软弱破碎隧道围岩渐进性破坏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塌方是隧道施工中最常见的灾害现象之一,塌方已成为造成工期延误、生命财产损失和隧道运营的一个重要安全隐患。故此,开展隧道塌方破坏机理方面的研究对设计和施工均具有重要的指导意义。
     本文结合国家自然科学基金“软弱破碎隧道围岩渐进性破坏分析与松动荷载预测研究”课题,以公路隧道Ⅳ~Ⅵ级围岩为研究目标,采用统计分析、模型试验、数值模拟及理论分析相结合的方法,对自重应力场作用下隧道围岩渐进性破坏机理进行了深入的研究,论文主要工作如下:
     1.通过文献查阅及现场调研,统计分析了大量公路、铁路隧道和水工隧洞塌方工程实例,对隧道塌方进行了分类,并分析了隧道塌方的主要影响因素;
     2.在统计分析的基础上,设计了模型试验方案,建立了隧道围岩渐进性破坏机理模型试验方法,对围岩强度、隧道断面、隧道埋深及地表水对隧道渐进性破坏机制的影响进行了一系列的模型试验,总结分析了不同塌方破坏类型的渐进性发展过程、塌方破坏过程中围岩应力及位移变化规律;
     3.采用离散元软件PFC模拟了隧道围岩渐进性破坏过程,对模型试验方案进行了补充,并对小净距隧道及隧道掌子面塌方破坏机制进行了模拟分析;
     4.综合统计分析、模型试验及数值模拟的成果,研究了隧道塌方影响因素对隧道塌方发生机制的影响,综合分析了隧道围岩开挖卸荷渐进性破坏机理;
     5.在模型试验的基础上,提出了基于渐进性破坏的围岩动态压力拱理论,对模型试验过程中压力拱的变化情况进行了分析,较好地解释了试验中隧道周边的应力变化情况,并采用数值模拟的方法进行了比较验证。
     最后,就存在的问题和进一步的研究方向进行了简要讨论。
Tunnel collapse is one of the frequently occurring disasters in tunnel construction, and it leads to great damages, such as the delay in the carrying out the projects, and the loss of life and property, and also poses great latent threat to the safety of the tunnels. Therefore, the research, centering on the failure mechanism of the collapse of tunnels, is of great help and necessity for the design and construction of the tunnels.
     Basing on the NSFC (National Natural Science Foundation of China) funded project "Research on the Progressive Failure Mechanism of Tunnels Constructed in Soft Rock and the Prediction of Their Loosening Load", this thesis focuses on the progressive failure mechanism of surrounding rocks (grades IV-VI) of road tunnels, by combining statistical analysis, model test and numerical simulation with theoretical analysis.
     Besides introduction and conclusion, this thesis consists of five chapters.
     The beginning part is a general literature review and a brief introduction. Chapter One of the thesis examines many instances of the collapse of road tunnels, railway tunnels, hydraulic tunnels by means of extensive reading of files and field researches, classifies these collapses into several types, and analyzes the main influencing factors attributing to the collapse.
     Basing on these detailed statistic analysis, the succeeding chapter puts forwards the scheme and method of model tests on the progressive failure mechanism of the surrounding rocks of tunnels. Furthermore, by describing a series of model tests, which deal with the influences of the strength of surrounding rock, the cross section and buried depth of tunnels, and the surface water on the failure mechanism of tunnels, this chapter summarizes certain key traits of different types of collapse in terms of the progressive process, the laws of the stress of surrounding rock and their displacement during the collapse.
     By using DEM software PFC which simulates the whole process of the collapse, the third chapter provides certain supplements to the scheme of model tests, and makes a special analysis of the failure mechanism of the collapse of small-distance tunnels and of the work faces of tunnels.
     In Chapter Four, a detailed analysis which combines the statistical analysis, model test with numerical simulation leads to the research on the effects of influencing factors on the mechanism of collapse of the tunnels and a comprehensive summary of the progressive failure mechanism of tunnels caused by excavation.
     The fifth chapter puts forwards the theory concerning the dynamic pressure arch of surrounding rock based on progressive failure, and applies this theory to the analysis of model tests, such as, analyzing the changes of the dynamic pressure arch during the tests, and explaining the changes of the stress of the surroundings of tunnels perfectly. And the numerical simulation is also used to add accuracy and reliability to the theoretical analysis.
     In the final section comes the conclusion, which summarizes the whole thesis and points out its inadequacies that call for further studies.
引文
[1] Bazant Z.P., Pijaudier C. Non-local continuum damage localization instability and convergence[J]. J.Appl. Mech., 1988(55):287-293
    
    [2] Bieniawski Z.T. Failure of fractured rock[J]. International Journal of Rock Mechanic & Mining, Vol.6,1969,324-341
    [3] Bishop A.W. The strength of soils as engineering materials[J]. Geotechnique,1966, 16(2):91-128
    [4] Bjerrum L. Engineering geology of Norwegian normally-consolidated marine clays as related t-o settlements of buildings[J]. Geotechnique, 1967b, 17(2):81-118
    [5] Bjerrum.L. Progressive failure in slopes of over consolidated plastic clay and clay shales[J]. J. Soil Mech. Found Div. ASCE,1967a,93(SM5),l-49
    [6] Borst D.R., Muhiaus H.B. Gradient dependent plasticity: Formulation and algorithmic aspect[J]. Int. J. Num. Mech. Engrg., 1992(35):521-539
    [7] Brown,T. Ground response curves for rock tunnels[J]. Journal of Geotechnical Engineering, ASCE, Vol. 109,1983,16-31
    [8] Callari C. Coupled numerical analysis of strain localization induced by shallow tunnels in saturated soils[J]. Computers and Geotechnics,2004,31:193-207
    [9] Cavounidis S & Sotiropoulos E. Hypothesis for progressive failure in marl[J]. J Geotech Engng Div, ASCE, 1980,106(6):659-671
    [10] Chan D.H. & Morgenstern N.R. Analysis of progressive deformation of the Edmonton Convention Centre[J]. Can Geotech J,1987,24(3):430-440
    
    [11] Chen W. F. Limit analysis and soil plasticity[M]. Amsterdam:Elsevier,1975
    
    [12] Chen Z, Morgenstern N.R, Chan D H. Progressive failure of Carsington dam: a numerical study[J]. Can Geotech J, 1992,29(6):971-998
    [13] Chirapuntu S & Duncan J M. Cracking and progressive failure of embankments on soft clay foundations [A]. Proc. Int. Symp. Soft Clay(Brenner R P and Brand E W eds, Bankok, 1977,453-470
    [14] Chungsik Yoo & Hyun-Kang Shin. Deformation behavior of tunnel face reinforced with longitudinal pipes-laboratory and numerical investigation[J]. Tunneling and Underground Space Technology 18(2003):303-319
    [15] Crouch S.L., Sterifield A.M. Boundary element methods in soil mechanics[J]. George Allen and Ulnwin, 1983
    [16] Cundall P.A. A computer model for simulating progressive large scale movements in block rock system[A]. In: Proceeding of the symposium of the international society for rock mechanics[C], Nancy, France, 1971,1(8)
    [17] Cundall P.A. Distinct element methods of rock and soil structure[J]. Analytical & Computational Methods in Engineering Rock Mechanics, 1987,129-163
    [18] Cundall P.A. PFC2D Users' Manual(version 2.0). Minnesota: Itasca Consulting Group Inc. 1999
    [19] Cundall P.A. The measurement and analysis of acceleration in rock slopes. Ph.D. Dissertation, University of London, Lmperial College of Science and Technology, 1971
    [20] Daehnke A et al. Blast-induced dynamic fracture propagation[A]. In: 5ND Int Symp on Rock Frag by Blasting. Balkema, 1996,13-18
    [21] Eberhardt E., Stead D. & Coggan J.S.. Numerical analysis of initiation and progressive failure in natural rock slopes-the 1991 Randa rockslide[J]. International Journal of Rock Mechanics & Mining Sciences, 2004,41:69-87
    [22] Fakhimi, Carvalho F., Ishida T. & Labuz J.F. Simulation of failure around a circular opening in rock[J]. International Journal of Rock Mechanics & Mining Sciences 39 (2002) 507-515
    [23] FUNATSU T., HOSHINO T., ISHIKAWA M. and SHIMIZU N. Numerical analysis for better understanding mechanism of support effect on ground stability by using distinct element method[A].ISRM International symposium 2006, 4th Asian Rock Mechanics Symposium[C].
    [24] Gu W.H., Morgenstern N.R., Robertson P.K. Progressive failure of lower San Fernando dam [J]. J Geotech Engng, ASCE,1993,119(2):333-349
    [25] Hansmire W.H., Cording E.J.. Soil tunnel test section: case history summary[J]. J.Geotech. Engng., ASCE,1985,111(1),1301-1320
    [26] Hatzor Y.H., Talesnick M. & Tsesarsky M. Continuous and discontinuous stability analysis of the bell-shaped caerns at Ber Guvrin,Israel[J] . Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,2002(39):867-886
    [27] Hazzard, J.F. & Young R.P. Simulating acoustic emissions in bonded-particles models of rock[J]. Int.J.Rock Mech. & Mining Sciences,2000(37):867-872
    [28] Hsu S.C., Chiang S.S., Lai J.R. Failure mechanisms of tunnels in weak rock with interbedded structures [J]. SINOROCK2004 Symposium Paper2B 34,Int. J. Rock Mech. Min. Sci. Vol. 41, No. 3
    [29] Huang C.C., Tatsuoka F. Bearing capacity of reinforced horizontal sandy ground[J]. Geotextiles and Geomembranes,1990,9(51-82):236-267
    [30] Huang Z.P, Broch E., Lu M. Cavern roof stability-mechanism of arching and stabilization by rockbolting[J]. Tunneling and Underground Space Technology, 2002, Vol.17: 249-261
    [31] Huang Z.P. Stabilizing of rock cavern roofs by rockbolts. Ph.D. Thesis, Norway: Norwegian University of Science and Technology, 2001
    [32] Joseph F Labuz, Brent Theroux. Laboratory calibration of earth pressure cells[J]. Geotechnical Testing, 2005,28(2):188-196
    
    [33] JTGD70-2004. 公路隧道设计规范[S].北京:人民交通出版社,2004
    [34] Kentaro Yamamoto and Koji Kusuda. Failure mechanisms and bearing capacities of reinforced foundations [J]. Geotextiles and Geomembranes,2001,19:127-162
    [35] Kovari K. Erroneous concepts behind the New Austrian Tunneling Method[J]. Tunnels & Tunneling, 1994,11:38-41
    [36] Kripakov N.P., Sun M.C. & Donato D.A. ADINA applied toward simulation of progressive failure in underground mine structures[J]. Computers & Structures,1995,56(2/3):329-344
    [37] Kusumi H., Ohtsuki S., Matsuoka T. Simulation analysis of toppling failure of rock slope by distinct element method using bonding theory [A]. ISRM International symposium 2006, 4th Asian Rock Mechanics Symposium.
    [38] Lanru Jing. Formulation of discontinuous deformation analysis(DDA)-an implicit discrete element model for block systems[J]. Engineering Geology,1998,49: 371-381
    [39] Lee L.M., Park J.K. Stability analysis of tunnel keyblock: a case study[J]. Tunneling and Underground Space Technology, 2000,Vol.l5: 453-462
    [40] Leroueil S. Natural slopes and cuts: movement and failure mechanisms[J]. Geotechnique, 2001,51(3): 197-243
    [41] Liu Liqing, Katsabanis P D. Development of a continuum damage model for blasting analysis[J]. Int.J.Rock Mech. Min.Sci, 1977,34(2):217-231
    [42] Martin CD. Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength[J]. Can Geotech J, 1997,34(5):698-725
    [43] Miao T, Ma C & Wu S. Evolution model of progressive failure of landslide[J]. J Geotech Geoenviron Engng, ASCE,1999,125(10):827-831
    [44] MIAO Tiande, MA Chongwu, WU Shengzhi. Evolution model of progressive failure of landslides[J]. J.Geotech and Geoenvir Engrg ASCE, 1999,125(10):827-831
    [45] MITARASHI Y., TEZUKA H.. The evaluation of the effect of long face bolting by 3D distinct element method[A]. ISRM International symposium 2006, 4th Asian Rock Mechanics Symposium[C].
    [46] Muhlhaus H.B., Vardoulakis I. The thickness of shear band in granular materials[J]. Geotechnique, 1987,37(3):371-383
    [47] Nix W. D., Gao H. Indentation size e4ect in crystalline materials: a law for strain gradient plasticity[J]. J. Mech. Phys. Solids,1998(46):411-425
    [48] Peck R B & Lowe J III.Session 4: Shear strength of undisturbed cohesive soils, Moderators' report. Research Conf Shear Strength Cohesive Soils, ASCE, Boulder, Colorado, 1967:1137-1140
    [49] Peng Fang-le, Siddique M S A & Tatsuoka Fumio. Deep-footing reinforcing mechanism on reinforced sandy ground [J]. 岩石力学与工程学报, 2005b, 24 (9): 1512-1521
    [50] Peng Fang-le, Tatsuoka Fumio. Numerical study for wide-slab effect on reinforced sandy ground[J]. 岩石力学与工程学报, 2005a, 24 (2) : 268-277
    [51] Pietraszczak S. On the undrained response of granular soil involving localized deformation[J]. J. Eng. Mech., 1995(114): 1292-1298
    [52] Pietraszczak S., Mroz Z. Finite element analysis of deformation of strain softening materials[J]. Int. J. Numer. Method. Eng., 1981(17):327-334
    [53] Pietraszczak S., Niu X. On the description of localization deformation[J]. Int. J. Numer. Analyt. Meth. Geomech., 1993(17):791-805
    [54] Potts D.M, Dounias G.T, Vaughan P.R. Finite element analysis of progressive failure of Carsington embankment[J]. Geotechnique,1990,40(1):79-101
    [55] Rowe P.W. A reassessment of the causes of the Carsington embankment failure[J]. Geotechnique, 1991,41 (3):395-421
    [56] Schanz T. A constitutive model for cemented sands[A]. Proc. 4~(th) International Workshop Localization and Bifurcation Theory for Soils and Rocks, Gifu, Japan, 1998: 165-172
    [57] Sedat TUrkemen, Nuri Ozguzel.Grouting a tunnel cave-in from the surface: a case study on Kurtkulag(?)-irrigation tunnel, Turkey[J]. Tunnelling and Underground Space Technology, 18(2003):365-375
    [58] Seki J, Noda K, Washizawa E, Suzuki T. Effect of bench length on stability of tunnel face. In Abdel-Salam ME, editor. Proceedings of the International Congress on Tunneling and Ground Conditions, Caris. Rotteradam: A.A. Balkema, 1994,531-543
    [59] Seokwon Jeon, Jongwoo Kim, Youngho Seo, Changwoo Hong. Effect of a fault and weak plane on the stability of a tunnel in rock-a scaled model test and numerical analysis. SINOROCK2004 Symposium Paper2B 32, Int. J. Rock Mech. Min. Sci. Vol. 41, No. 3
    [60] Shi Genhua,Goodman R E. Block Theory and Its Application to Rock Engineering[M]. New York:Prentice Hall, 1985
    [61] Sitharam T.G., Madhavi Latha G. Simulation of excavation in jointed rock masses using a practical equivalent continuum approach[J]. International Journal of Rock Mechanics & Mining Sciences, 2002,39, pp. 517-525
    
    [62] Skempton A .W. Long-term stability of clay slopes[J]. Geotechnique,1964, 14(2):77-101
    [63] Skempton A.W & Vaughan P.R. The failure of Carsington Dam[J]. Geotechnique, 1993,43(1):151-173
    [64] Sterpi D. An analysis of geotechnical problems involving strain softening effects[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999,23,1427-1454
    [65] Sterpi D. and Cividini A. A physical and numerical investigation on the stability of shallow tunnels in strain softening media[J]. Rock mechanics and rock engineering, 2004,37(4):277-298
    [66] Sterpi D. Application of the FEM to the stability of shallow tunnels. New Frontiers in Computational Geotechnics-Preceeding of 1st International Workshop on New Frontiers in Computational Geotechnics-banef, September, 14-15,2002:61-68
    [67] Szwedzicki T. Rock mass behavior prior to failure[J]. Int J Rock Mech Min Sci & Geotech Abstr, 2003(40):573-584
    [68] Tang C. A., Liu H. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part II: constraint, slenderness, and size effect[J]. Int. J. Rock Mech. Min. Sci., 2000;37(4):571-583.
    [69] Tang C.A., Liu H. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part I: effect of heterogeneity [J]. Int. J. Rock Mech. Min. Sci., 2000;37(4):555-569.
    
    [70] Terzaghi K. Theoretical soil mechanics [M]. New York: John Wiley & Sons, Inc., 1943
    [71] Terzaghi.K. Stability of slopes of natural clay [A]. Proc. Int. Conf. Soil Mech. and Found Engng., Cambridge, MA, USA. Vol.1, 1936,161-165
    [72] TRINH Q.N., BROCH E. and LU M. Three dimensional modeling of a tunnel cave-in and spiling bolt support [A]. ISRM International symposium 2006, 4th Asian Rock Mechanics Symposium.
    [73] Vardoulakis I. Shear band inclination and shear modulus of sand in biaxial tests [J]. Int. J. Numer. Anal. Methods. In Geomech., 1980(40): 103-119
    [74] Wang C, Tannant D.D., Lilly P.A. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D [J]. International Journal of Rock Mechanics and Mining Sciences, 2003,415-424
    [75] Wang, Tannant D.D.. Rock fracture around a highly stressed tunnel and the impact of a thin tunnel liner for ground control[J]. SINOROCK2004 Symposium Paper2B 35,Int. J. Rock Mech.Min.Sci.Vol.41,No.3
    [76]Wu Jian-Hong,Ohnishi Y.,& Nishiyama S.Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using Discontinuous Deformation Analysis(DDA)[J].International Joumal of Rock Mechanics & Mining Sciences,2004,41731-743
    [77]Yuan Wenbo,Chen Jin.Effect of strain-softening behavior of rock mass on stress around a circular opening[J].Mining Science & Technology,Trans Tech pub,1987,706-713
    [78]Zbib Z.M.,Aifantis E.C.On the localization and post-localization behavior of plasticity deformation Ⅰ:On the initiation of shear bands[J].Res.Mechanica,1988(23):261-277
    [79]Zhang F.,Yashima A.,etc.Numerical simulation of progressive failure of slope[A].首届全球华人岩土工程论坛论文集[C],上海,2003,196-207
    [80]Zhu W.C.,Liu J.,etc.Simulation of progressive fracturing process around underground excavation under biaxial compression[J].Tunnelling and Underground Space Technology,2005,20:231-247
    [81]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [82]蔡小林,吴从师,Swoboda G.小间距浅埋隧道的支护设计探讨[J].岩石力学与工程学报,2005,24(增2):5943-5949
    [83]车广才,杜以昌.浅埋隧道塌方冒项处理[J].国防交通工程与技术,2003(4):12-14
    [84]陈成宗.工程岩体声波探测技术[M].北京:中国铁道出版社,1990
    [85]陈春红,刘素锦,王钊.土压力盒的标定[J].中国农村水利水电,2007(2):29-32
    [86]陈光,胡卸文.废弃浅埋洞室围岩稳定性及破坏机制分析[J].四川水力发电,2004,23(3):12-14
    [87]陈进,陈祥福.岩石工程渐进破坏分析的边界元法[J].工程力学,1991,8(4):128-137
    [88]陈进,袁文伯.巷道围岩渐进破坏的粘弹塑性软化分析[J].中国矿业学院学报,1988,38-45
    [89]陈进.岩体结构渐进破坏的理论与实践[博士学位论文].徐州:中国矿业大学,1988
    [90]陈秋南,万文,阳生权.关口垭隧道塌方治理技术[J].中国安全科学学报,2005,15(5):60-62
    [91]陈兴华等.脆性材料结构模型试验[M].北京:水利电力出版社,1984
    [92]陈亚军,王家臣,常来山等.节理岩体边坡渐进破坏的试验研究[J].金属矿山,2005(8):11-14
    [93]陈亚军,王家臣.节理岩体边坡渐进破坏的数值模拟研究[J].有色金属(矿山部分),2006,58(2):28-31
    [94]程桦,孙钧,吕渊.软弱围岩复合式隧道衬砌模型试验研究[J].岩石力学与工程学报,1997,16(2):162-170
    [95]邓雄业,孔祥金.靠椅山隧道大塌方处理[J].公路隧道,2001(4):16-20
    [96]丁文其,王晓形,朱合华等.连拱隧道设计荷载的确定方法[J].中国公路学报,2007,20(5):78-82
    [97]杜青,毕佳,谭跃虎等.石膏相似材料的模型试验[J].施工技术,2005,34(11):71-73
    [98]伏四明,李原.户宋河电站遂洞塌方的类型、原因及处理[J].云南水力发电,1998,14(2):20-23
    [99]高新强,汪海滨,仇文革.引水隧洞塌拱影响因素及其防治措施研究[J].地下空间与工程学报,2005,1(1):140-144
    [100]谷兆祺,彭守拙,李仲奎.地下洞室工程[M].北京:清华大学出版社,1994
    [101]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2003
    [102]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003
    [103]韩伯鲤,陈霞龄,宋一乐等.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9:
    [104]韩伯鲤,张文昌,杨存奋.新型地质力学模型材料(MIB)[J].武汉水利电力学院学报,1983(1):11-17
    [105]韩文忠.大跨度公路隧道大塌方整治技术[J].石家庄铁道学院学报,2001,14(1):91-94
    [106]赫建明,柳崇伟,郭东明.爆破对预留岩体力学特性影响的试验研究[J].矿冶工程,2003,23(6):11~14
    [107]胡庆安,夏永旭,王文正.双连拱隧道施工过程的三维数值模拟[J].长安大学学报(自然科学版),2005,25(1):48-53
    [108]胡艺腾.上湾子Ⅰ级水电站引水遂洞塌方成因分析[J].水利水电科技进展,2002,22(6):55-56
    [109]胡玉银.巷道围岩渐进性破坏分析[J].力学与实践,1995,17(6):47-49
    [110]黄拔州,陈少华,秦峰.小净距隧道在京福高速公路上的实践[J].重庆大学学报,2003,26(10):19-22
    [111]黄伦海,刘伟,刘新荣.单洞四车道公路隧道开挖的模型试验[J].地下空间,2004,24(4):465-469
    [112]黄茂松,钱建固,吴世明.饱和土体应变局部化的复合体理论[J].岩土工程学报,2002,24(1):21-25
    [113]黄茂松,钱建固,吴世明.土坝动力应变局部化与渐进破坏的自适应有限元分析[J].岩土工程学报,2001,23(3):306-310
    [114]黄筑平,杨黎明,潘客麟.材料的动态损伤和失效[J].力学进展,1993,23(4):433-467;
    [115]贾蓬,唐春安,杨天鸿等.具有不同倾角层状结构面岩体中隧道稳定性数值分析[J].东北大学学报(自然科学版),2006,27(11):1275-1278
    [116]蒋树屏,黄伦海,宋从军.利用相似模拟方法研究公路隧道施工力学形态[J].岩石力学与工程学报,2002,21(5):662-666
    [117]蒋树屏,刘洪州,鲜学福.大跨度扁坦隧道动态施工的相似模拟与数值分析研究[J].岩石力学与工程学报,2000,19(5):567-572
    [118]蒋月海.百花山右线隧道大塌方事故处理[J].公路交通技术,2004(10):122-126
    [119]靳晓光,刘伟,秦峰等.高速公路小净距隧道施工方法探讨[J].铁道工程学报,2004(2):63-68
    [120]来弘鹏,谢永利,杨晓华.公路隧道衬砌断面型式模型试验研究[J].岩土工程学报,2006,28(6):740-744
    [121]李代国.成渝高等级公路缙云山隧道坍方浅析[J].科学技术通讯,1995(4):9-12
    [122]李德寅,王邦楣,林亚超.结构模型试验[M].北京:科学出版社,1996
    [123]李建军,蒋树屏,吴明生.坨家山隧道大塌方的管棚施工技术[J].公路交通技术,2005(4):151-155
    [124]李世平,吴振业,贺永年等.岩石力学简明教程[M].北京:煤炭工业出版社,1996
    [125]李斯海.厦门市仙岳山隧道围岩稳定性三维有限元计算分析[J].岩石力学与工程学报,2000,19(2):211-214
    [126]李天斌,徐进,任光明.西安地区断裂构造活动性的地质力学模拟研究[J].工程地质学报,1994(3):34-42
    [127]李天斌等.三峡黄腊石滑坡深部变形、破裂带的模拟研究[J].成都理工学院学报,1996,(4):17-24;
    [128]李勇.新型岩土相似材料的研制及在分岔隧道模型试验中的应用[硕士学位论文].济南:山东大学,2006
    [129]李云鹏,王芝银,韩常领等.不同围岩类别小间距隧道施工过程模拟研究[J].岩土力学,2006,27(1):11-17
    [130]李志业,王明年,翁汉民.大跨度公路隧道结构模型试验研究[J].铁道学报,1996,18(2):114-120
    [131]李仲奎等.三维模型试验新技术及其在大型地下洞群研究中的应用[J].岩石力学与工程学报,2003,22(9);1430-1436
    [132]梁晓丹,刘刚,赵坚.地下工程压力拱拱体的确定与成拱分析[J].河海大学学报(自然科学版),2005,33(3):314-317
    [133]廖巍,徐海清,刘贵应.岩体结构面组合对巷道围岩稳定性的影响[J].安全与环境工程,2004,11(2):65-67
    [134]廖雄华,周健,徐建平等.粘性土室内平面应变试验的颗粒流模拟[J].水利学报,2002(12):11-17
    [135]林刚,何川.连拱公路隧道施工方法模型试验研究[J].现代隧道技术,2003,40(6):1-6
    [136]林刚,何川.双连拱隧道合理施工方法试验研究[A].2003年全国公路隧道学术会议论文集[C].北京:人民交通出版社,2003
    [137]林刚.连拱隧道施工力学行为研究[博士学位论文].成都:西南交通大学,2005
    [138]林晖.海沧隧道建设中的坍方及处理[J].福建农林大学学报(自然科学版),2004,33(1):)126-128
    [139]刘爱华,王思敬.平面坡体渐进破坏模型及其应用[J].工程地质学报,1994,2(1):2-8
    [140]刘宝有.土压力传感器的标定方法[J].传感器技术,1990(3):42-46
    [141]刘宏.隧道塌方的预防措施[J].中南公路工程,2000,25(4):86-88
    [142]刘洪州.隧道塌方分类及其围岩力学特性分析[J].地下空间,1999,19(5):787-792
    [143]刘伟,靳晓光,陈少华.高速公路小净距隧道合理净距的探讨[J].地下空间,2004,24(3):380-385
    [144]刘艳青,钟世航,卢汝绥等.小净距并行隧道力学状态的试验研究[J].岩石力学与工程学报,2000,19(5):590-594
    [145]刘忠玉,陈少伟.应变软化土质边坡渐进破坏的演化模型[J].郑州大学学报(工学版),2002,23(2):37-40
    [146]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-51;
    [147]潘一山,马少鹏等.岩土材料变形局部化的试验研究[J].煤炭学报,2002,27(3):281-284
    [148]潘一山,王学滨,马瑾.基于应变梯度理论的韧性剪切带理论研究[J].地质力学学报,2002,8(1):79-86
    [149]潘永坚,陈光.某浅埋地下洞室围岩稳定及渐进破坏过程分析[J].水文地质工程地质, 2004(3):69-71
    [150]彭海明,彭振斌,韩金田等.岩性相似材料研究[J].广东土木与建筑,2002,12(3):13-17
    [151]彭立敏等.浅埋隧道地表锚杆预加固的作用机理与分析方法[J].铁道学报,2000,22(1):87-91
    [152]彭守拙,宋一乐,梁毅.花冈岩的渐进破坏和数值模拟[J].武汉水利电力大学学报,1994,27(3):286-292
    [153]申玉生,赵玉光等.连拱隧道结构内力样式的模型试验研究及有限元分析[J].现代隧道技术,2005(2):6-10
    [154]沈泰.地质力学模型试验技术的进展[J].长江科学院院报,2001(10):32-36
    [155]沈珠江.应变软化材料的广义孔隙压力模型[J].岩土工程学报,1997,19(3):14-21
    [156]史雅语,刘慧.招宝山超小净距隧道开挖爆破技术[J].工程爆破,1997(12):31-36
    [157]宋二祥.软化材料有限元分析的一种非局部方法[J].过程力学,1995,12(4):93-101
    [158]苏生瑞.复杂地质条件下高速公路隧道施工问题.同济大学博士后研究报告,2003
    [159]孙钧,侯学渊.地下结构[M].北京:科学出版社,1987
    [160]谈杜勇.连拱隧道开挖过程的模型试验研究及其三维数值模拟[硕士学位论文].上海:同济大学,2006
    [161]谭忠盛,杨小林,王梦恕.复线隧道施工爆破对既有隧道的影响分析[J].岩石力学与工程学报,2003,22(2):281-285
    [162]唐春安,朱万成.混凝土损伤与断裂——数值试验[M].北京:科学出版社,2003
    [163]唐春安.脆性材料破坏过程分析的数值试验方法[J].力学与实践,1999(21):21-24.
    [164]唐永红,周游.金丽温高速公路船寮隧道塌方处理[J].湖南交通科技,2005,31(2):104-106
    [165]田志宇,何川,姚勇等.双洞小净距隧道合理净距模型试验研究[A].2005年全国公路隧道学术会议论文集[C].北京:人民交通出版社,2005
    [166]田志宇.公路小净距隧道相似模型试验研究[硕士学位论文].成都:西南交通大学,2006
    [167]万明富,海洪,刘斌.单洞四车道隧道开挖室内模型试验研究[J].东北大学学报(白然科学版),2007,28(8):266-269
    [168]王爱民.三维模型和材料试验仪器研制及量测方法研究[硕士学位论文].北京:清华大学,2004
    [169]王兵,谢锦昌.偏压隧道模型试验及可靠度分析[J].工程力学,1998,15(1):85-93
    [170]王春生,周翠英.梅河高度公路隧道稳定性数值模拟[J].中山大学学报(自然科学版),2005,44(1):38-41
    [171]王庚荪,孔令伟,郭爱国等.含剪切带单元模型及其在边坡渐进破坏分析中的应用[J].岩石力学与工程学报,2005,24(21):3852-3857
    [172]王庚荪.边坡的渐进破坏及稳定性分析[J].岩石力学与工程学报,2000,19(1):29-33
    [173]王贵君.节理裂隙岩体中不同埋深无支护暗挖隧洞稳定性的离散元法数值分析[J].岩石力学与工程学报,2004,23(7):1154-1157
    [174]王国欣.高速公路隧道施工灾病害与监控反馈研究.同济大学博士后学位论文,2005
    [175]王汉鹏,李术才,张强勇等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报,2006,25(9):1842-1847
    [176]王家臣,骆中洲.边坡渐进破坏三维可靠性分析[J].中国矿业,1992,1(2):65-69
    [177]王家臣,谭文辉.边坡渐进破坏三维随机分析[J].煤炭学报,1997,22(1):27-31
    [178]王明年,关宝树,何川.三车道公路隧道在不同构造应力作用下的力学行为研究[J].岩土工程学报,1998,20(1):51-55
    [179]王明年,何川,翁汉民,李志业.3车道隧道模型试验研究及有限元分析[J].公路,1995(9):19-28
    [180]王暖堂,陈瑞阳,谢菁.城市地铁复杂洞群浅埋暗挖法施工技术[J].岩土力学,2002,23(2):208-212
    [181]王戍平.破碎围岩隧道的模拟试验研究[博士学位论文].杭州:浙江大学,2004
    [182]王志伟,王庚荪.裂隙性粘土边坡渐进性破坏的FLAC模拟[J].岩土力学,2005,26(10):1637-1640
    [183]魏群著.散体单元法的基本原理数值方法及程序[M].北京:科学出版社,1991
    [184]吴兰婷,林刚,何川.连拱隧道二次衬砌结构破坏试验研究[J].地下铁道新技术文集2003
    [185]吴梦军,连晋兴,黄伦海等.连拱隧道围岩稳定性模型试验[J].地下空间,2004,24(4):461-464
    [186]吴梦军,许锡宾,刘绪华等.岩溶对公路隧道围岩稳定性的影响研究[J].地下空间,2003,23(1):59-62
    [187]吴梦军,许锡宾,赵明阶等.岩溶地区公路隧道施工力学响应研究[J].岩石力学与工程学报,2004,23(9):1525-1529
    [188]吴梦军,赵明阶,刘绪华等.岩溶区公路隧道围岩稳定性模型试验研究[A].中国岩石力学与工程学会第七次学术大会论文集[C],218-521.中国西安,2002
    [189]梧松,郑荣跃.改进局部安全系数法在土坡稳定性分析中的应用[J].岩土力学,2004,25(11):1766-1769
    [190]武铁鹰,李海波.蒿庄梁隧道塌方成因分析及处理措施[J].世界隧道,2000年增刊:61-63
    [191]夏保祥,程崇国.三车道大断面公路隧道研究现状综述[J].地下空间,2002,22(4):360-367
    [192]徐林生,李永林,程崇国.公路隧道围岩变形破裂类型与等级的判定[J].重庆交通学院学报,2002,21(2):16-20
    [193]徐挺.相似理论与模型试验[M].北京:中国农业机械出版社,1982
    [194]徐学深,王俊强.公路浅埋土质隧道塌方后的技术处理措施[J].现代隧道技术,2002,39(3):57-61
    [195]许月,杨文,张宏博.软质岩体中浅埋隧道开挖支护的数值模拟[J].土工基础,2004,18(4):44-47
    [196]闫天俊,吴立.现代隧道施工中的常见地质灾害问题及防治[J].探矿工程,2003(4):62-64
    [197]严晓新,李玉河.爆破动力对岩石边坡稳定性影响[J].隧道建设,2003,23(6):15-17
    [198]杨小林,王梦恕,王树仁.爆破对岩体基本质量的影响及试验研究[J].岩土工程学报,2000,22(4):461-464
    [199]杨小林.岩石爆破损伤断裂的细观机理及其力学特性研究[博士学位论文].北京:中国矿业大学,1999
    [200]杨晓华,谢永利.公路隧道塌方综合处治技术[J].长安大学学报(自然科学版),2004,24(1):61-64
    [201]于书翰,杜谟远.隧道施工[M].北京:人民交通出版社,1999
    [202]余善荣.红岩隧道特大坍方端处理方案设计简介[J].浙江交通科技,2003(2):53-57
    [203]张德,胡学林.不同初期支护对提高围岩承载能力的试验研究[J].安徽建筑,1999,5:49-51
    [204]张杰,侯忠杰.固—液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161
    [205]张平,李宁,贺若兰.含裂隙类岩石材料的局部化渐进破损模型研究[J].岩石力学与工程学报,2006,25(10):2043-2050
    [206]张溶.中梁山隧道不良地质地段大断面施工[J].公路,1994(9):29-32
    [207]张祥康.鉴定地下洞穴坍塌机理的离心模型试验研究[J].四川水力发电,1989(9):54-59
    [208]张忠超.隧道施工中出现塌方问题的分析[J].中国铁路,2003(9):31-33
    [209]赵明阶,敖建华,刘绪华等.岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J].岩石力学与工程学报,2004c,23(2):213-217
    [210]赵明阶,徐容,许锡宾.岩溶区全断面开挖隧道围岩变形规律及其监测[J].同济大学学报,2004a,32(7):866-871
    [211]赵明阶,徐容,许锡宾.岩溶区全断面开挖隧道围岩变形特性模拟[J].同济大学学报(自然科学版),2004b,32(6):710-715
    [212]赵兴东,段进超,唐春安等.不同断面形式隧道破坏模式研究[J].岩石力学与工程学报,2004,23(增2):4921-4925
    [213]赵震英.洞群开挖围岩破坏过程试验[J].水利学报,1995(12):24-28
    [214]郑光辉.公路连拱隧道与小净距隧道施工力学特征对比研究[硕士学位论文].成都:西南交通大学,2006
    [215]郑永学.矿山岩体力学[M].北京:冶金工业出版社,1995
    [216]郑玉欣.隧道施工塌方机理分析及处治技术[J].铁道工程学报,1999,2(62):69-72
    [217]中华人民共和国行业标准,公路隧道施工技术规范(JTJ042-94),人民交通出版社,1999
    [218]周建民,金丰年、王斌等.洞室交叉部位塌方的处理技术[J].地下空间与工程学报,2005,1(2):278-82
    [219]周健,池永.砂土力学性质的细观模拟[J].岩土力学,2003,24(6):901-906
    [220]周健,池毓蔚,池永等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704
    [22]周健,廖雄华,池永等.土的室内平面应变试验的颗粒流模拟[J].同济大学学报,2002,30(9):1044-1050
    [222]周前祥.边坡二维渐进破坏的随机模糊可靠性[J].中国矿业大学学报,1996,25(2):105-110
    [223]周生国,黄伦海,蒋树屏,刘新荣.黄土连拱隧道施工方法模型试验研究[J].地下空间与工程学报,2005,1(2):188-191
    [224]周太全,华渊,连俊英等.软弱围岩隧道施工全过程非线性有限元分析[J].岩土力学,2004,第25卷增刊:338-342
    [225]周维垣.高等岩石力学[M].北京:水利电力出版社,1990;
    [226]周伟,常晓林,唐忠敏等.溪洛渡高拱坝渐进破坏过程仿真分析与稳定安全度研究[J].四川大学学报(工程科学版),2002,34(4):46-50
    [227]周小平,徐小敏.四角田隧道围岩稳定性三维有限元数值分析[J].重庆建筑大学学报, 2006,28(1):59-62
    [228]周小文,濮家骝,包承钢.砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学院院报,1999,16(4):9-14
    [229]周小文,濮家骝,包承钢.隧洞拱冠砂土位移与破坏的离心模型试验研究[J].岩土力学,1999,20(2):32-36
    [230]周小文,濮家骝.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学,2002,23(5):559-563
    [231]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998
    [232]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796
    [233]朱维申,何满朝.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995
    [234]左保成,陈从新,刘才华等.相似材料试验研究[J].岩土力学,2004,25(11):1805-1808
    [235]左东启等.模型试验的理论和方法[M].北京:水利电力出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700