桩—土—边坡相互作用数值分析及阻滑桩简化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种有效工程措施,阻滑桩在边坡加固工程、滑坡地质灾害防治中得到了广泛应用。然而由于问题的复杂性,关于阻滑桩加固土坡的工作机理、桩—土相互作用规律仍没有彻底解决,阻滑桩设计理论与计算方法目前还处于半经验半理论的不成熟阶段,落后于工程实践,因此急需开展深入而系统的理论分析与数值计算等方面的研究,发展与完善相应的阻滑桩工程实用设计方法。一方面,随着高速铁路与公路的大规模建设,许多工程可能穿越滑坡地质灾害多发的潜在不良地质体,此时铁路与公路两侧边坡的安全性及其滑坡治理是工程建设中的一个关键技术问题,阻滑桩技术得到了较多的应用。另一方面,随着城市土地资源的匮乏,许多高层建(构)筑物与高耸结构物不得不直接修建在临近边坡或在山坡顶面上等复杂地质条件下,此时桩基不仅用于加固边坡,而且同时作为建筑物的基础,具有承重和阻滑双重功能,又兼有抵抗风荷载、地震惯性力所引起的水平荷载与力矩的瞬时或循环作用,受力较为复杂。在这种水平荷载、竖向荷载与力矩等各种分量的组合作用下,桩—土—边坡相互作用机理、荷载传递规律、边坡失稳机制尚不十分明确,有待于开展更深入的探索。为此,本文围绕阻滑桩加固土坡研究中所存在的主要问题及组合荷载模式下承重阻滑桩—土—边坡体系的变形与稳定性等方面进行了比较系统而深入的研究,论文的主要研究内容及所取得的研究成果包括如下几个方面:
     1.自动搜索安全系数与失稳机构的边坡稳定性有限元分析模型及边坡失稳判据
     以大型通用有限元分析软件ABAQUS作为平台,通过二次开发建立了能够自动搜索安全系数与相应失稳机构的边坡稳定性有限元分析模型。通过充分的变动参数对比计算与分析,对于目前所采用的有限元数值计算迭代不收敛、超过某一幅值的等效塑性应变分布带相互连通、边坡坡脚至坡顶塑性区贯通、坡面特征点位移陡增或强度折减系数与坡顶特征点水平位移之间关系曲线的斜率达到某一固定值等4种边坡失稳判据,探讨了其内在联系及其适用性,指出迭代不收敛判据较少依赖于研究者的经验,易于数值实现自动搜索等过程,具有较广泛的适用性与一般性。进而以这种判据为基础,分别针对成层黏性土边坡、多级边坡、路堤边坡及超载作用下的边坡稳定性进行了数值分析。在此基础上,探讨了有限单元类型、有限元模型中网格密度、土的破坏准则、剪胀性与变形参数等对边坡稳定安全系数的影响。最后论证了ABAQUS中所采用的Mohr-Coulomb破坏准则与传统Mohr-Coulomb破坏准则的一致性。
     2.阻滑桩、承重阻滑桩及组合荷载模式下承重阻滑桩—土坡稳定性的数值分析
     在边坡稳定的强度折减弹塑性有限元数值分析的基础上,将迭代不收敛判据推广至阻滑桩加固土坡、承重阻滑桩及组合荷载模式下承重阻滑桩—土坡的稳定性数值分析中。结合典型算例的对比分析验证了这一判据的有效性,考虑到桩—土接触问题的复杂性,在以不收敛作为判据的同时参考坡面特征点位移突变这一辅助判据,以确保不收敛判据所得稳定性结果的合理性。在此基础上,通过对比计算与分析系统地考察了设桩位置、桩径、桩的嵌入深度、桩头约束条件与桩的抗弯刚度等对阻滑桩加固边坡稳定性的影响,并对桩侧接触力的分布形态及变化规律进行了探讨,以期为阻滑桩加固土坡的简
The stabilizing piles are widely used in the reinforcement engineering of slopes and mitigation and prevention of natural geological disasters induced by landslides. However, because of its rather sophistication, the working mechanism of stabilizing piles and stability of piles in the slopes are not clarified especially when the piles are subjected to the combined actions of both components of horizontal load and vertical load as well as moment imposed by the superstructures. Under such a circumstance, the piles in slope will play two functions, one is as reinforcement to induce the instability and another is to bear the loads transferred by structures. On one hand, with the large-scale railway and highway constructions have been made in the area where the potential geological disaster such as landslides and debris tends to occur in complicated geological condition, the piles are employed to stabilize the slopes which are located the two sides of railway and highway. On the other hand, since the resource of usable lands gets to reduce considerably in modern urban civilization, the high-rise or multi-rise mansions or buildings are directly constructed in the neighborhood of the top or toe of slopes, the piles are used to both reinforce the slope near the construction and carry the superstructure-induced loading. In fact, the pile-soil-slope will constitute an interaction system. Therefore, it will be theoretically important and practically significance to examine the mechanism of piles in both stabilizing the slope and carrying the loads and to discover the interaction effect of piles-soil-slope. In this dissertation, both analysis methods for analyzing the stability of slopes stabilized by piles against potential sliding and bearing capacity behavior of piles in the slopes subjected to combined loads as well as interaction mechanism of pile-soil-slope and simplified design procedure of stabilizing piles are investigated. The main research work done in this thesis consists of the following parts.1. FEM-based numerical analysis of slope stability and the corresponding failure criterion is used to implement the procedure of automatic searching for safety factor.The shear strength reduction technique is incorporated into the large general FEM analysis software, ABAQUS to automatically search for the most critical strength reduction factor as safety factor. Through numerical computations and comparative analyses based on FEM, four criteria for assessing the critical failure state of slope, including the criteria on the basis of iteration non-convergence of nonlinear FEM numerical calculations, plastic zone extension from the toe to the top of slope, equivalent plastic strain exceeding a certain value developed along the potential slip surface and uncontrollable increase in characteristic nodal displacement on slope surface or the slope of curve interrelating strength reduction factor (SSRF) and horizontal displacement of characteristic nodes on slope top reaches a certain value, are respectively examined. Furthermore, the interrelation and applicability of such four failure criteria are demonstrated. It is found that the instability criterion based on iteration non-convergence of numerical solution is easier to be used in the numerical implementation of automatic searching procedure for safety factor, and is rarely dependant on users' experience. Therefore it is suggested to widely apply this criterion in evaluating the failure mechanism and instability state. Then, the non-convergence criterion of numerical solution is successfully used in the stability analysis of layered clay slope, multi-stage slope, embankment slope and slope under surcharge. Moreover, the effects of element type, FEM mesh density, yield criterion of soil, dilatancy and deformation parameters on the safety factor of slope stability, is examined. Finally, the consistency of Mohr-Coulomb yield criterion used in ABAQUS with that in traditional plasticity theory at six extension-compression corners is demonstrated.
    2. Numerical analysis of stability on pile-soil-slope system with stabilizing piles, load-bearing piles against landslide under combined load modeBy using elasto-plastic finite element method of slope stability based on shear strength reduction, stability of slope with stabilizing piles and performance of load-bearing piles against landslide as well as behavior of stabilizing piles in slope subjected to combined load are numerically analyzed. The iteration non-convergence criterion conventionally used for assessing the instability state of slopes is employed to evaluate the limit-equilibrium state of pile-soil-slope system and its validity is demonstrated through comparative studies for several typical examples. Considering the complexity of pile-soil interaction, the criterion based on the uncontrolled displacement at a certain characteristic nodes on the slope surface is used for evaluate the limit state as an assistant criterion in addition to the iteration non-convergence criterion of solution in order to get more reasonable and reliable solution from numerical results. Furthermore, the effect of stabilization location, pile diameter, embedment depth of pile, constraint condition of pile heady and bending rigidity of pile on the stability of slope stabilized by piles. Both distribution pattern and variation mode of lateral contact force (frictional shear force and contact pressure) around pile shaft are examined in order to develop a simplified model for engineering design of slope reinforced with piles. Finally, the effect of the combinations of vertical load and horizontal load on the stability of pile-soil-slope system is investigated through numerical analyses.3. Upper-bound solution of limit analysis of complicated slope stability based on shear strength reduction techniqueNowadays, limit equilibrium method is often adopted to analyze the stability of slope in practical engineering. However the result from this procedure is neither the upper-bound nor the lower-bound of the true solution based on the principle of limit analysis. Combined the kinematic method of limit analysis with shear strength reduction technique, the equation for expressing the limit-equilibrium state is formulated and is employed to define the factor of safety and its corresponding critical failure mechanism for a given slope. Through numerical analyses for typical examples, the solutions computed by the proposed approach are compared with the results available given by limit-equilibrium methods and finite element methods to verify the reasonability of the method. Furthermore, the complicated conditions such as non-homogeneity and anisotropy of soil strength, surcharge on slope top, pore water pressure in slope, earthquake-induced inertial load and other external loads are respectively considered. And the effects of these factors on slope stability are individually examined.4. Upper-bound solution of limit analysis of the lateral effective earth pressure acting on stabilizing piles and determination of the most optimal location of pile.On the basis of the distribution mode of lateral contact force from elasto-plastic finite element method based on the technique of shears strength reduction factor, considering the engineering experience and current investigations available, lateral force of surrounding soils on stabilizing piles are analyzed by using upper-bound theorem of limit plasticity and the concept of shear strength reduction and the upper-bound solution for defining the lateral effective earth pressure acting on stabilizing piles against landslide is established in which the mobilized strength parameters are given by the actual strength parameters with a reduction by the desirable overall safety factor. The lateral effective earth pressure acting on the piles can be chosen as the objective function with respect to the related parameters used to describe potential failure mechanism and then mathematical programming is formulated and the optimization technique are utilized to define the critical state. Then the lateral effective earth pressure acting on the stabilizing pile is determined. In the analyses, the effects of
    non-homogeneity and anisotropy of soil strength, surcharge on slope top, pore water pressure in slopes and earthquake-induced inertial load are taken into account. Furthermore, numerical computations are made to examine the optimum location of pile placement on the basis of the dimensionless lateral limit effective earth pressure obtained. The position of the critical slip surface and some factors affecting the reinforced force are also analyzed respectively.5. Lower-bound solution of the lateral allowable bearing capacity of soils around stabilizing piles and determination of anchorage depth of stabilizing piles.Using the lower-bound technique of limit analysis of plasticity, the lower-bound procedure is established to define the lateral allowable bearing capacity of soil around stabilizing piles, when soil cohesion and inclination of slope, surcharge and seismic acceleration coefficient are considered. Through numerical analyses, comprehensive active and passive earth pressure coefficient are given in a tabular form for different combination of the relevant parameters such as internal friction angle of soil 0, inclination of slope a, dimensionless cohesion cjyz., dimensionless density of surcharge q/}2 or horizontal seismic acceleration coefficient kh. The effect of various parameters on comprehensive coefficients of active and passive earth pressure are discussed, and the computed earth pressure coefficients can be directly adopted to assess lateral allowable bearing capacity of soil around stabilizing piles in practical engineering. Furthermore, the anchorage depth of stabilizing piles can be determined for rigid or elastic piles to offer an instructive guideline for the design of stabilizing piles. The effects of slope inclination, soil parameters and computational depth on the lateral allowable bearing capacity of soil around stabilizing piles are discussed. When two different soil layers respectively upper and lower the potential slip surface are considered, the modification is made for the anchorage depth of stabilizing piles in layered slope.6. Simplified design of pile-stabilized slope and uncoupled procedure for analyzing the performance of pile-soil-slope interaction system.Based on the dimensionless lateral limit effective earth pressure acting on stabilizing piles determined by the above proposed method, the numerical algorithm based on finite-difference method is developed to numerically solving the partial differential equation for governing deflection of stabilizing piles. Then a simplified design procedure of stabilizing piles is given. Therefore, for the pile-soil-slope interaction system, stability analysis of slopes reinforced with piles can be firstly performed and the proposed checking method can be used for evaluating anchorage depth of stabilizing piles, and finally the numerical procedure can be employed to calculate the deflection of stabilizing piles and simplified design can be accomplished. In spite of its simplification and uncompleteness, such an uncoupled procedure is practically effective for evaluating the overall performance of the pile-soil-slope interaction system. Finally, as a preliminary application, such a procedure is used to check the design of stabilizing piles in slope for a slip-prevention control engineering in Dayaowan port of Dalian Port Authority.
引文
[1] 栾茂田,年廷凯.1976年香港秀茂坪人工填土边坡滑坡灾害评析.防灾减灾工程学报,2003,1(1):114-117.
    [2] 栾茂田,年廷凯,赵少飞.土工建筑物与边坡工程研究进展评述(大会综述报告)[A].第九届全国土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003,37-55.
    [3] 铁道部第二勘测设计院.抗滑桩设计与计算[M].北京:中国铁道出版社,1983,1-37.
    [4] 赵明阶,何光春,王多垠.边坡工程处治技术[M].北京:人民交通出版社,2003.
    [5] 殷跃平.长江三峡工程库区滑坡防治工程设计与施工技术规程[M].北京:地质出版社,2001.
    [6] Charles W W Ng, Zhang L M, Ho K K S. Influence of laterally loaded sleeved piles and pile groups on slope stability[J]. Canadian Geotechnical Journal, 2001, 38(3):553-566.
    [7] 殷跃平,康洪达,陈波.三峡工程移民区滑坡防治与利用技术研究[J].地质灾害与环境保护学报,2000,11(2):135-141.
    [8] 殷跃平.三峡库区边坡结构及失稳模式研究[J].工程地质学报,2005,13(2):145-150.
    [9] 何全新.利用抗滑桩兼做房屋桩基的一次设计[J].建筑结构,1994,(11):40-46.
    [10] 栾茂田,Ugai k关于岩土工程研究中若干基本力学问题的思考[J].大连理工大学学报,1999,39(2):309-317.
    [11] Leroueil S. Natural slopes and cuts: movement and failure mechanisms[J]. Geotechnique, 2001, 51(3):197-243.
    [12] Espinoza R D, Bourdeau P L, Muhunthan B. Unified formulation for analysis of slopes with general slip surface[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1994, 120(7): 1185-1192.
    [13] Duncan. State of the art: limit equilibrium and finite element analysis of slope[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(7):577-595.
    [14] 郑颖人,赵尚毅,时卫民,等.边坡稳定分析的一些进展[J].地下空间,2001,21(5):450-454.
    [15] 杨明成,郑颖人.基于极限平衡理论析局部最小安全系数法[J].岩士工程学报,2002,24(3):600-604.
    [16] 朱禄娟,谷兆祺,郑榕明,等.二维边坡稳定方法的统一计算公式[J].水力发电学报,2002,(3):21-29.
    [17] 陈祖煜.土质边坡稳定分析—原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [18] Timothy D S, Hisham T. Performance of three-dimensional slope stability methods in practice[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(11): 1049-1060.
    [19] Chen Z Y, Wang X G, Haberfield C, et al. A three-dimensional slope stability analysis method using the upper bound theorem (I): theory and methods[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, 38: 369-378.
    [20] 朱大勇.边坡临界滑动场及其数值模拟[J].岩土工程学报,1997,19(1):63-68.
    [21] 邵龙潭,唐洪祥,韩国城.有限元边坡稳定分析方法及其应用[J].计算力学学报,2001,18(1):81-87.
    [22] 殷宗泽,吕擎峰.圆弧滑动有限元土坡稳定分析[J].岩土力学,2005,26(10):1525-1530.
    [23] 王成华,夏绪勇,李广信.基于应力场的土坡临界滑动面的蚂蚁算法搜索技术[J].岩石力学与工程学报,2003,22(5):813-819.
    [24] 史恒通,王成华.土坡有限元稳定分析若干问题探讨[J].岩土力学,2000,21(2):152-155.
    [25] 殷建华,陈健,李焯芬.岩土边坡稳定性的刚体有限元上限分析法[J].岩石力学与工程学报,2004,23(6):898-905.
    [26] Yu H S, Salgado R, Sloan S W, Kim J M. Limit analysis versus limit equilibrium for slope stability[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(1): 1-11.
    [27] Lysmer J. Limit analysis of plane problems in soil mechanics[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96(4): 1311-1333.
    [28] Chen W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier Scientific Press, 1974.
    [29] Zhang X J, Chen W F. Stability analysis of slopes with general nonlinear failure critirion[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11 (1):33-50.
    [30] Sloan S W. Upper bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 13(3):263-282.
    [31] Jiang G L. Non-linear finite element formulation of kinematic limit analysis[J]. International Journal for Numerical Methods in Engineering, 1995, 38(3):2775-2807.
    [32] Jiang G L, Magnan J P. Stability analysis of embankments: comparison of limit analysis with methods of slices[J]. Geotechnique, 1997, 47(4):857-872.
    [33] 杨小礼,李亮,刘宝琛.大规模优化及其在上限定理有限元法中的应用[J].岩土工程学报,2001,23(5):602-605.
    [34] 殷建华,陈健,李焯芬.考虑孔隙水压力的土坡稳定性的刚体有限元上限分析[J].岩土工程学报,2003,25(3):273-279.
    [35] 王均星,王汉辉,吴雅峰.土坡稳定的有限元塑性极限分析上限法研究[J].岩石力学与工程学报,2004,23(11):1867-1873.
    [36] Sloan S W. Lower bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1):61-67.
    [37] 李国英,沈珠江.下限原理有限单元法及其在土工问题中的应用[J].岩土工程学报,1997,19(5):84-89.
    [38] Kim J M, Salgado R, Lee J H. Stability analysis of complex soil slopes using limit analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7):546-557.
    [39] 王均星,王汉辉,张优秀,等.非均质土坡的有限元塑性极限分析[J].岩土力学,2004,25(3):415-422.
    [40] 张国祥,刘宝琛.潜在滑移线法分析边坡滑动面及稳定性[J].土木工程学报,2002,35(6):83-88.
    [41] Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J]. Geotechnique, 1975, 25(4):671-689.
    [42] Ugai K. A method of calculation of total factor of safety of slopes by elasto-plastic FEM[J]. Soils and Foundations, 1989, 29(2): 190-195(In Japanese).
    [43] Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Geotechnique, 1999, 49(3):387-403.
    [44] Dawson E M, Roth W H, Drescher A. Slope stability analysis by strength reduction[J]. Geotechnique, 1999, 49(6):835-840.
    [45] 宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-6.
    [46] 郑颖人,赵尚毅,张鲁渝,等.有限元强度折减法在士坡与岩坡中的应用[A].见:中国岩石力学与工程学会主编.中国岩石力学与工程学会第七次学术大会论文集[C].北京:中国科学技术出版社,2002,70-76.
    [47] 赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [48] 马建勋,赖志生,蔡庆娥,等.基于强度折减法的边坡稳定性三维有限元分析[J].岩石力学与工程学报,2004,23(16):2690-2693.
    [49] Matsui T, San K C. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique[J]. Soils and Foundations, 1992, 32(1):59-70,
    [50] 连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411.
    [51] 连镇营.基坑工程三维有限元数值分析中若干问题的研究[D].大连:大连理工大学博士学位论文,2001.
    [52] 刘祚秋,周翠英,董立国,等.边坡稳定及加固分析的有限元强度折减法[J].岩土力学,2005,26(4):558-563.
    [53] 郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J],岩土工程学报,2002,24(5):626-628.
    [54] 栾茂田,武亚军,年廷凯.强度折减有限元分析方法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [55] 武亚军.基坑工程中土与支护结构相互作用及边坡稳定性的数值分析[D].大连:大连理工大学博士学位论文,2003.
    [56] 赵少飞,栾茂田,吕爱钟.土工极限平衡问题的非线性有限元数值分析[J].岩土力学,2004,25(S2):121-125.
    [57] 迟世春,关立军.应用强度折减有限元法分析土坡稳定的适应性[J],哈尔滨工业大学学报.2005,37(9):1298-1303.
    [58] 周翠英,刘祚秋,董立国,等.边坡破坏过程的大变形有限元分析[J].岩土力学,2003,24(4):644-647.
    [59] 王志伟,王庚荪.裂隙性粘土边坡渐进性破坏的FLAC模拟[J].岩土力学,2005,26(10):1637-1641.
    [60] 张倬元.滑坡防治工程的现状与发展展望[J].地质灾害与环境保护,2000,11(2):89-98.
    [61] 王恭先.预防滑坡的原理和方法[A].见滑坡文集编委会主编.滑坡文集(第十六集).北京:中国铁道出版社,2003,60-64.
    [62] 王恭先.滑坡防治中的关键技术及其处理方法[J].岩石力学与工程学报,2005,24(21):3818-3827.
    [63] 殷跃平.中国滑坡防治工程理论与实践[J].水文地质工程地质,1998,(1):5-9.
    [64] 贺建清,张家生,梅松华.弹性抗滑桩设计中的几个问题的探讨[J].岩石力学与工程学报,1999,18(5):497-502.
    [65] 佴磊,马丽英,冷曦晨,等.滑坡治理中的抗滑桩设计[J].吉林大学学报,2002,32(2):162-166.
    [66] 高永涛,张友范,吴顺川.土质边坡抗滑桩机理分析[J].北京科技大学学报,2003,25(2):117-122.
    [67] 刘小丽,周德培,杨涛.加固土坡的抗滑桩内力计算新方法[J].工业建筑,2003,33(4):39-42.
    [68] 周春梅,殷坤龙,罗冲.锚拉桩应用于水库库岸滑坡治理的关键问题探讨[J].岩土力学,2005,26(3):450-460.
    [69] Matsui T, Hong W P, Ito T. Earth pressure on piles in a row due to lateral soil movements[J]. Soils and Foundations, 1982, 22(2):71-81.
    [70] Ginzburg L K, Koval V E, Lapkin V B. Force distribution among slope-protection structure pile rows[J]. Soil Mechanics and Foundation Engineering(English translation of Osnovaniya), 1990, 27(2):702-709.
    [71] Yika T E, Vaughan P R, Lemos L J. Fast shearing of pre-existing shear zones in soil[J]. Geotechnique, 1996, 46(2):197-233.
    [72] Mezazigh S, Levacher D. Laterally loaded piles in sand: Slope effect on P-Y reaction curves[J]. Canadian Geotechnical Journal, 1998, 35(3):433-441.
    [73] 蒋建国,邹银生,周绪红.刚性抗滑桩锚固深度的简化计算[J].工程力学,2001,增:457-461.
    [74] 中华人民共和国国家标准.建筑地基基础设计规范(GB50007-2002)[S].北京:中国建筑工业出版社,2002.
    [75] Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundations, 1975, 15(4):43-59.
    [76] Ito T, Matsui T, Hong W P. Design method for the stability analysis of the slope with landing pier[J]. Soils and Foundations, 1979, 19(4):43-57.
    [77] Ito T, Matsui T, Hong W P. Design method for stabilizing piles against landslide-one row of piles[J]. Soils and Foundations, 1981, 21(1):21-37.
    [78] Hassiotis S, Chameau J L, Gunaratne M. Design method for stabilization of slopes with piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(4):314-323.
    [79] Cai F, Ugai K. Numerical analysis of the stability of a slope reinforced with piles[J]. Soils and Foundations, 2000, 40(1):73-84.
    [80] 李仁平,陈仁朋,陈云敏.阻滑桩加固土坡的极限设计方法[J].浙江大学学报,2001,35(6):618-622.
    [81] 沈珠江.桩的抗滑阻力和抗滑桩的极限设计[J].岩土工程学报,1992,14(1):51-56.
    [82] Chen L T, Poulos H G. Piles subjected to lateral soil movements[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(9):802-811.
    [83] Chow Y K. Analysis of piles used for slope stabilization[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(9):635-646.
    [84] 邹广电,陈生水.抗滑桩工程的整体设计方法及其优化数值模型[J].岩土工程学报,2003,25(1):11-17.
    [85] 刘小丽,张占民,周德培.预应力锚索抗滑桩的改进计算方法[J].岩石力学与工程学报,2004,23(15):2568-2572.
    [86] 桩基工程手册编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995,310-315.
    [87] Liang R, Zeng S. Numerical study of soil arching mechanism in drilled shafts for slope stabilization[J]. Soils and Foundations, 2002, 42(2):83-92.
    [88] Zeng S, Liang R. Stability analysis of drilled shafts reinforced slope[J]. Soils and Foundations, 2002, 42(2):93-102.
    [89] 张友良,朱瑞赓.滑坡整治中抗滑桩内力计算新方法[J].路基工程,2000,(4):40-43.
    [90] 张友良,陈从新,夏元友.杆件有限元法在抗滑桩设计中的应用研究[J].中国地质灾害与防治学报,2000,11(1):30-34.
    [91] 张友良,冯夏庭,范建海,等.抗滑桩与滑坡体相互作用的研究[J].岩石力学与工程学报,2002,21(6):839-842.
    [92] 廖雄华.桩—土相互作用数值方法的研究及其在高桩码头安全性分析中的应用[D].哈尔滨:哈 尔滨建筑大学博士学位论文,2000.
    [93] 廖雄华,张克绪.天津港高桩码头桩基—岸坡土体相互作用的数值分析[J].水利学报,2002,(4):81-87.
    [94] Jeong S, Kim B, Won J, Lee J. Uncoupled analysis of stabilizing piles in weathered slopes[J]. Computers and Geotechnics, 2003, 30 (8): 671-682.
    [95] 朱俊高,周喜武.抗滑桩极限阻力的有限元分析[J].岩土力学,2004,25(增2):301-305.
    [96] 张建华,谢强,张照秀.抗滑桩结构的土拱效应及其数值模拟[J].岩石力学与工程学报,2004,23(4):699-703.
    [97] Poulos H G. Design of reinforcing piles to increase slope stability[J]. Canadian Geotechnical Journal, 1995, 32:808-818.
    [98] Lee C Y, Hull T S, Poulos H G. Simplified pile-slope stability analysis[J]. Computers and Geotechnics. 1995, 17:1-16.
    [99] 王年香.桩基码头岸坡稳定和桩基性状的简化计算[J].水利水运科学研究,2000,(1):21-29.
    [100] Charles W W Ng, Zhang L M. Three-dimensional analysis of performance of laterally loaded sleeved in sloping ground[J]. Journal of Geotechnical and GeoenvironmentaI Engineering, ASCE, 2001, 127(6):499-509.
    [101] Chen C Y, Martin G R. Soil-structure interaction for landslide stabilizing piles[J]. Computers and Geotechnics, 2002, 29(10):363-386.
    [102] 邓建辉,张嘉翔,闵弘,等.基于强度折减概念的滑坡稳定性三维分析方法(Ⅱ):加固安全系数计算[J].岩土力学,2004,25(6):871-876.
    [103] Won J, You K, Jeong S. Coupled effects in stability analysis of pile-slope systems[J]. Computers and Geotechnics, 2005, 32 (2): 304-315.
    [104] Hassiotis S, Chameau J L, Gunaratne M. Design method for stabilization of slopes with piles(closure)[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999. 125(10):913-914.
    [105] 戴自航,彭振斌.土体滑坡治理的合理设计与计算[J].中南工业大学学报,2000,31(2):98-101.
    [106] Ausilio E, Conte E, Dente G. Stability analysis of slopes reinforced with piles[J]. Computers and Geotechnics, 2001, (28):591-611.
    [107] Luan M T, Wu Y J, Nian T K. An alternating criterion based on development of plastic zone for evaluating slope stability by shear strength reduction FEM[A]. Proceedings of the Sina-Japanese Symposium on Geotechnical Engineering-Geotechnical Engineering in Urban Construction[C]. Beijing: Tsinghua University Press, 2003, 181-188.
    [108] Nian T K, Luan M T, Yang Q. Stability analysis of complex shore slope stabilized by piles[A]. Proceedings of the Second Sina-Japanese Symposium on Geotechnical Engineering-Recent Development of Geotechnical Engineering in Soft Ground[C]. Shanghai: Tongji University Press, 2005, 574-580.
    [109] Manzari M T, Nour M A. Significance of soil dilatancy in slope stability analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(1): 75-80.
    [110] Taylor D W. Fundamentals of soil mechanics[M]. New York: John Wiley and Sons, 1948.
    [111] Bishop A W. The use of the slip circle in stability analysis of slopes[J]. Geotechnique, 1955, 5(1):7-17.
    [112] Sarma S K. Stability analysis of embankments and slopes[J]. Geotechnique, 1973, 23(3):423-433.
    [113] 张雄.边坡稳定性分析的改进条分法[J].岩土工程学报,1994,16(3):84-92.
    [114] 朱伯芳.有限单元法原理与应用(第2版)[M].北京:中国水利水电出版社,1998,161-172.
    [115] Hibbit, Karlsson and Sorensen, Inc. ABAQUS/Scripting Manual (Version 6.3)[M]. Providence: HKS Inc., 2002.
    [116] 庄茁等译.ABAQUS/Standard有限元软件入门指南[M].北京:清华大学出版社,1998.
    [117] 王勖成,邵敏.有限单元法基本原理和数值方法[M]_北京:清华大学出版社,2001.
    [118] 钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [119] 郑颖人,沈珠江,龚晓南.广义塑性力学理论—岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [120] 欧文,辛顿(曾国平等译).塑性力学有限元—理论与应用[M].北京:兵器工业出版社,1989.
    [121] 赵尚毅,郑颖人,张玉芳.极限分析有限元法讲座—Ⅱ有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-337.
    [122] 年廷凯,栾茂田,杨庆.阻滑桩加固土坡稳定性分析与桩基的简化设计方法[J].岩石力学与工程学报,2005,24(19):3427-3433.
    [123] 张培文,陈祖煜.剪胀角对求解边坡稳定的安全系数的影响[J].岩土力学,2004,25(1):1757-1760
    [124] Bolton M D. The strength and dilatancy of sands[J]. Geotechnique, 1986, 36(1):65-78.
    [125] Hull T S, Poulos H G. Design method for stabilization of slopes with piles(discussion)[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(10):911-913.
    [126] 吕文杰,李晓军,朱合华.基于遗传算法的边坡稳定分析通用算法[J].岩土工程学报,2005,27(5):595-600.
    [127] 张静辉,田斌,童富果,等.抗滑桩与滑坡体相互作用的非线性有限元分析[J].三峡大学学报,2005,27(1):40-44.
    [128] Desai C S, Zaman M M. Thin Layer Element for Interfaces and Joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19-43.
    [129] 皇甫明,王幼青,张军.纵横向荷载作用下桩的工作性状研究[J].哈尔滨工业大学学报,2003,35(6):743-748.
    [130] 皇甫明,王幼青,王梦恕.水平力对竖直桩沉降和承载力影响的研究[J].岩土工程学报,2003,25(4):511-513.
    [131] 孔德森.桩—土相互作用计算模型及其在桩基结构抗震分析中的应用[D].大连:大连理工大学博士学位论文,2004.
    [132] 中国建筑科学研究院.建筑桩基技术规范(JGJ94-94)[S].北京:中国建筑工业出版社,1995.
    [133] 李海光.新型支挡结构设计与工程实例[M].北京:人民交通出版社,2004.
    [134] 王成,邓安福.水平荷载桩桩土共同作用全过程分析[J].岩土工程学报,2001,23(4):476-481.
    [135] 韩丽娟.被动条件下桩—土相互作用机理及被动桩工作性能分析[D].大连:大连理工大学硕士学位论文,2004.6.
    [136] 杨敏,朱碧堂,陈福全.堆载引起某厂房坍塌事故的初步分析[J].岩土工程学报,2002,24(4):446-450
    [137] Donald I B, Chen Z Y. Slope stability analysis by the upper bound approach: fundamentals and methods[J]. Canadian Geotechnical Journal, 1997, 34:853-862.
    [138] 陈祖煜.边坡稳定分析的上限解和下限解[A].见中国水利水电技术发展与成就—潘家铮院士从事科学技术工作47周年纪念文集[C].北京:中国电力出版社,1997,198-208.
    [139] 年廷凯,栾茂田.阻滑桩加固士坡稳定性分析的上限解法[J].岩土力学,2004,25(增2):167-174.
    [140] 唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2000.
    [141] Gill P E, Murray W, Wright M H. Practical optimization[M]. London: Academic Press, 1981.
    [142] Lo K Y. Stability of slopes in anisotropic soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1965, 91(SM 4):85-106.
    [143] Duncan J M, Seed H B. Anisotropy and stress reorientation in clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1966, 92(SM 5):21-50.
    [144] Mayne P W. Stress anisotropy effects on clay strength[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(4):356-366.
    [145] Ohshima A, Takada N. Strength anisotropy of clay in slope stability[A]. Proceeding of the Centrifuge'91,591-598.
    [146] Al-Karni Awad A, Al-Shamrani Mosleh A. Study of the effect of soil anisotropy on slope stability using method of slices[J]. Computers and Geotechnics, 2000, 26 (5):83-103.
    [147] Hwang J, Dewoolkar M, Ko H Y. Stability analysis of two-dimensional excavated slopes considering strength anisotropy[J]. Canadian Geotechnical Journal, 2002, 39(5):1026-1038.
    [148] Chen W F, Snitbhan N, Fang H Y. Stability of slopes in an-isotropic, nonhomogeneous soils[J]. Canadian Geotechnical Journal, 1975, 12(5): 146-152.
    [149] 年廷凯,栾茂田,杨庆.考虑各向异性效应的阻滑桩加固土坡稳定性分析[J].大连理工大学学报,2005,45(6):858-863.
    [150] Cao J G, Zaman M M. Analytical method for analysis of slope stability[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23:439-449.
    [151] Huang S L, Yamasaki K. Slope failure analysis using local minimum factor-of-safety approach[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(12): 1974-87.
    [152] Miller T W, Hamilton J H. A new analysis procedure to explain a slope failure at the Martin Lake mine[J]. Geotechnique, 1989, 39(1): 107-123.
    [153] Michalowski R L. Limit analysis of slopes subjected to pore pressure[A]. Proceedings of the 9th International Computer Methods and Advances in Geomechanics[C], Balkema, Rotterdam, 1994. 2477-2482.
    [154] Michalowski R L. Slope stability analysis: A kinematical approach[J]. Geotechnique, 1995, 45(2): 283-293.
    [155] Kim J M, Salgado R, Yu H S. limit analysis of soil slopes subjected to pore-water pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(1):49-58.
    [156] Newmark N M. Effects of earthquake on dams and embankments[J]. Geotechnique, 1965, 15(2): 137-160.
    [157] Chang C J, Chen W F, James T P Yao. Seismic displacements in slopes by limit analysis[J]. Journal of Geotechnical Engineering, ASCE, 1984, 110(7):860-875.
    [158] 潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [159] Sarma S K. Stability analysis of embankments and slopes[J]. Geotechnique, 1973, 23(3):423-433.
    [160] 栾茂田,金崇磐,林皋.非均布地震荷载作用下土坡的稳定性[J].水利学报,1990,(1):65-72.
    [161] 戴自航.抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J].岩石力学与工程学报,2002,21(4):517-521.
    [162] 交通部水运规划设计院等.港口工程技术规范(下卷JTJ219-87)[S].北京:人民交通出版社,1988.
    [163] 周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(1):132-136.
    [164] 刘英楠.我国学者发明两项边坡加固新技术[J].岩石力学与工程学报,2004,23(20):3488.(源自2004.6.15《科学时报》)
    [165] 陈学军,唐辉明.桂柳高速公路石城坪滑坡工程地质特征及治理评价[J].地球科学—中国地质大学学报,2001,26(4):381-384.
    [166] 林宗元.岩土工程勘察设计手册[M].沈阳:辽宁科学技术出版社,1996.
    [167] 沈强,陈从新,汪稔,等.边坡抗滑桩加固效果监测分析[J].岩石力学与工程学报,2005,24(6):934-937.
    [168] 罗一农.抗滑桩设计中几个问题的商榷[J].路基工程,1997,75(6):9-14.
    [169] 申润植.滑坡整治理论和工程实践[M].北京:中国铁道出版社,1996.
    [170] 周志刚.土层抗滑桩锚固深度探讨[J].路基工程,1997,(3):31-35.
    [171] 陈仲颐等.土力学[M].北京:清华大学出版社,1994.
    [172] Luan M T, Nian T K, Law K T, Lee C F, Ugai K, Yang Q. Lower-bound solution of earth pressure of cohesive backfill with inclined surface[A]. Proceedings of International Symposium on Slope Stability Engineering[C]: Geotechnical and Geoenvironmental Aspects (IS-Shikoku'99), Matsuyama, Shikoku, Japan, Nov. 8-11,1999, 281-286.
    [173] 杨克己.实用桩基工程[M].北京:人民交通出版社,2004.
    [174] 胡人礼.桥梁桩基础分析和设计[M].北京:中国铁道出版社,1987.
    [175] Wang S, Reese L. Design of pile foundations in liquefied soils[J]. Geotechnical Earthquake Engineering and Soil Dynamics Ⅲ, Geotechnical Special Publication, 1998, 2(72): 1331-1343.
    [176] 辽宁水文地质工程地质勘察院.大连港大窑湾一期分区车场改扩建工程路基边坡防护治理工程设计及勘察报告[R].2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700