高分子强化絮凝剂制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业污水中含有各种悬浮物、胶体颗粒以及各种造成较高化学耗氧量(COD)的有机污染物,必须采用必要的絮凝技术进行处理。本文针对污水的浊度和COD两个污水处理中的常见的重要问题,通过对无机絮凝剂原理、存在问题与发展趋势的认识与研究,针对工业污水的特点制备了功能性高分子絮凝剂,主要内容包括无机高分子絮凝剂聚合硫酸铁(PFS)的合成、复合高分子絮凝剂(PMC)系列以及强化絮凝剂(BTA)系列复合絮凝剂的制备与应用性能评价。
     硫酸亚铁-氯酸钠直接氧化法制备PFS系采用氯酸钠为氧化剂,硫酸为调节剂,高锰酸钾作为催化剂酸性条件下制备,通过调节硫酸的含量确定了最佳体系质量配比为硫酸亚铁:氯酸钠:高锰酸钾:浓硫酸=30:2:0.5:6;并通过对硫酸加量对产品性能稳定性的影响规律研究确定nSO42-:nFe3+<3:2时PFS状态稳定且性能比较优异。实验产品对模拟污水除浊率达到90%以上,COD脱除率达到40%左右,通过对产品结构与成分的分析得出硫酸亚铁转化率达到67%。
     凹凸棒(ATP)是一种含水镁铝硅酸盐粘土矿物,也是一种具有高吸附性的多孔环境矿物材料,在工业污水处理领域有很高的应用价值。本文在本课题组前人工作的基础上利用预胶化淀粉(CStarch)、预水化ATP和无机高分子絮凝剂聚合氯化铝(PAC),通过各组分的正效益增益,合成了一种矿物基多核高分子絮凝剂PMC,并通过改进体系的配比研究,提高了产品的稳定性,解决了原产品中ATP含量过低,产品不稳定的问题。体系中CStarch含量从15.3%提高到30%时,体系中水化ATP含量从4.5%提高到8.8%,在加量达到100ppm时絮凝除浊效果达到95%以上,且体系稳定性更强。在西林钢铁厂循环水净化处理工业实验中除浊率达到92%。
     依据异相成核、差降絮凝理论以及对矿物粘土结构与性能的认识,利用膨润土为絮凝剂基体,复合多种助剂,通过对其影响因素及适用环境的研究,制备出了一种复合矿物基强化絮凝剂(BTA)。通过其与固体PAC的性能比较发现其在除浊性能方面达到PAC同等的效果,模拟水悬浮物实验评价中除浊率达到99%,而沉降时间只是传统PAC的50%。
The industrial wastewater contain various suspending substances, colloidal particulates and organic pollutant which could cause a high chemical oxygen demand (COD) and turbidity, so it should be treated by flocculants. Aim at the most important topic - turbidity and COD. By researching flocculating theory, existing problems and trend of development, according to the features of waste water we synthesized the functional macromolecular polymer flocculants. This paper mainly contains synthesizing the inorganic flocculants poly ferric sulfate (PFS), producing the compound macromolecular flocculant PMC, producing the enhanced flocculant BTA and evaluating their performances.
     Ferrous sulfate -sodium chlorate oxidation method is to use sodium chlorate as the oxidant, sulfuric acid as the regulator and potassium permanganate as the catalyzer. Synthesizing the PFS under acidity condition. The opitmized mass weight ratio should be 30:2:0.5:6 (ferrous sulfate: sodium chlorate: potassium permanganate: sulfuric acid), and confirm that when n(SO42-):n(Fe3+) less than 3:2 the performances of PFS will be excellent. Experimental sample turbidity removal rate approached 90%, COD removal rate reached 40%. Through structure and composition analysis, the ferrous sulfate conversion rate achieved 67%.
     Attapulgite (ATP) is a hydrated silicate magnesium-aluminium clay minerals, also is a porous environmental mineral materials with absorption ability. It would have a high application value in the fields of industrial sewage treatment. Based on the former researched work by our team, which synthesized a mineral-based polymer of multi-core coagulant (PMC) used the pregelatinized starch, prehydratic attapulgite and inorganic polymer flocculants poly (aluminium chloride) (PAC), the thesis researched the effective interactions of the slected raw materials especially optimaized the addition of ATP and pregelatinized starch, increasing the mass weight of prehydratic attapulgite from 4.5% to 8.8% while the pregelatinized starch up to 30% from 15.3%, improved the stability of PMC during storage term. When the dosage reaches to 100ppm the turbidity removal rate is above 95% and the stability is enhanced. Meanwhile, industrial field application in circulating water treatment in Xilin Steel and Iron Factory showed that the turbidity removal rate up to 92%.
     Based on the theores of heterogeneous nucleation and difference flocculation, and the acquaintance for the structure and function of clay minerals, the paper seleced bentonite as the flocculants matrix compound with servals ingredients to make an enhanced flocculant BTA, and researched its applied environments and influence factors. Comparing the performances of PAC can be found that BTA has the same effect in turbidity removal. Experimental evaluation of suspended solids simulation water, turbidity removal reached 99%, while the settling time is shorter 50% than PAC.
引文
[1]钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].中国水利水电出社,2001,3:56
    [2]王瑗,盛连,喜李科.中国水资源现状分析与可持续发展对策研究[J].水资源与水工程学报,2008,3 (19):11
    [3]张恩.我国水资源危机与其对策初探[J].甘肃农业,2005,(8):65-66
    [4]周少华.中国水资源安全现状及发展态势[J].广西经济管理干部学院学报,2008,(20):4
    [5]夏军,苏人琼,何希吾.中国水资源问题与对策建议[J].战略与决策研究.2008,2(23):116~117
    [6]邱林,吕素冰.中国水资源现状及发展趋向浅析[J].黑龙江水利科技,2007,6(35):1~2
    [7]骆晓春,王雪峰,蒋书怡,等.水处理方法概述[J].应用技术,2006(11):15
    [8]韩晶,张小燕,余中.我国水处理剂的研究与应用现状展望[J].精细石油化工,2001,3:39~41
    [9]栾兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划[J].工业水处理,2000,11(20):1~5
    [10]张育新,康勇.絮凝剂的研究现状及发展趋势[J].化工进展,2002,11(21):800~801
    [11]高晓莉.絮凝剂的现状与展望.江苏环境科技[J],2001,2(14):36~37
    [12]钱军民,张兴,吕飞,等.国内絮凝剂的制备与应用[J].精细石油化工进展, 2001,2(7):46~51
    [13]余颖.絮凝剂PAN-DCD的结构和性质研究[J].城市环境与城市生态,1999,12(3):8~10
    [14]朱立中.三聚氰胺甲醛树脂用作絮凝剂的探讨[J].功能高分子学报,1997,(10):84~86
    [15]吴伟等.二甲基二烯丙基氯化铵-丙烯酰胺的合成及其在含油污水处理中的应用[J].油气田环境保护,1996,6(4):4~7
    [17]陈立丰.混凝法处理高浊度水[J].水处理技术,1995,21(1):46~51
    [18]任海贝,李明玉.阳离子聚丙烯酞胺复合插层有机膨润土的脱色性能[J].水处理技术,2005,12(31):13~15
    [19]党酉胜,周风山,卢凤纪,等.新型絮凝剂FMA的制备及其性能研究[J].西安交通大学学报, 1999,12(33):66~68
    [20]许保玖.当代给水与废水处理原理[M].北京,高等教育出版社,1992.
    [21]武道吉.高浊度水管式混凝动力学机理及设计研究[J].给水排水,2000,26(6):4.
    [22]袁宗宣,郑怀礼.絮凝科学与技术的进展[J].重庆大学学报,2001,2(24):144~146
    [23]李风亭.我国混凝剂聚合硫酸铁的技术发展现状[J].工业水处理,2002,1(22):5~8
    [24]鲍文林.催化氧化制备液态聚合硫酸铁的方法[P]:中国.02158224.6,2003.06.04
    [25]黄艳杰.氯酸钠氧化法制备聚合硫酸铁(PFS)的工艺条件探索[J].广西化工,2001,3(30):12~14
    [26]马玉恒,方卫民,马小杰.凹凸棒土研究与应用进展[J].材料导报,2002,20(9):43~46
    [27]栾兆坤,张锦华,孔凡铭.适于城镇污水处理的强化絮凝工艺[J].中国给水排水,2002, 1(18):30~33
    [28]汪义强,赫俊国,张金松.微污染水源水的强化絮凝处理[J].城市给排水,给水排水, 2004,10(30):1~4
    [29]田秉晖,潘纲,栾兆坤.阳离子聚电解质强化絮凝去除活性染料的研究[J].环境化学,2007,1(26):46
    [30]吴永强,刘跃辉.接触絮凝-氧化法处理活性染料废水[J].环境工程,2005,16(23):10~12
    [31]路光杰,黄柱崇,段杰辉.新型高效强化絮凝法的原理与应用[J].清华大学学报, 2000,1(40):114~116
    [32]曾秀琼,刘维屏.无机-有机柱撑膨润土的制备及其在水处理中的应用进展[J].环境污染治理技术与设备,2001,2(2):9~10
    [33]彭先佳等.改性膨润土在废水处理中的应用[J].中国非金属矿工业导刊,2005,5:40
    [34]易发成,杨剑.膨润土净水剂的制备及性能[J].矿产综合利用,1999,3:27~28
    [35]杨立红.膨润土的改性及在有机废水处理中的应用[J].世界地质.2001,1(20):90~93
    [36]廖欣峰,王照龙.膨润土对乳化油废水的吸附絮凝性能[J].环境污染与防治,1999,21:78
    [37]王连军,黄中华,刘晓东.膨润土的改性研究.工业水处理[J],1999,19(1):26~29
    [38] Ferenc Csempesz. Enhanced flocculation of colloidal dispersions by polymer mixtures[J]. Chemical Engineering Journal,2000,80:43~49
    [39]刘明华,詹怀宇.羧甲基淀粉吸附剂的研制[J].精细石油化工,2000,5:35~37
    [40]王晓鹏,张俊平,于波,等.凹凸棒黏土接枝聚丙烯腈的制备及其对Pb2+的吸附性能[J].非金属矿,2008,6:52~54
    [41]郑三级.氯酸钾氧化法制备聚合硫酸铁[J].湖南化工,1999,4(29):34~35
    [42]杨天石.固体聚合硫酸铁的应用与一步法生产工艺[J].化工设计通讯,2001,1(27):25~27
    [43] L.卡吉塔.净化废水的方法和组合物[P].中国专利, 95120315,1996-10-2
    [44] Laura Kajita.Method and Composttion for Clarifying Waster Water[P].U.S.A,5670435 Sep. 23,1997
    [45] Keith.A.Bair,Horsham.Water Treatment Methods[P].U.S.,5575924,Nov.19,1996
    [46]冯启明,彭同江,周玉林.膨润土活化工艺改进再探[J].中国非金属矿工业导刊,2000,5:59~61
    [47] Gutshall M. Microsand enhanced clarification for wastewater treatment: results from pilot studies in primary tertiary and CSO applications [A]. WEFTEC[C].Florida, Orlando, 1998, 08.
    [48] Hong S N.Actiflo process for drinking water, and storm water treatment [P]. U.S.P., 547555,1996,06.
    [49]郑怀礼.聚合硫酸铁制备方法研究及其发展[J].环境污染治理技术与设备, 2000,5(1):21~24
    [50]朱志平.聚合硫酸铁生产中的投料计算与应用[J].工业水处理,2002,11(22):24~35
    [51]诸爱士,等.聚合硫酸铁盐基度影响因素研究[J].浙江科技学院学报,2002,1(14): 17~19
    [52]孙立梅.聚合硫酸铁制备中分析方法的研究[J].铀矿冶,2000,3(19):200~201
    [53] Donald E.Weiss.Water Clarification Coagulatnt[P].U.S.P.,4363749, 1982-12-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700