in analysis and design, 1993, 5(1):3~10
    [122] G. A. Cohen. FASOR-A second generation shell of revolution code. Computers and Structures, 1978, 10(1-2):301~309
    [123] G. A. Cohen. Computer analysis of ring-stiffened shells of revolution. NASA CR-2085, 1973
    [124] D. Bushnell. Stress, stability, and vibration of complex branched shells of revolution: Analysis and user’s manual for BOSOR4. NASA CR-2116, Oct. 1972
    
    [125] D. Bushnell. Stress, stability, and vibration of complex branched shells of revolution. Computers and Structures, 1974, 4:399~435
    [126] D. Bushnell. BOSOR5-Program for buckling of elastic-plastic complex shells of revolution including large deflections and creep. Computers and Structures, 1976, 6:221~239
    [127] H. G. Schaeffer. Computer program for finite-difference solutions of shell revolution under asymmetric loads. NASA TN D-3926, May 1967
    [128] W. B. Stephens and M. P. Robinson. Computer program for finite difference solutions of shell revolution under asymmetric dynamic loading. NASA TN D-6059, Jan 1971
    [129] W. L. Heard, Jr., M. S. Anderson and M. M. Chen. Computer program for structural analysis of layered orthotropic ring-stiffened shells of revolution (SALORS)-Linear stress analysis option. NASA TN D-7179, Oct. 1973
    [130] M. S. Anderson and W. L. Heard, Jr. New generation shell of revolution structural code. in: Proceedings of the Second Annual Engineering Mechanics Division Specialty Conference. 1977. North Carolina:North Carolina State University, 1977. 253~256
    [131] F. A. Brogan, C. C. Rankin and H. D. Cabiness. STAGS Manual. Lockheed Missiles and Space Company, Report LMSC P032594, June, 1994
    [132] G. J. Simitses. Instability of dynamically-loaded structures. Applied Mechanics Reviews, 1987, 40(10):1403~1408
    [133] G. J. Simitses. Dynamic stability of suddenly loaded structures. New York: Springer-Verlag, 1990
    [134] G. Herrmann. Stability of equilibrium of elastic systems subjected to non-conservative forces. Applied Mechanics Reviews, 1967,20, (1):103~108
    [135] L. Rayleigh. The theory of sound. Second Edition. New York:Dover publication, 1945
    [136] A.E.H. Love. A treatise on the mathematical theory of elasticity. Forth Edition. New York:Dover publication, 1944
    [137] W. Flügge. statik und dynamik der schalen, Berlin:Springer-Verlag, Zweiten Auflage, 1957
    [138] R. N. Arnold and G. B. Warburton. Flexural vibration of the walls of thin cylindrical shells having freely supported ends. Proceedings of the Royal Society, 1949, Serial A, 197:238~256
    [139] R. N. Arnold and G. B. Warburton. The flexural vibration of thin cylinders. Proc. Inst. Mech. Engineers, 1953, Serial A, 167:62~80
    [140] A. W. Leissa. Vibration of Shells. NASA SP-288, 1973
    
    [141] 中国科学院力学研究所固体力学研究室板壳组. 加筋圆柱曲板和圆柱壳. 北京:科学出版社, 1983.
    [142] R. Bares and C. Massonnet. Analysis of beam grids and orthotropic plate. New York:Frederick Ungar, 1966
    [143] M. Barauch and J. Singer. Effect of eccentricity of stiffeners on the general instability of stiffened cylindrical shells under hydrostatic pressure. J. Mech. Eng. Sci., 1963, 5:23~27
    [144] J. M.Hedgepeth and D. B. Hall. Stability of stiffened cylinders. AIAA J., 1965, 3(12): 2275~2280
    [145] J. Singer, M. Barauch and O. Harari. On the stability of eccentrically stiffened cylindrical shells under axial compression. Int. J. Solid Struct., 1967, 3(4): 445~470
    [146] G. J. Simitses. Buckling of eccentrically stiffened cylinders under torsion. AIAA J., 1968, 6(10):1856~1860
    [147] W. H. II Hoppman. Some characteristics of the flexural vibration of orthogonally stiffened cylindrical shells. J. Acoust. Soc. Am., 1958, 30:77~83
    [148] L. E. Penzes. Effect of boundary conditions on flexural vibration of thin orthogonally stiffened cylindrical shells. J. Acoust. Soc. Am., 1967, 42:901~903
    [149] H. C. Nelson, B. Zapotowsky, and M. Bernstein. Vibration analysis of orthogonally stiffened circular fuselage and comparison with experiment. Proc. Inst. Aero. Sci. Natl. Specialist’s Meeting on Dynamics and aeroelasticity, 1958, Nov. 77~87
    [150] M. M. Mikulas, Jr. and J. A. McElman. On the vibrations of eccentrically stiffened cylindrical shells and flat plates. NASA TN D 3010, 1965
    [151] P. R. DiGiovanni and J. Dugundji. Vibrations of freely-supported orthotropic cylindrical shells under internal pressure. AD 617269, 1965
    [152] B. S. Resnick and J. Dugundji. Effects of orthotropicity boundary conditions, and eccentricity on the vibrations of cylindrical shells. AD 648077, 1966
    [153] J. L. Sewall and E. C. Naumann. An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners. NASA TN D 4705, Sept., 1968,
    [154] K. K-T. Chu, M. Pappa and H. Herman. Dynamic of submerged cylindrical shells with eccentric stiffening. AIAA J., 1980, 18(7):834~840
    [155] L. D. Pope, E. G. Wilby and J. F. Wilby. Propeller aircraft interior noise mode, Part I: analytical model. J. Sound Vib., 1987, 118:449-467
    [156] Z. Mecitoghu and M. C. Dokmeci. Vibration analysis of stiffened cylindrical thin shells. Proc. of 17th Congress of ICAS, 1990. 986~993
    
    [157] K. K-T Chu, M. Pappas and H. Herman. Dynamic of submerged cylindrical shells with eccentric stiffening. AIAA Journal, 1980, Vol.18, No.7:834~849
    [158] D. M. Raj, R. Narayanan, A. G. Khadakkar and V. Paramasivam. Effect of ring stiffeners on vibration of cylindrical and conical shell models. J. Sound Vib., 1995, 179:413~426
    [159] T. Wah. Circular symmetric vibrations of ring-stiffened cylindrical shells. J. Soc. Indust. Appl. Mathe., 1964, 12:649~662
    [160] T. Wah. Flexural vibration of ring-stiffened cylindrical shells. J. Sound Vib., 1966, Vol.3:242~251
    [161] T. Wah and W. C. L.Hu. Vibration analysis of stiffened cylinders including inter-ring motion. J. Acoust. Soc. Am., 1968, 43:1005~1016
    [162] G. D. Galletly. On the in-vacuo vibration of simply supported ring-stiffened cylindrical shell. Proc. of the 2nd U.S. Natl. Cong. Appl. Mech., 1954. 225-231
    [163] S. P. Timoshenko. Theory of elastic stability. New York:McGraw-Hill Book Co., Inc., 1936
    [164] H. Chung. Free vibration analysis of circular cylindrical shells. J. Sound Vib., 1981, 74(3):331~350
    [165] C. M. Wang, J. Tian and S. Swaddiwadhipong. Buckling of cylindrical shells with internal ring supports. Struct. Engrg. Mech., 1994, 2(4):369~381
    [166] S. Swaddiwadhipong, J. Tianand C. M. Wang, Vibrations of cylindrical shells with intermediate supports, J. Sound Vib., 1995, 187(1):69~93
    [167] C. M. Wang, S. Swaddiwadhipong and J. Tian. Ritz method for vibration analysis of cylindrical shells with ring stiffeners. J. Engrg. Mech., 1997, 123(2):134~142
    [168] A. Harari and M. L. Baron. Analysis for dynamic response of stiffened shells. J. Appl. Mech., 1973, Vol.40:1085~1090
    [169] H. Garnet and A. Levy. Free vibrations of reinforced elastic shells. J. Appl. Mech., 1969, Vol.36:835~840
    [170] N. L. Basdekas and M. Chi. Response of oddly-stiffened circular cylindrical shells. J. Sound Vib., 1971, 17(2):187~206
    [171] A. M. J. Al-Najafi and G. B. Warburton. Free vibration of ring-stiffened cylindrical shells. J. Sound Vib., 1970, 13(1):9~25
    [172] A. Venkatesh and K. P. Rao. Analysis of laminated shells of revolution with laminated stiffeners using a doubly curved quadrilateral finite element. J. Computer and Structures, 1985,20:669~682
    [173] B. A. J. Mustafa and R. Ali. Prediction of natural frequency of vibration of stiffened cylindrical shells and orthogonally stiffened curved panels. J. Sound Vib., 1987, 113(2):317~327
    
    [174] J. Jiang and M. D. Olson. Vibration analysis of orthogonally stiffened cylindrical shells using super finite elements. J. Sound Vib., 1994, 173:73~83
    [175] D. J. Mead and N. S. Bardell. Free vibration of a thin cylindrical shell with discrete axial stiffeners. J. Sound Vib., 1986, 111(2):229~250
    [176] D. J. Mead and N. S. Bardell. Free vibration of a thin cylindrical shell with periodic circumferential stiffeners. J. Sound Vib., 1987, 115(3):499~520
    [177] N. S. Bardell and D. J. Mead. Free vibration of a orthogonally stiffened cylindrical shell, Part I: Discrete line simple supports. J. Sound Vib., 1989, 134(1):29~54
    [178] N. S. Bardell and D. J. Mead. Free vibration of a orthogonally stiffened cylindrical shell, Part II: Discrete general stiffeners. J. Sound Vib., 1989, 134(1):55~72
    [179] I. D. Wilken and W. Soedel. The receptance method applied to ring stiffened cylindrical shells: Analysis of modal characteristics. J. Sound Vib., 1976, 44(4):563~576
    [180] I. D. Wilken and W. Soedel. Simplified prediction of modal characteristics of ring stiffened cylindrical shells. J. Sound Vib., 1976, 44(4):577~589
    [181] L. L. Faulkner. Vibration analysis of shell structures using receptance. 1969, Ph.D., Prude Univ., Lafayette, Indiana
    [182] R. S. Langley. A dynamic stiffeners technique for the vibration analysis of stiffened shell structures. J. Sound Vib., 1992, 156(3):521~540
    [183] Yang Bingen and Zhou Jianping. Analysis of ring-stiffened cylindrical shells. J. Appl. Mech., 1995, 62:1005~1014
    [184] C. S. Smith. Design of submarine structures in composite materials. London:Elsevier Applied Science Publishers, 1989
    [185] R. M. Jones. Mechanics of Composite Materials. Washington D.C.:Scripta Book Co., 1975.
    [186] J. R. Vinson and T. W. Chou. Composite materials and their use in structures. London: Applied Sciences Publication Ltd., 1975.
    [187] S. Srinivas and A. K. Rao. Bending vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. International Journal of Solid and Structures, 1970, 6(12):1463~1481
    [188] C. W. Bert and M. Kumar. Vibration of cylindrical shell of bimodulus composite materials. Journal of Sound and Vibration, 1982, 81(1):107~121
    [189] A. A. Khdeir. Free vibration of antisymmetric angle-ply laminated plates including various boundary conditions. Journal of Sound and Vibration, 1988, 122(3):377~388
    
    [190] A. A. Khdeir. Free vibration and buckling of symmetric cross-ply laminated plates by an exact method. Journal of Sound and Vibration, 1988, 126(3):447~461
    [191] A. A. Khdeir and L. Librescu. Analysis of symmetric cross-ply laminated elastic plate using a high-order theory, Part II: Buckling and free vibration. Composite Structures, 1988, 9(3):259~277
    [192] N. N. Huang. Exact analysis for three-dimensional free vibration of cross-ply cylindrical and doubly-curved laminates. Acta Mech, 1995, Vol. 108:23~34
    [193] I. Sheinman and S. Weissman. Coupling between symmetric and antisymmetric modes in shells of revolution. Journal of Composite Materials, 1987, 21(8):988~1007
    [194] Z. C. Xi, L. H. Lam and T. P. Leung. Semi-analytical study of free vibration of composite shells of revolution based on the Reissner-Mindlin assumption. International Journal of Solids and Structures, 1996, 33(6):851~863
    [195] Y. Hirano and J. R. Vinson. Nonlinear vibrations of composite material cylinder shells including transverse shear deformation. in: D. Hui and T. J. Kojik eds. Design and analysis of composite material vessels. ASME, Pressure vessel and piping conference, San Diego, Calif., June 28-July 2, 1987. 55-63
    [196] A. Noiser and J. N. Reddy. Vibration and stability analyses of cross-ply laminated circular cylindrical shells. Journal of Sound and Vibration, 1992, 157(1):139~159
    [197] E. Carrera. The effects of shear deformation and curvature on buckling and vibrations of cross-ply laminated composite shells. Journal of Sound and Vibration, 1991, 150(3):405~433
    [198] M. S. Qatu. Recent research advances in the dynamic behavior of shells: 1989-2000, Part I: Laminated composite shells. Applied Mechanics Reviews, 2002, 55(4):325~350
    [199] M. S. Qatu. Recent research advances in the dynamic behavior of shells: 1989-2000, Part II: Homogeneous shells. Applied Mechanics Reviews, 2002, 55(5):415~434
    [200] R. D. Mindlin and H. H. Bleich. Response of elastic cylindrical shells to a transverse step shock wave. Journal of Applied Mechanics, 1953, 20(2):189~195
    [201] H. Herman and J. M. Klosner. Transient response of a periodically supported cylindrical shell immersed in a fluid medium. Trans. ASME, Journal of Applied Mechanics, 1965, 32:562~568
    [202] J. C. Yao. An analytical and experimental study of cylindrical shell under localized impact loads. The Aeronautical Quarterly, 1966, No.1:72-82
    [203] D. Bushnell. Dynamic response of two-layered shells to a time dependent loads. AIAA Journal, Sept. 1965, No.9:1698-1703
    
    [204] M. J. Forrestal and G. Herrmann. Response of a submerged cylindrical shell to an axially propagating step wave. Journal of Applied Mechanics, 1965, 32(4):788~792
    [205] D. E. Johnson and R. Greif. Dynamic response of a cylindrical shell: Two numerical methods. AIAA Journal, Mar. 1966, 4(3):486-494
    [206] H. Reismann and J. Medige. Forced motion of cylindrical shells. Proceedings of ASCE, Journal of Engineering Mechanics Division, EM5, Oct. 1968, (10):1167~1182
    [207] G. Herrmann and A. E. Armenakas. Dynamic behavior of cylindrical shells under initial stress. Proceedings of the Forth U.S. National Congress of Applied Mechanics, Vol. I, June, 1962. 203~213
    [208] M. G. Cottis. On the dynamic response of an orthotropic finite cylindrical shell to an arbitrary pressure fluid. Journal of Sound and Vibration, 1968, 7(1):31~38
    [209] M. J. Forrestal. Response of an elastic cylindrical shells to a transverse acoustic pulse. Journal of Applied Mechanics, 1968, 35(3):614~616
    [210] J. W. Berglung and J. M. Klosner. Interaction of a ring-reinforced shell and a fluid medium. Journal of Applied Mechanics, March 1968,35(1):139-147
    [211] T. L. Geers. Excitation of an elastic cylindrical shell by a transient acoustic wave. Journal of Applied Mechanics, Sept. 1969, 36(4):459-469
    [212] H. Huang. An exact analysis of the transient interaction of acoustic plane waves with a cylindrical elastic shell. Journal of Applied Mechanics, Dec. 1970, 37(4):1091~1099
    [213] J. D. Frederick. Impact loading of submarine hulls. AD 705525, 1970
    [214] 谢官模. 环肋圆柱壳在流场中的动力响应和声辐射: [博士学位论文]. 武汉:华中理工大学, 1994.
    [215] Li Xuebin and Chen Yaju. Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure. Journal of Sound and Vibration, 2002, 257(5):967-976
    [216] V. Z. Vlasov. Basic Differential Equations in the General Theory of Elastic Shell. NACA TM 1241, 1951
    [217] V. Z. Vlasov. General Theory of shells and Its Applications in Engineering. NASA TT F-99, 1964
    [218] J. C. Pascal and H. Garnet. Response of ring-forced shell immersed in a fluid medium to an axisymmetric step wave pulse. Journal of Applied Mechanics, 1972, 39:521~526
    [219] S. I. Suzuki. Dynamic behavior of thin ring-reinforced cylindrical shells subjected to impulse inner loads. Journal of Sound and Vibration, 1977, 51(4):459~466
    
    [220] K. Shirakawa and K. Mizoguchi. Dynamic response of cylindrical shell to concentrated periodical force. Bulletin of JSME, 1977, 20(139):9~16
    [221] K. Shirakawa and K. Asano. Dynamic response of cylindrical shells to concentrated impact load. Bulletin of JSME, 1978, 21(152):189~195
    [222] S. Ujihashi, A. Itoh. H. Matsumoto and I. Nakahara, Dynamic deformations and stresses in a circular cylindrical shell with both ends clamped subjected to translational excitations at the base. Bulletin of JSME, 1980, 23 (181):1055~1063
    [223] S. Ujihashi, T. Koizumi, H. Matsumoto and I. Nakahara. Dynamic displacements and stresses in a circular cylindrical shell of finite length with both ends clamped which is subjected to concentrated impulse loads. Bulletin of JSME, 1980, 23(180):837~848
    [224] S. Ujihashi, T. Okazaki, H. Matsumoto and I. Nakahara. Transient response of a cantilever cylindrical shell subjected to impulse load on its free edge: The influence of rotatory inertia and transverse shear deformation. Bulletin of JSME, 1981, 24(188):295~304
    [225] A. P. Chritoforou and S. R. Swanson. Analysis of simply-supported orthotropic cylindrical shells subjected to later impact loads. Trans. ASME, Journal of Applied Mechanics, 1990, 57:376-382
    [226] A. A. Khdeir. Dynamic response of cross-ply laminated circular cylindrical shells with various boundary conditions. Acta Mech, 1995, 112, (1-4):117-134
    [227] J. N. Reddy. A simple higher order theory for laminated plates. Journal of Applied Mechanics, 1984, 51(3):745~752
    [228] S. L. Toh , S. W. Gong and V. P. W Shim. Transient stresses generated by low velocity impact on orthotropic laminated cylindrical shells. Composite Structures, 1995, 31(3):213~228
    [229] Shu Xiao-ping. An improved simple higher-order theory for laminated composite shells. Computer and Structures, 1996, 60(3):343~350
    [230] G. Cederbaum and R. A. Heller. Dynamic deformation of orthotropic cylinders. in: D. Hui and T. J. Kojik. eds. Advances in Macro-Mechanics of Composite Material Vessels and Components. 1988, ASME PVP- Vol. 146, PD-Vol. 18. 43~48
    [231] J. C. Prucz, J. D’acquisto and J. E. Smith. Dynamic response of composite pressure vessels to inertia loads, in: D. Hui and T. J. Kojik. eds. Advances in Macro-Mechanics of Composite Material Vessels and Components. 1988, ASME PVP- Vol. 146, PD-Vol. 18. 55~62
    [232] H. H. Bleich and M. L. Baron. Free and forced vibrations of an infinitely long cylindrical shell in an infinite acoustic medium. Journal of Applied Mechanics, 1954:167~177
    
    [233] M. C. Junger. Radiation loading of cylindrical and spherical surfaces. Journal of the Acoustical Society of America, 1952, 24:288~289
    [234] M. C. Junger. Vibration of elastic shells in a fluid medium and the associated radiation of sound. Journal of Applied Mechanics, 1952, 74:439~445
    [235] G. B. Warburton. Harmonic response of cylindrical shell. Trans. ASME, J. Engineering for Industry, 1974, 8:994~999
    [236] G. B. Warburton and S. R. Soni. Resonant response of orthotropic cylindrical shells. J. Sound Vib., 1977, 53:1~23
    [237] V. V. Novozhilov. The Theory of thin shells. Groningen: P. Noordhoff, 1959
    [238] A. W. Leissa and K. M. Iyer. Modal response of circular cylindrical shells with structural damping. J. Sound Vib. , 1981, 77:1~10
    [239] 顾王明. 冲击及流-固冲击载荷作用下圆柱壳的非弹性动力屈曲研究: [博士论文]. 武汉:华中理工大学,1993.
    [240] 江松青. 复杂载荷下加筋板壳机构的动力响应和动力屈曲研究: [博士学位论文]. 武汉:华中理工大学,1999.
    [241] 刘理. 轴向冲击圆柱壳的弹塑性动力屈曲研究: [博士学位论文]. 武汉:华中理工大学, 2000.
    [242] H. Becker and G. Gerard. Elastic stability of orthotropic shells. J. Aerospace Sci., 1962, 29:505-512
    [243] G. Gerard. Compressive stability of orthotropic cylinders. J. Aerospace Sci., 1962, 29:1171~1179
    [244] S. Cheng and B. P. C. Ho. Stability of heterogeneous aeolotropic cylindrical shells under combined loading. AIAA J., 1963, 1:892~898
    [245] R. M. Jones. Buckling of circular cylindrical shells with multiple orthotropic layers end eccentric stiffeners. AIAA J., 1968, 6: 2301~2305
    [246] Y. Stavsky and S. Friedland. Stability of heterogeneous orthotropic cylindrical shells in axial compression. Isr. J. Tech. , 1969, 7:111~119
    [247] M. M. Lei and S. Cheng. Buckling of composite and homogeneous isotropic cylindrical shell under axial and radial loading. Trans. ASME, J. Appl. Mech., 1969, Series E, 36(4):791~798
    [248] W. Xiao. Buckling of locally loaded isotropic, orthotropic, and composite cylindrical shells. Trans. ASME, J. Appl. Mech., 1988, 55:425~429
    [249] S. Cheng and F. B. He. Theory of orthotropic and composite cylindrical shells, accurate and simple fourth-order governing equations. Trans. ASME, J. Appl. Mech., 1984, 51:736~744
    [250] W. Flügge. Stresses in shells. 2nd Edition. New York:Springer-Verlag, 1973.
    
    [251] S. P. Timoshenko and J. M. Gere. Theory of elastic stability. McGraw-Hill, 1961.
    [252] L. H. Donnell. Stability of thin walled tubes under torsion. Nat. Adv. Comm. Aero., Report 479, 1933.
    [253] K. J. Bathe and E. L. Wilson. Numerical methods in finite analysis. New Jersey:Prentice Hall, Inc., 1976.
    [254] K. J. Bathe. Finite element procedures in engineering analysis. New Jersey: Prentice, Inc., England Cliffs, 1982.
    [255] S. B. Dong. Free vibration of laminated orthotropic cylindrical shells. J. Acoust. Soc. Am., 1968, 44:1628~1635
    [256] S. B. Dong and F. K. W. Tso. On a laminated orthotropic shell theory including transverse shear deformation., Trans. ASME, J. Appl. Mech., 1972, 39:1091-1097
    [257] M. Baruch and J. Singer. Effect of eccentricity of stiffeners on the general instability of stiffened cylindrical shells under hydrostatic pressure. J. Mech. Eng. Sci., 1963, 5:23~27
    [258] J. Singer, M. Baruch and Q. Harari. Inversion of the eccentricity effect in stiffened cylindrical shells buckling under external pressure. J. Mech. Eng. Sci., 1966, 8:363~373
    [259] 《数学手册》编写组. 数学手册. 北京:人民教育出版社, 1979.
    [260] Y. C. Das. Vibration of orthotropic cylindrical shells. Appl. Sci. Res., 1964, 12:317~326
    [261] Y. Stavsky and R. Loewy. On vibrations of heterogeneous orthotropic cylindrical shell. J. Sound and Vib., 1971, 15:236~256
    [262] W. Soedel. Simplified equations and solutions for the vibration of orthotropic shells. J. Sound and Vib., 1983, 87:555~566
    [263] S. M. Li, H. Z. Zhang and C. Ruiz. Transient response of a cylindrical shell of finite length to transverse impact. Int. J. Solids Structures, 1991, 27, (4):485~503
    [264] J. Sheng. The response of thin cylindrical shell to transient surface loading. AIAA J., 1965, 3(4):701~709
    [265] E. N. K. Liao and P. G. Kessel. Dynamic response of cylindrical shells with initial stress and subjected to general three dimensional surface loads. J. of Appl. Mech., 1971, 38:978~986
    [266] S. C. Huang and W. Soedel. On the forced vibration of simply supported ratationg cylindrical shells. Journal of the Acoustical Society of America, 1988, 84(1):275~285
    [267] Jianwu Zhang, Yanhai Xu and Jinsong Wu. Buckling and postbuckling of antisymmetrically laminated cross-ply shear-deformable cylindrical shells under axial compression. Journal of Engineering Mechanics, 2003, 129 (1):107~116
    
    [268] A. J. M. Ferreira and J. T. Barbosa. Buckling behavior of composite shells. Composite Structures, 2000, 50(1):93~98
    [269] Th. A. Winterstetter and H. Schmidt. Stability of circular cylindrical shells under combined loading. Thin-Walled Structures, 2002, 40(10):893~910
    [270] Seung-Eock Kim and Chang-Sung Kim. Buckling strength of the cylindrical shell and tank subjected to axially compressive loads. Thin-Walled Structures, 2002, 40(4):329~353
    [271] F. Pellicano and M. Amabili. Stability and vibration of empty and fluid-filled circular cylindrical shells under staic and periodic axial loads. International Journal of Solids and Structures, 2003, 40(13-14):3229~3251
    [272] M. Jamal, L. Lahlou, H. Zahrouni etc. A semi-analytical buckling analysis of imperfect cylindrical shells under axial compression. International Journal of Solids and Structures, 2003, 40(5):1311~1327
    [273] T. Zeng and L. Wu. Post-buckling analysis of stiffened braided cylindrical shells under combined external pressure and axial compression. Composite Structures, 2003, 60(4):455~466
    [274] Hui-Shen Shen. Postbuckling of shear deformable cross-ply laminated cylindrical shells under combined external pressure and axial compression. International Journal of Mechanical Sciences, 2001, 43(11):2493~2523
    [275] Y. Xiang, Y. F. Ma, S. Kitipornchai etc. Exact solutions for vibration of cylindrical shells with intermediate ring supports. International Journal of Mechanical Sciences, 2002, 44(9):1907~1924
    [276] D. N. Paliwal and R. Pandey. Free vibrations of an orthotropic shell on a Pasternak foundation. AIAA Journal, 2001, 39(11):2188~2191
    [277] J. Zhang, V. Campen, D. H. Zhang etc. Dynamic stability of doubly curved orthotropic shallow shells under impact. AIAA Journal, 2001, 39(5):956~961
    [278] 李学斌. 环肋圆柱壳自由振动分析的能量法. 船舶力学, 2001, 5(2): 73~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700