亚麻的品质及生物处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚麻作为麻类的一种,其织物具有吸湿散湿快、透气性好、纹理自然、色调柔和、风格独特等优点,颇受消费者的喜爱,被广泛应用于服装、服饰等领域。因此,我国亚麻行业生产规模不断扩大,现今的规模仅次于俄罗斯,居世界第二位。但是,我国的种植尚不能满足纺织加工的要求,约有70%左右的原料需要进口。而且,我国亚麻进口量与日剧增。为了对不同国家的亚麻纤维的特点有比较系统的认识,以便可以对不同来源的亚麻制定出更为合理和针对性强的加工工艺,本文中首先对荷兰、比利时、法国、俄罗斯以及中国的亚麻打成麻作了化学成分分析及常规的性能测试,如,细度、强力、长度、伸长等指标,并用扫描电镜、红外、X-射线衍射等测试对这些打成麻进行了分析对比,结果表明荷兰和法国麻的胶质含量较少,中国和俄罗斯麻的胶质含量偏多。而强度方面,荷兰麻的断裂强度最高,其次为俄罗斯麻,中国麻次之,法国和比利时麻的强度相对较小。柔软性则是荷兰、法国、俄罗斯麻较好,中国和比利时麻相对较差,同时,荷兰麻的平均长度也是最长的,离散性也最小,比利时麻、俄罗斯麻次之,而中国打成麻的长度最短。综合起来,荷兰麻的性能相对较优,中国打成麻的果胶和木质素含量较高,细度较大。
     由于纤维在生长的过程中,既是纤维产量的形成过程、也是纤维品质的形成过程。因此,要改善我国亚麻品质的关键问题是要明确亚麻纤维品质的形成规律,明确收获时间对纤维品质的影响,由此,本文对我国亚麻的两大产地:黑龙江和新疆的亚麻进行了系统的研究,在不同收获时期进行采样,并对各个收获期的亚麻进行性能的测试与分析。实验结果证明,新疆、黑龙江亚麻的强伸性能都是在开花期后一周达到了最佳点,因此,从纺织性能的角度来考虑,开花期后一周是亚麻最佳的收获时期。
     而在麻纤维中除了纺织中可利用的纤维素外,还含有非纤维素物质,即,胶质,包括果胶、半纤维素、木质素等,这些胶质将纤维胶结在一起呈现坚硬的片状麻束,这样的麻束是不能直接用于纺纱的,因此,在纺纱之前必须将胶质去除掉,这个过程即为脱胶。因此,脱胶程度及脱胶质量的好坏将直接影响到纺织后加工的顺利进行。而在所有的胶质成分中,果胶是很重要的一种物质,在麻的初加工中果胶的去除将会对脱胶及后加工产生很大的影响,而对果胶的研究则会为脱胶奠定十分重要的理论基础。由此,在对果胶位置的研究中,发现果胶分布在细胞交接处,外层和中间薄层的果胶通过钙离子以离子键的方式结合,而靠内层的果胶以共价键结合。钙离子的分布也是在外层和细胞的交接处的很多,内层较少。这样,钙离子与果胶的分布规律是一致的,本课题中也对钙离子的含量进行了定量的分析,并验证了其与果胶的关系。测试结果证明了钙离子存在于果胶中。钙离子的存在使得果胶大分子形成了egg-box结构,使果胶形成了复杂的空间网状结构,这就加大了脱胶的难度。为了更好地处理亚麻,须对麻中的果胶进行系统的研究,因此,本文中用两种不同的方法提取果胶,进行质谱、液相色谱、红外等测试,以便从理论上更深入地掌握果胶的成分。用两种提取方法所得的提取物经红外、质谱、液相色谱、液质联用等现代分析测试技术测定,结果证明了水溶物和去除钙离子后的果胶可认为是同一种物质,即,水溶物的主要成分为可溶性果胶,而普遍所说的果胶即为果胶酸的钙盐。
     在确定了果胶与钙离子的关系后,选用了EDTA、多聚磷酸钠、草酸和草酸铵等不同的螯合剂对亚麻进行预处理实验,以改进的Fried Test为评定方法,结果发现草酸铵是一种有效的预处理试剂,5g/L的草酸铵在60℃条件下对亚麻处理5小时基本上能够将韧皮与麻秆完全分离。
     同时,本课题针对亚麻传统处理方法的弊端:不容易人为控制、劳动强度大、污染环境、麻质量不稳定等缺陷,对亚麻生物处理进行了研究,以沤麻水及种麻地的土壤作为原料,并经富集培养后进行菌株的筛选,最终找出了一株有效的脱胶菌株,在不同的pH、温度、碳源、氮源等条件下进行产果胶酶工艺的优化,结果得出其最佳产酶条件为马铃薯作氮源,果胶作碳源,pH6,30℃,培养时间60h,摇床转速200r/min。它产出酶的最适作用pH和温度分别为pH5.5、40℃。在此基础上,以残胶率作为指标,对亚麻粗纱进行了实验,在对比实验中发现,在最佳产酶条件下处理粗纱的效果并没有以残胶率作为衡量指标的效果好,这充分说明了酶活并不是评定脱胶效果的最佳方法。用与亚麻结构相似的红麻来进行实验验证,结果也充分证明了这一点。此外,对筛选出的脱胶菌株的培养发现此菌的菌落形态较大,质地比较疏松,外观干燥,不透明,呈现或紧或松的蛛网状、绒毛状或棉絮状;菌落与培养基的连接紧密,菌落正反面的颜色和边缘与中心的颜色常不一致,具体表现为:菌落表面呈现出黑褐色或炭黑色,培养皿反面有不同程度的黄色,正反面颜色呈现明显差别。置于显微镜下观察,可看到菌株的产孢结构是一顶端膨大成圆形的囊状形状,它的分生孢子梗便是由营养菌丝分化的足细胞长出,在其顶端形成膨大的顶囊,在顶囊表面以辐射状长出一层或二层小梗,小梗顶端产生一串圆形的分生孢子。由《中国真菌志》初步鉴定,此菌株为曲霉属。
     最后,对经过草酸铵预处理的亚麻原麻进行生物处理,并经过测试表明了亚麻韧皮在较短的时间内就能够与麻秆完全分离。这个结果也经红外、衍射等现代的测试方法得到验证。在此基础上,对亚麻的生物处理机理进行了初步的探讨。结果得出,由于黑曲霉是化能异养型微生物,能够利用环境中的有机物作碳源,并以有机物氧化产生的化学能为能源来进行生长,因此,在菌体生长的快速阶段,亚麻的生物处理已经开始,这是因为菌株首先利用麻中少量的可溶性糖及其他低聚物质作为营养来源进行生长繁殖,这不仅破坏了胶质分子的紧密稳定的结构,更使得菌的营养菌丝体更顺利、快速地伸入到胶质的分子中,使大分子产生劈裂。再加上菌株的数量剧增,分泌的果胶酶量也不断增加,切断了果胶分子中半乳糖醛酸之间的甙键,使得麻中的胶质在结构上发生了较大的变化,胶质复合体的稳定性受到很大的破坏,此时菌更能直接利用这些物质作为其营养来源进行生长繁殖。而在此过程中,脱胶便完成了。因此,在实际的应用中,即对纤维的处理中,效果并不是和酶活能够对应上,这也从一方面证明了酶活与脱胶并不是直接的关系。
Flax,as one kind of bast fibers,is preferred by consumers and used widely in clothing and garment because its fabric has many virtues,such as,fast moisture absorption and carry-off,natural grain,bland color,unique style,etc..Therefore,the production scale in China is so expanded constantly that it has been listed the second globally,next only to Russia now.But the yield in China is too deficit to meet textile industry about seventy percents of flax materials are imported.Furthermore,import quantum of flax is increasing.The main properties and components ofscutched flax from Holand,Belgium,Fance,Russia and China are tested in this paper,such as, fineness,strength,length,elongation.In addition,SEM,infrared and x-ray diffraction are also used in comparison,so that more informations about different scutched flax can be obtained and more rational and concrete parameters can be set down in manufacture.The results indicate that scutched flaxes from Holand and France have few gum,while that from Russia and China have more gum.The tenacity of flax from Holand is biggest followed by that of Russia and China,flaxes from France and Belgium have smaller tenacity.As far as softness is concerned,flaxes from Holand, France and Russia have better softness,while flaxes from China and Belgium have worse softness.In addition,the average length and discreteness of flax of Holand is best,followed by that of Belgium and Russia,that of China is worst.In conclusion, the properties of flax from Holand is relatively better,scutched flax from China has more pectin and lignin and is coarse.
     The quantity and quality of fiber come into being during growing period. Therefore,the key problem of improving fiber quality is to find out the form law of fiber.So fibers in Xinjiang and Heilongjiang,which are the main fields in China,are studied in detail.Fibers with different growing time are harvested and analysed.The datas prove that the optimal strength and elongation of fiber are best when flax is harvested one week after blossom.Therefore,the optimal harvesting time is one week after blossom when textile properties are taken into account.
     Not only cellulose that can be used in textile industry but also non-cellulose lie in bast fiber,non-cellulose is also named gum including pectin,hemicellulose and lignin, which glues cellulose into stiff sheet bundle fiber,which can not be spinned,therefore, gum must be removed before spinning,this process is retting.Thus,the degree and quality of retting can affect downstream process.As pectin is one important component in gum and its removal can influence postprocessing in textile,so research on pectin is theoretical foundation of retting.The results prove that pectin lies in the junction of cells and its macromolecule is linked by electrovalent bond in outer and lamella,while pectin is connected by covalent bond in inner bast.At the same time, more calcium ion distributes in outer and junction of cell and few lies in inner of cell, so the distribution trends of pectin and calcium ion are same.The quantity of calcium ion is analysed in this paper and the ralation between pectin and calcium ion is also studied,the results indicate that calcium ion lies in pectin of flax.Calcium ion makes macromolecule of pectin turn into egg-box structure,which is meshy and intricate. The structure of pectin makes retting more difficult.Therefore research on pectin is carried in the paper in order to treat flax efficiently.Pectin is extracted with two methods and tested by mass spectrum,liquid chromatogram and infrared.As a result, the hydrotrope and the pectin in which calcium ion is removed are the same matter, that is,hydrotrope is soluble pectin,while pectin is the calcium ion of pectic acid.
     Since calcium ion chelateds the macromolecule of pectin,chelating agents,such as elhylene diamine tetraacetic acid,sodium salt of triphosphoric acid,oxalic acid and ammonium oxalate,are involved in the pretreatment experiments of flax.The evaluation is based on modified Fried Test.The results manifest that ammonium oxalate is effective,bast and xylem can be separated fully when flax is treated with ammonium oxalate,the conditions are:the concentrationof ammonium oxalate 5g/L, 60℃,5h.
     Microbe treatment of flax is also studied in the paper in order to conquer the defects of traditional retting,for example,unmanageable,intensity of labor, environmental pollution and unstable quality of fiber.A effective fungus strain is separated and screened from retting water and soil in planting area of flax,pH, temperature,carbon source and nitrogen source are involved in optimization experimnts of pectinase production.The results show that the optimal production conditions ofpectinase are:nitrogen source potato,carbon source pectin,pH6,30℃, culture time 60h,speed of shaker 200r/min,the optimal pH and temperature of pectinase are pH5.5,40℃,respectively.Then flax roving is treated,evaluation is based on residual gum content.Datas indicate that effect of flax roving treated based on residual gum content is better than that treated under optimal pectinase productin conditions,which is proved by treatment of kenaf that is similar to flax in structure. All these show that enzyme activity is not suitable for evaluating retting.In addition, the colony of the strain is big,loose,opaque and arachnoid,connection between strain and substrate is tight,the colors of two sides of colony are different,marginal and central colors are also different,that is,the surface of colony is pitchy or carbonarius,the other side is yellow with different brightness,differences of colors of two sides are obvious,spherical gleba of strain is saccate whose top expands into roundness,its spore results from podocyte differentiated by nutrient hypha,one or two radialized trichidiums come into being at the top of gleba,from which spores are produced.All these are observed with microscope.This strain is aspergillus certificated by certification handbook of China fungus.
     Last,raw flax is treated with ammonium oxalate followed by microbe retting, thus,bast separate from xylem fastly proved by infrared and diffraction.Mechanism of microbe retting is also studied.The results indicate that aspergillus niger,as one kind of mcirobe whose carbon source and energy come from external organics,can absorb carbon source and energy from organics and its oxidation reaction to grow. Therefore,microbe retting of flax begins at the stage of fast growing period of strain, strain use oligomer in flax as its nutrient to propagate,which damage tight structure of gum and make it easy for mycelium to enter molecule,thus,cleavage appears in molecule of gum.Furthermore,glucosidic bond in macromolecule of pectin breaks due to pectinase excreted by increasing strain,which makes great change and damage occur in macromolecule,at this time,strain can use nutriment from pectin easily, during which retting completes.Therefore,there is not a significant linear correlation between retting effect and enzyme activity in practical flax treatment.
引文
[1]Kessler R.W.,Kohler R.,New strategies for exploiting flax and hemp,Chemical Technology,1996,12,34-42.
    [2]张文芹,常丽娜摘译,一个世纪来的亚麻产量及纺纱能力,棉纺织技术,1999,2,63.
    [3]中国麻纺行业协会,欧洲麻纺业给我们的启示,中国经贸导刊,2004,7,45.
    [4]韦开蕾,世界亚麻生产和纺织重心东移,世界热带农业信息,1998,9,13.
    [5]中国亚麻生产规模居世界第二,中国农业信息快讯,2001,11,37.
    [6]吕江南,贺德意,王朝云等,全国麻类生产调查报告(Ⅴ),中国麻业,2004,6,296-301.
    [7]杨会盛,麻类作物,1959,高等教育出版社,北京,137.
    [8]严伟,亚麻纺纱、织造与产品开发,2005,2,中国纺织出版社,北京,23.
    [9]Kimmel L.B.,Boylston E.K.,Goynes W.R.,et al.,Nontraditionally retted flax for dry cotton blend spinning,Textile Research Journal,2001,5,375-380.
    [10]Morvan C.,Onzighi C.A.,Girault R.,et al.,Building flax fibers:more than one brick in the walls,Plant Physiology and Biochemistry,2003.41,935-944.
    [11]史加强,亚麻生物化学加工与染整,2005,中国纺织出版社,北京,66.
    [12]Turner A.J.,The structure of textile fibers:the structure of flax,the Journal of the Textile Institute,1949,9,857-868.
    [13]姚穆,周锦芳,黄淑珍等等,纺织材料学,2000,第二版,中国纺织出版社,北京,65.
    [14]邵宽,纺织加工化学,1996,中国纺织出版社,北京,23.
    [15]Buschle-Diller G.,Fanter C.and Loth F.,Structural changes in hemp fibers as a result of enzymatic hydrolysis with mixed enzyme systems,Textile Research Journal,1999,4,244-251.
    [16]Evans J.D.,Akin D.E.,Foulk J.A.,Flax-retting by polygacturonase-containing enzyme mixtures and effects on fiber properties,Journal of Biotechnology,2002,97,223-231.
    [17]Zhang J.,Henriksson H.,Szabo I.J.,et al.,The active component in the flax-retting system of the zygomycete rhizopus oryzae sb is a family 28polygalacturonase,Journal of Industrial Microbiology Biotechnology,2005,32,431-438.
    [18]Morrison W.H.,Himmelsbach D.S.,Akin D.E.,et al.,Chemical and spectroscopic analysis of lignin in isolated flax fibers,Journal of Agricultural and Food Chemistry,2003,51,2565-2568.
    [19]刘仁强,纤维素化学基础,1985,科学出版社,北京,156.
    [20]Barton F.E.,Akin D.E.,Morrison W.H.,et al.,Analysis of fiber content in flax stems by near-infrared spectroscopy,Journal of Agricultural and Food Chemistry,2002,50,7576-7580.
    [21]Morrison W.H.,Akin D.E.,Chemical composition of components comprising bast tissue in flax,Journal of Agricultural and Food Chemistry,2001,49,2333-2338.
    [22]Morrison W.H.,Akin D.E.,Himmelsbach D.S.,et al.,Chemical,microscopic,and instrumental analysis of graded flax fiber and yam,Journal of the Science of Food and Agriculture,1999,79,3-10.
    [23]Akin D.E.,Gamble G.R.,Morrison W.H.,et al.,Chemical and structural analysis of fiber and core tissues from flax,Journal of the Science of Food and Agriculture,1996,72,155-165.
    [24]龙德树,杨传强,曾宪庆等,亚麻和胡麻纤维的性能研究,纺织学报,1999,6,136-140.
    [25]Carr D.J.,Cruthers N.M.,Laing R.M.,et al.,Fibers from three cultivars of new Zealand flax(phormium tenax),Textile Research Journal,2005,2,93-98.
    [26]方明,亚麻原色纱粗纱煮练工艺设计,黑龙江纺织,1999,3,1-3.
    [27]Voronova M.I.,Petrova S.N.,Lebedeva T.N.,et al.,Changes in the structure of flax cellulose induced by solutions of lithium,sodium,and potassium hydroxides,Fiber Chemistry,2004,6,408-412.
    [28]Izgorodin A.K.,Konoplev Y.V.,Zakharov A.G.,et al.,Study of the possible use of intermediate flax as raw material for production of cellulose,Fiber Chemistry,2004,5,343-347.
    [29]张宝胜、鲁文良,浅析亚麻纤维脱胶与亚麻粗纱煮练漂白工艺,黑龙江纺织,1999,4,1-2.
    [30]符海平、蔡连军、王玉凤,亚麻粗纱煮漂新工艺的研究,齐齐哈尔大学学 报,1998,2,31-33,36.
    [31]严伟、李崇丽、吕明科,亚麻纺纱、织造与产品开发,2005,中国纺织出版社,北京,176-183.
    [32]亚麻粗纱煮漂工艺(pantent),中国,CN 1144279A,1997.3.5.
    [33]Adamsen A.P.S.,Akin D.E.,Rigsby L.L.,Chemical retting of flax straw under alkaline conditions,Textile Research Journal,2002,9,789-794.
    [34]Shamolina I.I.,Bochek A.M.,Zabivalova N.M.,et al.,An investigation of structural changes in short flax fibers in chemical treatment,Fibers and Textiles in Eastern Europe,2003,1,33-36.
    [35]Rognes H.,Gellerstedt G.,Henriksson G,Optimization of flax fiber separation by leaching,Cellulose Chemistry and Technology,2000,34,331-340.
    [36]Henriksson G,Edksson K.E.L.,Kimmel L.,et al.,Chemical/physical retting of flax using detergent and oxalic acid at high pH,Textile Research Journal,1998,12,942-947.
    [37]彭源德,刘正初,冯湘沅等,亚麻快速生物脱胶技术研究,中国麻业,2003,3,135-138.
    [38]彭源德,刘正初,冯湘沅等,亚麻快速生物脱胶技术研究,中国麻业,2004,3,137-140.
    [39]Akin D.E.,Rigsby L.L.,Hendksson G,et al.,Structural effects on flax stems of three potential retting fungi,Textile Research Journal,1998,7,515-519.
    [40]Henriksson G,Akin D.E.,Hardin R.T.,et al.,Identification and retting efficiencies of fungi isolated from dew-retted flax in the United States and Europe,Applied and Environmental Microbiology,1997,10,3950-3956.
    [41]Chesson A.,The maceration of linen flax under anaerobic conditions,Journal of Applied Bacteriology,1978,45,219-230.
    [42]Gorshkova T.A.,Wyatt S.E.,Salnikov V.V.,et al.,Cell-wall polysaccharides of developing flax plants,Plant Physiology,1996,110,721-729.
    [43]Averil E.Brown and H.S.S.Sharma,Production of polysaccharide-degrading enzymes by saprophytic fungi from glyphosate-treated flax and their involvement in retting,Annals of Applied Biology,1984,105,65-74.
    [44]Henriksson G,Akin D.E.,Rigsby L.L.,et al.,Influence of chelating agents and mechanical pretreatment on enzymatic retting of flax,Textile Research Journal,1997,11,829-836.
    [45]Akin D.E.,Morrison W.H.,Gamble G.R.,et al.,Effect of retting enzymes on the structure and composition of flax cell walls,Textile Research Journal,1997,4,279-287.
    [46]Adamsen A..PS.,Akin D.E.,Rigsby L.L.,Chelating agents and enzyme retting of flax,Textile Research Journal,2002,4,296-302.
    [47]Akin D.E.,Foulk J.A.,Dodd R.B.,Influence on flax fibers of components in enzyme retting formulations,Textile Research Journal,2002,6,510-514.
    [48]Himmelsbach D.S.,Khalili S.,Akin D.E.,The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax(linum ustatissimum L)stems,Journal of the Science of Food and Agriculture,2002,82,685-696.
    [49]Henriksson G,Akin D.E.,Slomezynski D.,et al.,Production of highly efficient enzymes for flax retting by rhizomucor pusillus,Journal of Biotechnology,1999,68,115-123.
    [50]Akin D.E.,Rigsby L.L.,Perkins W.,Quality properties of flax fibers retted with enzymes,Textile Research Journal,1999,10,747-753.
    [51]Akin D.E.,Foulk J.A.,Dodd R.B.,et al.,Enzyme-retting of flax and characterization of processed fibers,Journal of Biotechnology,2001,89,193-203.
    [52]Akin D.E.,Rigsby L.L.,Hardin I.R.,et al.,Enzyme retted fibers from fiber and seed flax,Textile Chemist and Colorist and American Dyestuff Reporter,2000,12,36-39.
    [53]Akin D.E.,Dodd R.B.,Perkins W.,et al.,Spray enzymatic retting:a new method for processing flax fibers,Textile Research Journal,2000,6,486-494.
    [54]Evans J.D.,Akin D.E,,Morrison W.H.,et al.,Modifying dew-retted flax fibers by means of an air-atomized enzyme treatment,Textile Research Journal,2002,7,579-585.
    [55]Akin D.E.,Morrison W.H.,Rigsby L.L.,et al.,Plant factors influencing enzyme retting of fiber and seed flax,Journal of Agricultural and Food Chemistry,2001,49,5778-5784.
    [56]Sampaio S.,Bishop D.,Shen J.,Physical and chemical properties of flax fibers from stand-retted crops desiccated at different stages of maturity,Industrial Crops and Products,2005,21,275-284.
    [57]Gamble GR.,Snook M.E.,Henriksson G,et al.,Phenolic constituents in flax bast tissue and inhibition of cellulase and pectinase,Biotechnology Letters, 2000,22,741-746.
    [58]Davies G C.and Bruce D.M.,Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers,Textile Research Journal,1998,9,623-629.
    [59]Mooney C,Stolle-Smits T.,Schols H.,et al.,Analysis of retted and non retted fibers by chemical and enzymatic means,Journal of Biotechnology,2001,89,205-216.
    [60]Epps H.H.,Akin D.E.,Foulk J.A.,et al.,Color of enzyme-retted flax fibers affected by processing,cleaning,and cottonizing,Textile Research Journal,2001,10,916-921.
    [61]Akin D.E.,Epps H.H.,Archibald D.D.,et al.,Color measurement of flax retted by various means,Textile Research Journal,2000,10,852-858.
    [62]Akin D.E.,Slomczynski D.,Rigsby L.L.,et al.,Retting flax with endopolygalacturonase from rhizopus oryzae,Textile Research Journal,2002,1,27-34.
    [63]Pyc R.,Sojka-Ledakowicz J.,Bratkowska H.,Biosynthesis of enzymes by aspergillus niger IBT-90 and an evaluation of their application in textile technologies,Fibers and Textiles in Eastern Europe,2003,4,71-77.
    [64]Zhang J.,Johansson G,Pettersson B.,et al.,Effects of acidic media pre-incubation on flax enzyme retting efficiency,Textile Research Journal,2003,3,263-267.
    [65]Evans J.D.,Akin D.E.,Morrison W.H.,et al.,Modifying dew-retted flax fibers and yarns with a secondary enzymatic treatment,Textile Research Journal,2003,10,901-906.
    [66]Lipp-Symonowicz B.,Tanska B.,Wolukanis A.,et al.,Influence of enzymatid treatment on the flax fiber morphological structure,physico-chemical properties and metrological parameters of yarn,Fibers and Textiles in Eastern Europe,2004,1,61-65.
    [67]Lipp-Symonowicz B.,Tanska B.,Sapieja A.,Ecological aspect of preliminary treatments of flax fiber,Fibers and Textiles in Eastern Europe,2004,2,63-66
    [68]Sharma H.S.S.,Whiteside L.,Kernaghan K.,Enzymatic treatment of flax at the roving stage for procuction of wet-spun yam,Enzyme and Microbial Technology,2005,37,386-394.
    [69]张健飞,江蕾,侯刚华等,亚麻粗纱及织物生物酶精练探讨,染整技术,2002,2,12-16.
    [70]Bhattacharya S.D.and Shah J.N.,Enzymatic treatment of flax fabric,Textile Research Journal,2004,7,622-628.
    [71]Sharma H.S.S.,Faughey G,Lyons G.,Comparison of physical,chemical,and thermal characteristics of water-,dew-,and enzyme-retted flax fibers,Journal of Applied Polymer Science,1999,74,139-143.
    [72]Petrova S.N.,Volkova I.Y.,Zakharov A.G,Kinetics of alkaline delignification of flax bifre,Fiber Chemistry,2004,6,393-395.
    [73]Velde K.V.D.and Kiekens F,Thermal degradation of flax:the determination of kinetic parameters with thermogravimetric analysis,Journal of Applied Polymer Science,2002,83,2634-2643.
    [74]Wong K.K.,Tao X.M.,Yuen C.W.M.,et al.,Topographical study of low temperature plasma treated flax fibers,Textile Research Journal,2000,10,886-893.
    [75]Wong K.K.,Tao X.M.,Yuen C.W.M.,et al.,Low temperature plasma treatment of linen,Textile Research Journal,1999,11,846-855.
    [76]浙江麻纺织厂,黄麻纺织手册,1982,纺织工业出版社,北京,22.
    [77]邓勃,宁永成,刘密新,仪器分析,1991,5,清华大学出版社,北京,290.
    [78]于世林,夏心泉,李寅蔚等,波谱分析法,1991,重庆大学出版社,重庆,48.
    [79]邵宽,纺织加工化学,1996,中国纺织出版社,北京,23-28.
    [80]Serge P.,Karim M.,Catherine H.P.,The three-dimensional structures of the pectic polysaccharides,Plant physiology biochemistry,2000,38,37-55.
    [81]Turner A.J.,The structure of textile fibers:the structure of flax,the Journal of the Textile Institute,1949,9,857-868.
    [82]Zhang J.,Henriksson H.,Szabo I.J.,et al.,The active component in the flax-retting system of the zygomycete rhizopus oryzae sb is a family 28polygalacturonase,Journal of Industrial Microbial Biotechnology,2005,32,431-438.
    [83]AK.H.,邵宽,亚麻木质素的结构及其对纤维性质的影响,国外纺织技术,1991,4,4-6.
    [84]Morrison W.H.,Himmelsbaeh D.S.,Akin D.E.,et al.,Chemical and spectroscopic analysis of lignin in isolated flax fibers,Journal of Agricultural and Food Chemistry,2003,51,2565-2568.
    [85]詹怀宇,纤维化学与物理,2005,科学出版社,北京,287.
    [86]管映亭,孙小寅,韧皮纤维胶质的研究,山西纺织,2001,2,13-16.
    [87]王鹏,谢益民,范建云,果胶-木质素复合体化学结构13C同位素示踪法的研究,陕西科技大学学报,2006,5,17-23,44.
    [88]杨宏顺,果蔬气调冷藏下表皮和果胶超微结构与品质变化,博士学位论文,上海交通大学,2005,39.
    [89]苏克曼,潘铁英,张玉兰,波谱解析法,2002,华东理工大学出版社,上海,1-2.
    [90]Demarty M.,Morvan C.,Thellier M.,Calcium and the cell wall,Plant,Cell and Environment,1984,7,441-448.
    [91]Morvan C.,Abdul H.A.M.,Jauneau A.,Thoiron B.,Demarty M.,Incorporation of D-[U-14C]glucose in the cell wall of linum plantlets during the first steps of growth,Plant and Cell Physiology,1991,32,609-621.
    [92]Jauneau A.,Cabin-Flarnan A.,Verdus M.C.,et al.,Involvement of cailcium in the inhibition of endopolygalacturonase activity in epidermis cell wall of Linum usitatissimum,Plant physiology and Biochemistry,1994,32,839-846.
    [93]Vian B.,Roland J.C.,Affinodeteetion of the sites of formation and of the further distribution of polygalacturonans and native cellulose in growing plant cell,Biology of the Cell,1991,71,43-55.
    [94]Jauneau A.,Quentin M.and Driouieh A.,Micro-heterogeneity of pectins and calcium distribution in the epidermal and cortical parenchyma cell walls of flax hypocotyl.Protoplasma,1997,198,9-19.
    [95]http://zhidao.baidu.com/question/40046110.html,2008-08-16
    [96]Mooney C.,Stolle-Smits T.,Schols H.,et al.,Analysis of retted and non retted fibers by chemical and enzymatic means,Journal of Biotechnology,2001,89,205-216.
    [97]Zhang J.,Johansson G.,Pettersson B.,et al.,Effects of acidic media pre-incubation on flax enzyme retting efficiency,Textile Research Journal,2003,3,263-267.
    [98]http://zhidao.baidu.corn/question/8587731.html?fr=-qrl&fr2=query,2008-08-16
    [99]陈石根,周润琦,酶学,1997,复旦大学出版社,上海,192-202.
    [100]Harvey W.B.,Douglas S.C.,Biochemical Engineering,Marcel Dekker,Inc,1996,185.
    [101]Xiu Z.L.,Zeng A.P.,AN L.J.,et al.,Transient responses and mathematical modeling of kldebsiella pneumoniae to dilution rate and glycerol concentration step changes in continuous cultures,Journal of Chemistry Engineering of Chinese University,2000,14,1,53-58.
    [102]齐祖同,中国真菌志,第五卷曲霉属及其相关有性型,1997,科学出版社,北京,102.
    [103]Kessler R.W.,Kohler R.,New strategies for exploiting flax and hemp,Chemical Technology,1996,12,34-42.
    [104]顾伯明,亚麻纺纱,1987,纺织工业出版社,北京,148-157.
    [105]Lipp-Symonowicz B.,Tanska B.,Wolukanis A.,et al.,Influence of enzymatid treatment on the flax fiber morphological structure,physico-chemical properties and metrological parameters of yarn,Fibers and Textiles in Eastern Europe,2004,1,61-65.
    [106]Lipp-Symonowicz B.,Tanska B.,Sapieja A.,Ecological aspect of preliminary treatments of flax fiber,Fibers and Textiles in Eastern Europe,2004,2,63-66.
    [107]Sharma H.S.S.,Whiteside L.,Kernaghan K.,Enzymatic treatment of flax at the roving stage for procuction of wet-spun yarn,Enzyme and Microbial Technology,2005,37,386-394.
    [108]张健飞,江蕾,侯刚华等,亚麻粗纱及织物生物酶精练探讨,染整技术,2002,2,12-16.
    [109]T.D.布洛克,微生物生物学,1980,人民教育出版社,北京,196-206
    [110]李汝勤,纤维和纺织品测试技术,2005,第二版,东华大学出版社,上海,420-444.
    [111]石磊,傅佑丽,陈靠山,柘树根多糖的分离纯化及组成初步研究,山东大学学报,2007,42,74-77.
    [112]王键,棉秆纤维抽提木素的红外光谱分析,红外,2006,27,4,25-28.
    [113]周德庆,微生物学教程,2002,高等教育出版社,北京,102-109.
    [114]管映亭,孙小寅,韧皮纤维胶质的研究,陕西纺织,2001,2,13-16.
    [115]汤鸣强 谢必峰,果胶酶不同组分的酶学性质研究,福建化工,2004,1, 13-15,3.
    [116]张进献,李冬杰,李宏杰,果实软化过程中细胞壁结构和组分及细胞壁酶的变化,河北林果研究,2007,6,180-182,186.
    [117]Zhang J.,Biochemical study and technical applications of fungal pectinase,PhD thesis,Uppsala University,2006,2.
    [118]郑皆德,苎麻生物酶脱胶及工艺优化研究,硕士学位论文,西安工程科技学院,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700