接触絮凝工艺应用于低温低浊水体及印染企业尾水深度处理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接触絮凝是一种新型的水处理工艺技术原理与方法,微絮凝-直接过滤作为接触絮凝的代表性工艺,在水处理实践中具有广泛的应用前景。论文以接触絮凝工艺技术原理与开发应用为主要研究目标,首先对絮凝的有关基础理论与发展现状,絮凝剂的发展概况,以及接触絮凝工艺的应用进展情况进行了文献综述,并围绕以下几方面问题进行了全面系统的实验研究:
     1.絮凝剂是接触絮凝工艺的重要构成要素,其性能优劣直接影响到整体工艺的处理效果。因此对絮凝剂的形态组成及其作用机理进行深入研究具有重要意义。论文首先对碱化度及铝的不同聚合形态对絮凝效果的影响进行了实验研究,通过烧杯混凝实验对絮凝剂进行优化筛选,并对高效聚合氯化铝的最优絮凝效果进行了实验验证。
     2.低温低浊水体由于水的粘度大、颗粒物含量少,絮凝剂投加到水体后絮凝反应慢,生成的絮体(矾花)小、不易沉降,且极易穿透滤层等因素影响,一直是给水厂处理的难点。论文通过两个低温低浊水体处理的具体实例,对接触絮凝工艺技术的应用进行了深入研究。通过投加少量石英砂,人为增加水体浊度这一强化手段,对新疆额尔齐斯河低温低浊水体进行接触絮凝试验研究,并优化了反应条件;以微絮凝-直接过滤工艺对北京市某水厂冬季沉淀池出水进行接触絮凝过滤实验研究,通过絮凝剂的筛选及滤料粒径的优化,对混凝及过滤过程进行协同与强化,提高滤床的截污能力,优化了整体工艺运行参数。
     3.应用接触絮凝工艺对东江流域典型印染废水毒害污染物的削减与水质回用进行了实验研究。以微絮凝-直接过滤以及混凝-沉淀-多介质过滤等工艺技术,对东江流域典型印染企业尾水进行深度处理,并进行水质回用适应性研究;通过纳米铁复合投加强化措施,以混凝-沉淀-多介质过滤工艺对印染尾水有机污染物的降解去除进行了实验研究。
     根据以上的实验研究主要得出了以下几点结论:
     1.高盐基度的聚合氯化铝的絮凝效果要优于低盐基度的聚合氯化铝;高Alb含量聚合铝形成的絮体较为松散不易沉淀,高Alc含量聚合铝形成的絮体密实易于沉淀分离且对有机物和颗粒物的去除效果较好;絮凝剂高效聚合氯化铝(HPAC)的絮凝效果要优于普通聚合氯化铝(PACl)。
     2.针对低温低浊水体处理来讲,较优的絮凝工艺条件是:慢速反应时间T值,以20-25min为宜,慢速反应搅拌强度G值可采用30S-1。人为增加浊度实验表明:在低温低浊水体的絮凝过程中投加SiO2可以增大颗粒物之间的碰撞几率,改善絮凝效果,但不宜投加过多,否则会增加出水浊度。当采用接触絮凝工艺对其进行处理时比传统的水处理工艺有效地改善了出水水质。
     3.经实验研究表明,接触絮凝工艺中的代表工艺-微絮凝-直接过滤可以有效地使印染企业尾水达到回用标准。其中,当使用多介质过滤工艺时的处理效果要好于匀介质过滤工艺;在絮凝剂选择方面,高效聚合氯化铝的处理效果要好于传统的硫酸亚铁和聚合氯化铝。论文针对印染废水的毒害污染削减的问题研究出一种新型的尾水深度处理工艺——纳米铁+混凝-沉淀-多介质过滤工艺。通过实验证实,该工艺用于对印染企业尾水进行毒害物质削减是可行的。絮凝剂选用新型高效絮凝剂HPAC-9可以使处理效果更佳。纳米铁的引入是这一工艺的创新点,少量纳米铁的存在,强化了水体有机污染物的降解及混凝协同去除。但是由于纳米铁活性较高故而投加量不宜过大,否则会使得尾水的有机污染物进一步降解,形成转化产物;而且,由于Fe2+的缓慢氧化,处理出水静置一段时间后,有可能导致水体变色,呈现铁离子的颜色。
Contact flocculation technology with micro-flocculation– filtration as a representative process has found wide application in both water and wastewater treatment practice, which is promising to provide a new fundamental principle of separation technology in water treatment processes.
     This thesis aims at the development and application of contact flocculation process in water treatment technology. The basic theory of coagulation and flocculation and its recent development in polymeric flocculants of hydroxyl ployaluminum (PACl) in both the interaction mechanisms and the suitable applied technology are reviewed in the paper based on the literature survey. Comprehensive and systematic experimental study is then conducted, which is mainly focused on the following aspects:
     1. As an important buildup element of contact flocculation process, the speciation and distribution of hydroxyl polymeric aluminum flocculants play a significant role in the overall process performance. Therefore, the study of aluminum polymer species and their interacting mechanism is of great concern. In the first part of the thesis, the effects of basicity and different aluminum polymer species on the coagulation performance of PACl coagulants are carried out by jar test to screen out the optimized PACl flocculants with high efficiency for the contact flocculation process of micro-flocculation– filtration technology.
     2. Treatment of drinking water with low temperature and low turbidity is proved to be a tough task due to its high viscosity, less particulates, slow coagulation rate after dosing the flocculants, and the small flocs (alum) that are usually formed in the coagulation process are hard to settle down, causing them easy to penetrate through the filter layers in the filtration bed. In the second part of this paper, two cases of study in the drinking water treatment with low-temperature and low turbidity are experimentally performed using contact flocculation technology. By dosing a small amount of quartz sand to the raw water from the Irtysh River in Xinjiang to artificially increase the turbidity for the enhancement of coagulation performance, experiments are carried out in pilot-scale to optimize the contact flocculation reaction conditions; In the second case study, water samples with low temperature and low turbidity from the settling tank of water plant during the winter in Beijing were investigated using both the conventional and enhanced filtration process. Based on the head loss, particle counts, TOC and COD, conditions of PACl dosage, particle size of filter medium, and the coagulation time etc. of the micro-flocculation and enhanced filtration process are screened out in order to improve sewage interception capabilities of the filter bed, and to optimize the operating parameters of the overall process performance .
     3. To demonstrate the applicability of contact flocculation technology in the advanced treatment of typical dye printing wastewater effluents downstream in the Dongjiang river basin, both the micro-flocculation / direct filtration and the Coagulation - Precipitation - Multi-media filtration processes are investigated on the tailing wastewater discharged from a local bleaching and dyeing mill of textile industry for the purpose of water reuse and pollutants emission reduction. Jar test is performed on the dye printing wastewater effluents to optimize the coagulation conditions in the micro-flocculation / direct filtration combined process and through the dosing of the composite coadulants nano iron is introduced as an aid into the Coagulation - Precipitation - Multi-media filtration process to enhance the removal of organic pollutants for their emission reduction.
     The following conclusions have been reached based on the above experimental results:
     1. PACl with high alkalinity is usually demonstrated better coagulation performance than that with the low one; High-Alb content PACl flocculants are easy to form loose flocs to be difficult to settle down for separation, while PACl with high-level Alc often leads to compact flocs that facilitate the removal of organics and particulates by the precipitation process of flocs; HPAC flocculants are proved to be superior to the ordinary PACl coagulants in the performance.
     2. For the treatment of raw water with low temperature and low turbidity, optimized coagulation conditions are as follows: 20-25 min for the slow agitation reaction time(T) with 30 S-1of velocity gradient (G). The introduction of small amounts of silica particles into the low temperature and low turbidity water body can largely improve the coagulation performance due to the increase of collision efficiencies between the aquatic particles, but dosing of SiO2 particles should be precisely controlled in a small quantity, otherwise it will deteriorate the effluent water quality due to a poor residual turbidity removal. It is concluded that compared to the conventional water treatment technology micro-flocculation /direct filtration process can effectively improve the water quality in the drinking water treatment with low temperature and low turbidity
     3. Micro-flocculation - direct filtration, which is a representative technology of contact flocculation process, can be successfully exploited in the advanced treatment of typical dye printing wastewater effluents for the purpose of water reuse and pollutants emission reduction. The effluents by micro-flocculation - direct filtration process can meet the urban recycling water quality standard for industrial use (GB/T19923-2005), in which better results can be obtained in the multi-media filtration than that in the uniform media process; In the selection of coagulants, HPAC is better than conventional ferrous sulfate and PACl in the overall process performance. Furthermore, a novel advanced treatment process, i.e. nanoscale iron + coagulation - precipitation - Multi-media filtration, has been investigated on the dye printing wastewater to reduce the emission of toxic pollutants. The selection of high-efficient flocculants in the serious products of HPAC-9 can offer better treatment results. Dosing of a small amount of nano-iron is the key point for this process, which may facilitate the degradation of organic pollutants in wastewater and enhance the overall removal of organics by combined processes, and therefore reduce the emission of the toxic pollutants into the water body. Nevertheless, the dosage of nano- iron should not be large due to its high reactivity, otherwise small molecular weight degradation products of organic pollutants may be formed, which may complicate the performance of organic removal by the combined processes; Moreover, the slow oxidation of Fe2 + residual in the effluents may cause a color change of the effluent water when preserved for some time.
引文
[1] Bersillon J L. Studies of hydroxyaluminum complexes in aqueous Solution [J]. Jour. research U.S. Geol. Survey, 1978, 6(3): 325.
    [2] Stumm W, Morgan J J. Chemical aspects of coagulation [J]. JAWWA, 1962, 54: 971.
    [3]汤鸿霄.浑浊水铝矾絮凝机理的胶体化学观[J].中国土木学报, 1965, 45-55.
    [4] Hahn H H. Stumm W. Kinetics of coagulation with hydrolyzed Al(III) [J]. Coll. Interf. Sci, 1968, 28: 133.
    [5] Ives K. J (eds.)“The Scientific Basis of Flocculation”. Silt hoff & Noordhoff, Netherland. 1978.
    [6] [苏]EД巴宾科夫.论水的混凝[M].北京:中国建筑工业出版社, 1982: 56-78.
    [7]李涛.絮体粒度、结构、强度及其行为特性的研究[D].北京:中国科学院生态环境研究中心, 2007: 4-5.
    [8]徐毅. Al13形态的分离提纯及其稳定性和凝聚絮凝作用机理[D].北京:中国科学院生态环境研究中心, 2003: 21-22.
    [9] O'Melia C R. Coagulation in Wastewater Treatment. In the Scientific Basis of Flocculation. NATO ASI Series. Ives K J. Ed. Sijthoff and Noordhoff. Aalphenaan den Rijin. Netherlands, 1978.
    [10]赵华章.高纯聚合氯化铝的研制与表征[D].北京:中国科学院生态环境研究中心, 2003: 15-16.
    [11] Lamer V K, Healy T W. Adsorption-flocculation reactions of macro-molecules at the solid-liquid interface [J]. Rev. Pure Appl. Chem, 1963, 13: 112-133.
    [12] Lamer V K. Coagulation symposium introduction [J]. Colloid interf. Sci, 1964, 19: 291-293.
    [13] Lyklema J. Colloidal stability as a dynamic phenomena, Pure Appl [J]. Chem, 1980, 52: 1221-1227.
    [14] Packham R F. Some studies of the coagulation of dispersed clays with hydrolyzed salts [J]. Colloid interf, Sci, 1965, 20: 81-92.
    [15] Matijevic E, Kolak N. Coagulation of lyophobic colloids by metal chelates [J]. Colloid Interf. Sci, 1967, 24: 441-450.
    [16] James R O, Healy T W. Adsorption of hydrolyzable metal ions at the oxide-water interface, (I,Ⅱ) [J]. Colloid Interf. Sci, 1972, 40: 42-64.
    [17] Letterman R D, Iyer D R. Modeling the effects of hydrohyzed aluminum and solution chemistry on flocculation kinetics [J]. Environ. Sci. Technol, 1985, 19(8): 673-681.
    [18]汤鸿宵.无机高分子絮凝理论与絮凝剂[M].北京:中国建筑工业出版社,2006: 299-301.
    [19]汤鸿宵.无机高分子絮凝理论与絮凝剂[M].北京:中国建筑工业出版社,2006: 2-4.
    [20]苏威.无机絮凝剂发展及建议[J].工业水处理, 1993, 13(1): 3.
    [21]栾兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划[J].工业水处理, 2000, 20(11): 1-6.
    [22]贾志谦.利用膜反应器合成纳米BaSO4粒子和聚合氯化铝的研究[D].北京:中国科学院生态环境研究中心, 2002, 12-33.
    [23]彭跃莲,刘忠洲.超滤膜的一种新用途—制备聚合氯化铝絮凝剂[J].膜科学与技术, 2001, 21(3): 37-41.
    [24]路光杰.高效聚合絮凝剂-聚合氯化铝的电化学合成[D].北京:中国科学院生态环境研究中心, 1998, 29-35.
    [25]路光杰,曲久辉.电渗析法合成高效聚合氯化铝研究[J].中国环境科学, 2000, 20(3): 250-253.
    [26]刘鸿志,电解絮凝法制备聚合氯化铝的工艺基础研究[D].北京:中科院生态环境研究中心, 1994, 11-29.
    [27] Guang J L, Jiuhui Qu and Hong xiao Tang. The electrochemical production of highly effective polyaluminum chloride [J]. Water Research, 1999, 33(3): 807-813.
    [28]路光杰,曲久辉,汤鸿霄.高效聚合氯化铝的电化学合成[J].中国环境科学,1998, 18(2): 140.
    [29]曲久辉,路光杰,汤鸿霄.电解制备高效聚合铝的溶液化学因素[J].环境化学,1997, 16(6): 522-526.
    [30]曲久辉,路光杰,汤鸿霄.聚合絮凝剂电解制备的极化特性研究[J].环境科学学报,1997, 17(10): 423-428.
    [31]汤鸿霄,栾兆坤.聚合氯化铝与传统混凝剂的凝聚-絮凝行为差异[J].环境化学, 1997, 16(6): 497.
    [32]栾兆坤,混凝基础理论研究进展与发展趋势[J].环境科学学报, 2001, 21(增): 1-9.
    [33]汤鸿宵.无机高分子复合絮凝剂的研制趋向[J].中国给水排水, 1999, 15: 1-4.
    [34]郑怀礼,刘克万.无机高分子复合絮凝剂的研究进展及发展趋势[J].水处理技术, 2004, 30: 315-319.
    [35]田秉晖.阳离子型有机高分子及其复合絮凝剂的制备与应用研究[D].北京:中国科学院生态环境研究中心, 2005, 23-25.
    [36]石宝友.聚合铝与有机高分子复合絮凝剂的应用基础研究[D].北京:中国科学院生态环境研究中心, 1999, 22-23.
    [37]石宝友,汤鸿宵.聚合氯化铝与有机高分子复合絮凝剂的电荷特性及其絮凝作用[J].环境化学, 1999, 19: 302-308.
    [38]石宝友,汤鸿霄.聚合氯化铝与有机高分子复合絮凝剂的形态分布研究-Al-Ferron和27Al-NMR [J].环境科学学报, 2000, 20: 391-396.
    [39]石宝友,汤鸿宵.聚合铝与有机高分子复合絮凝剂的絮凝性能及其吸附特性[J].环境科学. 2000, 21: 18-22
    [40] Yao K, Habibian M T. and O’Melia C R. Waste water filtration: concepts and application [J]. Envie.Sci.and Tech, 1971, 5: 1105-1112.
    [41] Habibian M J. &O’Melia, Particles, and Porformance in filtration, J. of Envir. Engrg. Div, Proceedings of American Society of Civil Engineers, 1975, 101: 567-583.
    [42]李三中.微絮凝-直接过滤处理水库水的探讨[J].中国给水排水, 1997, 13(5): 17.
    [42] Holmstrom K, Rnberg U, Sbignert A. Temporal trends of PFDS and PFOA inguillemot eggs from the Baltic Sea, 1968-2003. Environ Science.Technol. 2005, 39(1): 80-84.
    [43] Moody C A, Martin C W, Kwan W C, et al. Monitoring perfluorinatedf. surfactants in biota and surface water samplers following an accidental release of fire fighting foarn into Etobicoke Creek [J]. Environ Science.Technol. 2003, 36(4), 545-551.
    [44] Dempsey B A, Omelia C A. Polyaluminum chloride and alumcoagulation of clay fluvic acid suspensions [J]. American Water Works Association, 1985, 3: 74-77.
    [45] Janssens J G. Theoretical analysis and practical application of the kinetic model of flocculation in the interpretation of jartests [J]. Aqua,1987, 2:91-95.
    [46] Scriven R J. The impact of physico-chemical water treatment on a novel flotation/filtration process [J]. Water Science Technology, 1999, 39(10/11): 211-215.
    [47]汤鸿霄.无机高分子絮凝剂的基础研究[J].环境化学, 1990, 8(3): 1-12
    [48]栾兆坤,汤鸿霄.聚合铝形态分布特征及转化规律[J].环境科学学报, 1988, 8(2): 146-155
    [49]马小鸥,康思琦,刘小军等.含硼聚硅酸硫酸铁混凝剂的制备及性能研究[J].现代化工, 2000, 20(11): 42-46.
    [50]贾志谦,何菲,刘忠洲.聚合氯化铝形态分布分析和控制研究进展[J].化学研究与应用, 2004, 16(2): 149-154.
    [51]李明玉,唐启红,刘国光.无机高分子聚合铁盐类混凝剂制备方法评述[J].化学研究, 2002, 13(4): 52-59.
    [52]李明玉,唐启红,张顺利.无机高分子混凝剂聚合铁研究开发进展[J].工业水处理, 2000, 20(6):1-3.
    [53] Delgado S, Diaz F, Garcia D, et al. Behaviors of inorganic coagulants in second effluent from aconventional wastewater treatment plant [J]. Filtration &Separation, 2003, 40(9): 42-46.
    [54]赵艳,张冰如,李霞等.聚合氯化铝的盐基度与水解形态[J].应用化学, 2004, 21(2): 212-214.
    [55]李凯,李润生,宁寻安.不同聚氯化铝系列的水解聚合形态研究[J].中国给水排水, 2003, 19(10): 55-57
    [56] Parker D R. Identification and quantification of the“Al13”tridecameric polycation using ferron [J]. Environmental Science & Technology, 1992, 26(5): 908-914.
    [57] Hsu P A, Cao D. Effects of acidity and hydroxylamine on the determination of aluminum with Ferron [J]. Soil Science, 1991, 152 (3): 210-219.
    [58] Bertran R, Gessner W. Characterization of Al species in basic aluminium chloride flocculants by means of ferron method and Al-27 nuclear magnetic resonance [J]. Acta Hydrochimicaet Hydrobiologica, 1994, 22(6): 265-269.
    [59] Stephen J D. Characterization of amorphous alum hydroxide by the Ferron method [J]. Environs Technology, 1994, 28: 1950-1958.
    [60]曲久辉,刘会娟,雷鹏举,等.电解法制备PAC在水处理中的应用研究[J].中国给水排水, 2001, 17(5): 16-19.
    [61] Armand Masion Astride Vilge-ritter, Jerome Rose, et al. Cougulation-Flocculation of Natrual Organic and Structure of the Aggregates [J]. Environ Sci Technol, 2000, 34: 3242-3246.
    [62] Rajat K Chakraborti, Joseph F Atkinson, John E Van Benschoten. Characterization of Alum Flon by Imge Analysis [J]. Environ Sci Technol, 2000, 34: 3969-3976.
    [63]宁寻安,李润生,温琰茂.工业聚合铝的形态分布及混凝效果环境化学[J].环境化学, 2006, 25(6): 739-741.
    [64] Dentel S K, Bober T A, Shetty, P W, et al. Determining Optimum Filtration Aid Dose, AWWARF Procedures Manual for Selection of Coagulant, Filtration and Sludge Conditioning Aids in Water Treatment [M]. 1986, 77-93.
    [65]汤鸿宵.无机高分子絮凝理论与絮凝剂[M].北京:中国建筑工业出版社,2006, 42-43.
    [66]郑蓓,李涛,葛小鹏,等.典型低温低浊水体的混凝工艺条件研究[J].供水技术, 2009, 3 (3): 8-11.
    [67]许保玖.给水处理理论与设计[M].北京:中国建筑工业出版社, 1992, 22-33
    [68]陈培康.给水净化新工艺[M].北京:学术书刊出版社, 1990, 89-95.
    [69] Hanson A T, CLEASBY J. The effects of temperature on turbulent flocculation:Fluid Dynamics and Chemistry [J]. JAWWA, 1990, 82(11): 56-73.
    [70] Morris J K, Knocke W R. Temperature Effects on the Use of Metal-ion Coagulants for Water Treatment [J]. JAWWA, 1984, 76(3): 74.
    [71]严煦世,范瑾初.给水工程[M].北京:中国建筑下业出版社, 1995: 223-273.
    [72]日本水道协会工程部.关于低温低浊水的处理调查报告. (日本)水道协会杂志, 1992, 61(1): 73-99.
    [73]丹保宪仁.净水技术.(日本)技报堂出版社, 1995: 45-75.
    [74] Kunio Ebie, Jac-Ho Lee Innovative technology for enhancing particlc removal efficiency in rapid sand filtration,Prom of International Symposium on Water Resources and Water Supply in the 21 Century, 2001, 68-81.
    [75]王东田,海老江邦雄.低温低浊水混凝沉淀处理研究[J].给水排水, 2005, 31(11): 32-34.
    [76]霍明昕.低温低浊水质特性分析[J].中国给水排水, 1998, 14(6): 33-34.
    [77] Hans on A T, Cleasby J L. The effects of temperature on turbulent flocculation: fluid dynamics and chemistry [J]. JAWWA, 1990, 82(11): 56-73.
    [78] Morris J K, KnockeW R. Temperature effects on the use of metal2i on coagulants for water treat ment [J]. JAWWA, 1984, 76 (3): 74-75.
    [79]栾兆坤,李科,雷鹏举.微絮凝深床过滤理论与应用的研究[J].环境化学, 1997, 16(6): 590-599.
    [80]吕春生,曲久辉,李大鹏等.微絮凝拦截沉淀处理低温低浊水[J].中国给水排水, 2000, 16( 1): 9-13.
    [81]郭瑾珑,汤鸿霄.接触絮凝研究进展[J].环境污染治理技术与设备, 2001, 2(6): 1-9.
    [82]栾兆坤,李桂平,王曙光.微絮凝-深床直接过滤及工艺参数研究[J].中国给水排水, 2000, 18(4): 14-18.
    [83]李桂平,栾兆坤.微絮凝-直接过滤工艺在城市污水深度处理中的应用研究[J].环境污染治理技术与设备, 2002, 3(4): 65-68.
    [84]陈士明,谢群.低浊度废水的微絮凝变孔隙深层过滤[J].水处理技术, 2005, 31(8): 56-58.
    [85] Lechevallier M W, Norton W D. Examiniing relati onship sbetween particle counts and giardia, cryp t os poridium and turbidity [J]. JAWWA, 1992, 84(12): 54-59.
    [86]崔红梅,张素霞,陈克诚等.颗粒计数仪在北京九水厂水处理中的应用[J].净水技术, 2004, 20 (4): 71-73.
    [87]何元春,许超伟.颗粒物计数仪在生物活性碳工艺中的应用[J].中国给水排水, 2004, 20(4): 71-73.
    [88] Timothy A W, Nicholas G P. Op tim izing filter performance [J]. JournalNEWWA, 1999, (3): 6-21.
    [89]吴章平,李桂水.深层过滤的研究及评述[J].过滤与分离,2003,13(3): 25-27.
    [90]赵永宏.微絮凝接触过滤处理低浊度含藻水的研究[J].工业水处理, 2002, 22(2): 46-48.
    [91]赵慧敏,关卫平,杜津辉.微絮凝过滤在膜分离预处理工艺中的实验研究[J] .工业水处理, 1998, 18(6): 25-26.
    [92]李科,栾兆坤.微絮凝-直接过滤中应用聚合铝处理低浊低色水研究[J].中国给水排水, 1998, 4(6): 1-6.
    [93]王静.低温低浊水处理技术研究应用现状[J].低温建筑技术, 2003, (4): 49-50
    [94]王小青.变孔隙深层过滤技术的应用[J].科技情报开发与经济, 2002, 12(3): 151-152.
    [95]阮新潮,王涛,曾庆福.印染废水的深度处理及回用[J].工业水处理, 2006, 26(4) :22-24.
    [96] Holmstrom K, Rnberg U, Sbignert A. Temporal trends of PFDS and PFOA in guillemot eggs from the Baltic Sea,1968-2003 [J]. Environ Science.Technol,2005, 39(1): 80-84.
    [97] Moody C A, Martin C W, Kwan W C, et al. Monitoringperfluorinatedf.surfactants in biota and surface water samplers following an accidental release of fire fighting foarn into Etobicoke Creek [J]. Environ Science. Technol, 2003, 36(4): 545-551.
    [98] Taniyasu S, Kannan K. Horii Y, et al. A survey of perfluorooctane sullfonate and related perfluorinated organic compounds in water,fish,birds and humans from Japan [J]. Environ Science.Technol, 2003, 37(12): 2634-2639.
    [99] Raymond D, Letterrnan. AnoverviewofFiltrationk [J]. JAWWA, 1987, 79(12): 26-32.
    [100] Lena Jonson. Experiences of nitrogen and phosphorus removal in deep-bed filters the Stockholm area waterk [J]. Science.Technol, 1997, 36(1): 193-190.
    [101]余剑锋,王东升,叶长青,等.利用小角度激光光散射研究阳离子有机高分子絮凝剂的絮体粒径和絮体结构[J].环境科学学报, 2007, 27(5): 770-774.
    [102] Gillham R W, O' Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron [J]. Ground Water, 1994, 32(6): 958-967.
    [103] Orth W S, Gillham R W. Dechlorination of trichloroethene in aqueous solution using Fe [J]. Environ Sci Technol, 1996, 30(1): 66-71.
    [104] Randtke S J. Organic contaminants removal by coagulation and related processes combinations [J]. 1988, JAWWA, 80(5): 40.
    [105] Stephen J Randtke. Organic contaminant removal by coagulation and related process combinations [J]. JAWWA, 1988, 80(5): 40-56.
    [106] Babcock D B, Singer P C. Chlorination and coagulation of humic and fulvic acids [J]. JAwwA, 1979, 71(3): 149.
    [107] Crozes, Getal. Enhanced coagulation:its effect on NOM removal and chemical costs [J]. JAWWA, 1995, 85(1): 78.
    [108] Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methane by iron metal [J]. Environ Sci Technol, 1994, 28(12): 2045-2053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700