电镀厂址污染土壤淋洗修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以废弃电镀厂址污染土壤修复为研究中心,通过研究不同光源对污染土壤中氰化物的处理,重金属污染土壤淋洗剂筛选及淋洗条件优化,以及淋洗修复技术对土壤健康和质量的生态效应,为同类污染土壤修复提供理论和应用基础,本论文的主要内容如下:
     利用紫外光和日光分别对污染土壤中氰化物进行处理。结果表明:对两种处理方法而言,污染土壤中总氰化合物量随着时间的增加而降低;紫外光24h、日光5d处理后,总氰化物的去除率分别达到24.8%和33.9%。
     通过重金属振荡淋洗的试验,比较了EDTA、CaCl_2、HCl、柠檬酸钠溶液四种淋洗剂对污染土壤中五种重金属Cr、Ni、Zn、Cu、Pb的去除能力。同时研究了EDTA浓度、pH、淋洗时间对重金属去除效果的影响,并利用一级反应动力学模型对试验数据进行拟合。结果表明:EDTA去除五种重金属的能力远远大于其他三种淋洗剂。柠檬酸钠、HCl、CaCl_2对污染土壤中多金属的去除率顺序为Cr>Zn>Ni>Cu>Pb,而同等条件下EDTA的去除率顺序为Zn>Cu>Cr>Ni>Pb。在研究条件下,EDTA为0.05mol/L、pH=7、液土比=10:1、淋洗时间为18h的条件下能达到对污染土壤重金属最大去除率,去除率分别Zn85.3%、Cu 21.7%、Pb 16.8%、Ni 7.8%、Cr 6.3%。模型拟合结果表明,转移系数最大的是Cr,其次是Cu、Pb、Zn,最后是Ni,说明在土壤淋洗过程中Cr最先达到质量转移的平衡状态,然后是Cu、Pb、Zn,最后是Ni。
     利用Na_2S溶液对EDTA淋洗废水进行处理,结果表明:Na_2S量为1.21mmol、pH为13的条件下达到对EDTA淋洗废水中重金属最大的去除率,去除率分别为Pb 98.7%、Cu 100.0%、Cr 2.3%、Ni 6.7%、Zn 97.3%。重金属絮凝剂A、B对EDTA淋洗废水中Cr、Ni都有较好的去除率,其中絮凝剂B的处理效果好于A。在絮凝剂B添加体积为1.3 ml,pH为7时,Cr、Ni去除率分别为95.1%、96.4%,EDTA淋洗废水在经过Na_2S和重金属絮凝剂一次处理后,其回收的EDTA溶液对土壤重金属仍然有一定的去除能力。其中,回收的EDTA溶液对土壤中Zn的去除能力在80%以上,而对其它四种元素的去除能力较低。
     用蚕豆根尖微核试验、油菜种子发芽率、蚯蚓回避行为试验对淋洗前后土壤的健康进行初步评价。结果表明:油菜种子发芽率和蚯蚓净回避率发生了显著负向效应,而蚕豆根尖微核率在淋洗前后的土壤中没有产生显著性差异,污染土壤经淋洗后其生态毒性没有发生显著性的变化。
     总之,围绕着重金属与氰化物复合污染土壤淋洗修复展开的系列研究表明,紫外光和日光都可以有效地去除污染土壤中的氰化物含量;EDTA作为一种常用的化学淋洗剂能够有效地去除污染土壤中的多金属。对淋洗前后的污染土壤进行的生物效应评价表明,淋洗后的土壤的质量健康会发生一些变化,不对土壤健康状况造成显著性的影响。因此多金属污染土壤淋洗修复是一种对土壤生物影响微小的可行的修复方法。
The central point of the research is electroplated waste remediation. In this paper, we investigated the destruction of weak acid dissociable cyanide (WAD cyanide) and total cyanide with UV radiation and sunlight respectively. In addition we screened the elutriant and optimized the eluting technics. In the last, the ecological effect with the method of eluting repairation was investigated too. The major conclusions obtained were listed as follows:
     The both of percentage removal of total cyanide concentration from contaminated soil increases with the increase of contact time with UV radiation and sunlight respectively. The maximal removal efficiency of total cyanide achieves 24.8% after 24h with UV radiation, 33.9% after 5 days with sunlight respectively. However, photolysis of UV radiation or sunlight not only ineffectively decontaminate WAD cyanide, but also the concentration of this pollutant may increase in these progresses, resulting in much more potential ecological dangerous.
     A batch experiment was conducted to investigate the removal efficiency of Cr, Pb, Cu, Ni and Zn by HCl, CaCl_2, citric and EDTA. In addition,we examine the effects of different EDTA concentrations, pH, and washing duration of EDTA on removal of heavy metals from contaminated soil and empirical model was employed to describe the kinetics of heavy metals dissolution and desorption. The results showed that the removal ability of EDTA on heavy metals was much higher than those of other 3 extractants. Removal percentages of heavy metals due to extracting of HCl, CaCl_2 and citric were in a sequence of Cr>Zn>Ni>Cu>Pb, while removal percentages of heavy metals due to extracting of EDTA werw in a sequence of Zn>Cu>Cr>Ni>Pb.At 0.05mol/L and pH 7 of EDTA and within 18h, the removal rate of test heavy metals was the maximum, being 85.3% for Zn, 21.7% for Cu, 16.8% for Pb, 7.8% for Ni, 6.3% for Cr. The mass transfer coeffient was in the order of Cr > Cu >Pb >Zn >Ni.
     We investigated the recycling of EDTA used for the removal of trace metals from electroplated waste. The results of batch experiments showed that Na_2S was capable of separating the metals Pb,Cu and Zn from waste water containing EDTA. At 1.21mmol and pH 13 of EDTA, the removal rate of heavy metals was the maximum, being 98.74% for Pb, 100% for Cu, 2.3% for Cr, 6.7% for Ni, 97.3% for Zn. Both macromolecule heavy metal flocculant A and B were capable of removal the metals Ni and Cr and the removal ability of B on heavy metals was much higher than A. At 13ml and pH 7 of macromolecule heavy metal flocculant B and within 1h, the removal rate of Ni and Cr were 96.4% and 95.1%, respectively. After reusing the reclaimed EDTA one time, the successive washing cycle enhanced the removal of heavy metals from contaminated soils and the removal rate of Zn was more than 80%, while the others removal rate were little.
     In order to evaluate the influence of method of eluting repairation on soil quality, we researched the micronucleus frequencied in Vicia faba root tips cells, avoidance behavior of earthworms and inhibition rates of seed germination of rape. The results showed that avoidance rates of earthworms and inhibition rates of seed germination of rape can emerge slight negative effect. Thus, the eluting repairation may enhance the ecotoxicity of soil and the soil quality may deteriorated.
     In summary, the result indicates that both UV radiation and sunlight effectively decontaminated total cyanide. In addition, as a useful extractant,EDTA can effectively remove heavy metals from contaminated soil and Na_2S was capable of separating the metals Pb, Cu and Zn from waste water containing EDTA, but ineffectively separating the metals Ni and Cr. It is necessary to evaluate the biological effect of eluting repairation to soil quality, and the conclusion is that elution can influence soil health, and result in the deterioration of soil quality.
引文
[1]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,2003,11(2):143-144.
    [2]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996,852-866.
    [3]龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-758.
    [4]蒋小红,喻文熙,江家华.污染土壤的物理/化学修复[J].环境污染与防治,2006,3(28):210-211.
    [5]张瑞华,孙红文,燕启社.废铁屑修复汞污染土壤的实验研究[J].生态环境,2007,16(2):437-441.
    [6]孙小峰,吴龙华,骆永明.有机修复剂在重金属污染土壤修复中的应用[J].应用生态学报,2006,17(6):1123-1127.
    [7]熊愈辉,杨肖娥,叶正钱.东南景天对镉、铅的生长反应与积累特性比较[J].西北农林科技大学学报,2004,32(6):101-102.
    [8]J.Boisson,M.Mench,J.Vangronsveld.Immobilization of trace metals and arsenic by different soil additives evaluation by means of chemical extractions[J].Commun Soil Plant Anal,l999,30:365-387.
    [9]P.C.Zhang.Transformation of Pb(Ⅱ) from cerrusite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH[J].Environ Sci Technol,1999,33:625 -630.
    [10]王学锋,朱桂芬,张会勇.粉煤灰和石灰对土壤重金属污染的影响[J].河南师范大学学报,2004,32(3):133-136.
    [11]P.C.Zhang,T.A.Ryan.In vitro soil Pb solubility in the presence of hydroxyapatite [J].Environ Sci Technol,1998,32:2763-2768.
    [12]巩宗强,李培军,台培东.污染土壤的淋洗法修复研究进展[J].环境污染治理技术与设备,2002,3(7):45-49.
    [13]房剑红.重金属污染滨海盐土壤淋洗改良研究[D].暨南大学硕士毕业论文.2006.
    [14]曾清如,廖柏寒,杨仁斌,等.EDTA溶液萃取污染土壤中的重金属及其回收技术[J].中国环境科学,2003,23(6):597-601.
    [15]曾敏,廖柏寒,曾清如等.3种淋洗剂对土壤重金属的去除及其对重金属有效性的影响 [J].农业坏境科学学报,2006,25(4):979-982.
    [16]可欣,李培军,张昀等.利用乙二胺四乙酸淋洗修复重金属污染的土壤及其动力学[J].应用生态学报,2007,18(3):601-606.
    [17]P.K.A.Hong,C.Li,S.K.Banerji.Extraction,recovery,and biostability of EDTA for remediation of trace metal-contaminated soil[J].Soil Contam,1999,8:81-103.
    [18]F.David,B Alain,S.Eduarda.Heavy metal mobility assessment in sediments baaed on a kinetic approach of the EDTA extraction:Search for optimal experiment conditions[J].Analytica Chinical Acta,2002,459:245-256.
    [19]S.A.Wasay,S.Barrington,S.Tokunaga.Organic acids for the in situ remediation of soil Pollution by heavy metals:soil flushing in columns[J].Water,Air,soil Pollut,2001,127:301-314.
    [20]H.A.Elliott,N.L.Shastri.Extractive decontamination of metal-polluted soils using oxalate[J].Water,Air,Soil Pollut,1999,110:335-346.
    [21]李光林.腐殖酸与几种重金属离子的相互作用及影响因素研究[D].西南农业大学博士毕业论文.2002.
    [22]K.J.Hong,S.Tokunaga,Y.Ishigami.Extraction of heavy metals from MSW incinerator fly ash using saponins[J].Chemosphere,2000,41(3):345-352.
    [23]K.J.Hong,S.Tokunaga,T.Kajiuchi.Evlauation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils[J].Chemosphere,2002,49(4):379-387.
    [24]J.W.Neilosn,J.F.Artiola,R.M.Maier.Characterization of lead removal from contaminated soils by nontoxic soil-washing agents[J].Environ Qual,2003,32(3):899-908.
    [25]C.N.Mulligan,R.N.Yong,B.F.Gibbs.Metal removal from contaminated siol and sediments by the biosurfactant surfactin[J].Environ Sci Technol,1999,33(21):3812-3820.
    [26]李海波,李培军,孙铁珩等.淋洗法修复张士灌区Cd、Pb污染沉积物的研究[J].农业环境科学学报,2005,24(2):328-332.
    [27]V.Jurate,S.Mika.Electrokinetic sotl remediation梒ritical overview[J].Total Environ Sci,2002,(289):97-121.
    [28]陈海峰,周东美,仓龙.垂直电场对EDTA络合诱导铜锌植物吸收及其迁移风险的影响 [J].土壤学报,2007,(1)44:174-179.
    [29]杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制[J].植物营养与肥料学报,2002,8(1):8-15.
    [30]黄运湘,廖柏寒,王志坤.超积累植物的富集特征及耐性机理[J].湖南农业大学学报(自然科学版),2005,31(6):693-697.
    [31]李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制[J].应用生态学报,2003,14(4):627-631.
    [32]韦朝阳,陈同斌,黄泽春等.大叶井口边草—一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-779.
    [33]李华,骆永明,宋静.不同铜水平下海洲香薷的生理特性和铜积累研究[J].土壤,2004,4:225-228.
    [34]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征[J].环境科学,2004,26(3):167-171.
    [35]Y.L.Zhu,L.Jouanin.Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance[J].Plant Physical,1999,119:73-79.
    [36]何益波,李立清,曾清如.重金属污染土壤修复技术的进展[J].广州环境科学,2006,21(4):26-30.
    [37]D.Lestan,C.L.Luo,X.D.Li.The use of chelating agents in the remediation of metal-contaminated soils:Areview[J].Environmental Pollut,2007,1(1):11-30.
    [38]ISO/DIS 17512-1.Soil quality-avoidance test for testingthe quality of soils and effects of chemicals on behaviour(I):tests with earthworms(Eiseniafetida and Eisenia andrei)[S].2001.
    [39]R.K.Achazi.Invertebrates in risk assessment:development of a test battery and of short termbiotests for ecological risk assessment of soil[J].J Soils Sed,2002,2:174-178.
    [40]S.Loureiro,A.M.V.M.Soares,A.J.A.Nogueira.Terrestrial avoidance behaviour tests as screening tool to assess soil contamination[J].Environmental Pollut,2005,138:121-131.
    [41]M.Schaefer.Assessing 2,4,6-trinitrotoluene(TNT)-contaminated soil using three different earthworm test methods[J].Ecotoxicol Environ Safety,2004,57:74-80.
    [42]L.Z.Van,J.Rust,T.Kingston,et al.Influence of copper fungicide residues on occurrence of earthworms in avocado orchardsoils[J].Sci Total Environ.2004,329:29-41.
    [43]T.Lukkari,J.Haimi.Avoidance of Cu-and Zn-contaminated soil by three ecologically different earthworm species[J].Ecotoxicol Environ Safety,2005,62:35-41.
    [44]L.Da,R.Ribeiro,J.P.Sousa.Avoidance tests with collembolan and earthworms as early screeningtools for site-specific assessment of polluted soils[J].Environ Toxicol Chem,2004,23:2188-2193
    [45]孙铁珩,宋玉芳.土壤污染的生态毒理诊断[J].环境科学学报,2002,22(6):689-695.
    [46]宋玉芳,许华夏,任丽萍,等.土壤重金属对小麦种子发芽与根伸长抑制生态毒性[J].应用生态学报,2001,12(3):350-355.
    [47]宋玉芳,许华夏,任丽萍,等.土壤重金属对萝卜种子发芽与根伸长抑制的生态毒性[J].生态学杂志,2001,20(3):50-55.
    [48]K.Lock,C.R.Janssen.Multi-generaiton toxicity of zinc,cadmium,copper and lead to the potworm Enchytraeus albidus[J].Enviornmental Pollut,2002,117(1):89-92
    [49]V.GRafael,A.José,J.L.M.María M,Javier.Photocatalytic degradation of iron-cyanocomplexes by TiO_2 based catalysts[J].Applied Catalysis B:Environmental,2005,55:201-211.
    [50]M.Mitsuo,K.Toshinori.Elution and decomposition of cyanide in soil contaminated with various cyanocompounds[J].Journal of Hazardous Materials,2003,97:99-110.
    [51]D.Park,Y.M.Kim,D.S.Lee.Chemical treatment for treating cyanides-containing effluent from biological cokes wastewater treatment process[J].Chem Engineering Journal,2008.143,141-146.
    [52]M.Kitis,E.Karakaya,N.O.Yigit,et al.Heterogeneous catalytic degradation of cyanide using copper-impregnated pumice and hydrogen peroxide[J].Water Research,2005,391:652-1662.
    [53]S.Ebbs.Biological degradation of cyanide compounds[J].Curr.Opin.Biotechnol,2004.15:1-6.
    [54]R.R.Dash,C.Balomajumder,A.Kumar.Removal of cyanide from water and wastewater using granular activated carbon[J].Chem Engineering Journal,2008,06:21-27
    [55]V.Augugliaro,J.B.Gālvez,J.C.Vazquez.Photocatalytic oxidation of cyanide in aqueous TiO2 suspensions irradiated by sunlight in mild and strong oxidant conditions[J].Catalysis Today,1999,54:245-253.
    [56]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,1999,15-320.
    [57]中华人民共和国环境保护行业标准HJ350-2007.展览会用地土壤环境质量评价标准 (暂行):氰化物的测定[S].2007.
    [58]中华人民共和国标准GB/T.水质 氰化物的测定(征求意见稿):总氰化物的测定[S].2006.
    [59]S.S.Neil,D.B.Babara,D.G.Thomas,et al.Chemistry,Toxicology,and Human Health Risk of Cyanide Compounds in Soils at Former Manufactured Gas Plant Sites[J].Regulatory Toxicology And Pharmacology,1996,23:106-116.
    [60]D.Park,Y.M.Kim,D.S.Lee,J.M.Park.Chemical treatment for treating cyanides-containing effluent from biological cokes wastewater treatment process[J].Chem Engineering Journal,2008,143:141-146.
    [61]E.Reguera,J.Fernández-Bertrán,J.Balmaseda.The existence of ferrous ferricyanide[J].Transition Metal.Chemistry,1999,24:648-654.
    [63]D.D.Kuhna,T.C.Young.Photolytic degradation of hexacyanoferrate(II)in aqueous media:The determination of the degradation kinetics[J].Chemosphere,2005,60:1222-1230.
    [64]United State Environmental Protection Agency(USEPA).Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-To-Know Act(EPCRA) and Section 112(r) of the Clean Air Act[S].2007.
    [65]F.Gurbuz,H.Ciftci,A.Akcil.Biodegradation of cyanide containing effluents by Scenedesmus obliquus[J].Journal of Hazardous Materials,2008,05-15.
    [66]T.Makino,T.Kamiy,H.Takano,et al.Remediation of cadmium- contaminated paddy soils by washing with calcium chloride:Verification of on-site washing)[J].Enviornmental Pollut,2007,147:112-119.
    [67]可欣,李培军.利用乙二胺四乙酸淋洗修复重金属污染的土壤及其动力学[J].应用生态学报,2007,18(3):601-606.
    [68]P K A.Hong,C.Li,W.M.Jiang.Agents for Extraction of Heavy Metals from Soil[M].New York:Academic,2000:1015-1031.
    [69]B.Nowack,R.Schulin,B.H.Robinson.Critical Assessment of Chelant-Enhanced Metal Phytoextraction[J].Environ Sci Technol,2006,40:5225-5232.
    [70]S.A.Wasay,S.F.Barrington,S.Tokunaga.Organic Acids to Remediate A Clay Loam Polluted by Heavy metals[J].Canadian Agricultural Engineering,1998,40:9-15.
    [71]D.M.Heil,A.Samani,T.Hanson,B.Rudd.Remediation of Lead Contaminated Soil by EDTA Batch and Column Studies[J].Water Air Soil Pollut,1998,113:77-95.
    [72]R.A.Griffiths.Soil-washing technology and practice[J].Journal of Hazardous Materials,1995,40:175-189.
    [73]B.G.Elliott.Comparative Evaluation of NTA and EDTA for Extractive Decontamination of Pb-Polluted Soils[J].Water,Air and Soil Pollution,1989,45:361-369.
    [74]D.Lestan,C.L.Luo.The Use of Chelating Agents in the Remediation of Metal-Contaminated Soils:A Review[J].Environmental Pollut,2007,1-11.
    [75]R.W.Peters.Chelant Extraction of Heavy Metals From Contaminated Soils[J].Journal of Hazardous Materials,1999,(66):151-210.
    [76]P.K.A.Hong,C.Li,W.M.Jiang,et al.Chelating agents for extraction of heavy metals from soil.Emerging Technologies in Hazardous Waste Management[M].New York:Academic/Plenum Publishers,2000,115-124
    [77]雷鸣,田中干也,廖柏寒等.EDTA及其回收溶液治理重金属污染土壤的研究[J].环境工程学报,2007,1(5):88-93.
    [78]Q.R.Zeng,S.Sauvé,H.E.Allen,etal.Recycling EDTA solutions used to remediate metal-polluted soils[J].Environmental Pollution,2005,133:225-231.
    [79]宋玉芳,周启星,许华夏,等.土壤中菲、芘,1,2,4-三氯苯对蚯蚓的急性毒性效应[J].农村生态环境,2003,19(1):36-39.
    [80]吴丽华,仪慧兰.亚砷酸钠对蚕豆和洋葱根尖细胞的遗传损伤效应[J].安全与环境学报,2008,8(1):5-7.
    [81]Y.Zang,K.Xue.The application and development of micronucleus assay of Vicia faba[J].Carcinogenesis,Teratogenesis and Mutagenesis,1999,11(3):158-160.
    [82]L.Susana,M.V.M.Amadeu,J.A.Antonio.Terrestrial avoidance behaviour tests as screening tool to assess soil contamination[J].Environmental Pollut,2005,138:121-131.
    [83]颜增光,何巧力,李发生.蚯蚓生态毒理试验在土壤污染风险评价中的应用[J].环境科学研究,2007,20(1):134-142.
    [84]C.L.Johannes,Meeussen.Solubility of cyanide in contaminated soils[J].Environmental Qual,1994,23(4):785-792.
    [85]王娟,常青,刁静茹.高分子重金属絮凝剂ISXA与ISX除浊、除Ni2+性能的比较研究[J].环境科学学报,2007,27(4):575-580.
    [86]J.C.L.Meeussen,W.H.V.Riemsdijk,S.E.A.T.M.V.Zee.Transport of complexed cyanide in soil[J].Geoderma,1995,67:73-85.
    [87]J.C.L.Meeussen,M.G.Keizer,W.H.V.Riemsdijk,et al.Solubility of cyanide in contaminated soils[J].Environmental Qual,1994,23(4):73-85.
    [88]N.Papassiopi,S.Tambouris,A.Kontopoulos.Removal of heavy metals from calcareous contaminated soils by EDTA leaching[J].Water,Air and Soil Pollution.1999,109:1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700