大蒜废水特性及预处理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大蒜废水含有抗菌、杀菌活性物质天然大蒜油,对细菌具有很强的杀伤力,导致大蒜废水的可生化性较差,加之大蒜废水属高浓度有机废水更增加了大蒜废水处理的难度,致使以往的生化污水处理方法不能有效处理大蒜废水。目前国内外能有效处理大蒜废水的工艺还处于研究阶段,加工废水污染指标严重超标,严重制约和困扰着我国大蒜产业的健康、持续发展。因此加快对大蒜废水处理的研究迫在眉睫,如能开发一种高效、实用的大蒜废水处理工艺,则可以大大降低水体污染,保护水环境,并能有效缓解水质型水资源短缺等问题,创造出可观的经济效益和社会价值。
     研究需准确测定出大蒜废水(即被水大量稀释了的大蒜汁)中有机硫化物的含量。通过对国内外各种大蒜有机硫化物测定方法的分析研究和特点比较,最终确定采用吸光比浊法测定大蒜废水中的有机硫化物含量,并且利用试验室现有条件,采用COD快速测定仪代替紫外可见分光光度计测定吸光度,并对吸光比浊法作了适当的改进,优选出吸光比浊法测定大蒜废水中有机硫化物含量的最佳实验条件。此外,本文还对验证改进后的吸光比浊法的可行性和可靠性进行了试验研究,实验结果证明在一定实验条件下的吸光比浊法测定的有机硫化物是可以满足测定要求的。
     简要介绍酸碱预处理和加热处理预处理去除有机硫化物的相关理论,并相应的进行了试验研究。实验结果表明:加热预处理方法对有机硫化物的去除有一定的作用,但其作用效果并不能满足实际生产地需要;而酸碱预处理方法对去除大蒜废水有机硫化物是极为有效的,并且方法简便、适于推广。
     在酸碱预处理试验研究中发现,在强酸条件下大蒜废水由淡黄色变成白色,并产生大量白色絮体,大蒜废水中有机硫化物去除率可达到80%~90%,说明在弱酸条件下,有机硫化物对指示菌的抑制作用最强,在强酸条件下,绝大多数有机硫化物转化为白色絮体而被去除。
     采用絮凝、铁炭微电解和铁炭微电解-Fenton联合工艺降低大蒜废水中高浓度有机物含量。通过单因素影响试验确定絮凝试验最佳运行参数;运用正交试验法确定了微电解试验各影响因素的重要程度,并进一步通过单因素影响试验,确定微电解试验最佳的运行参数;论证铁炭微电解法和Fenton试剂氧化法联合的可能性,确定微电解-Fenton联合试验各影响因素的最佳实验值。
     絮凝试验表明:与该工艺处理其它废水的处理效果相比,絮凝实验对大蒜废水COD的去除效果并不乐观;微电解试验表明:铁炭比为4.0,进水pH值为3.0,反应时间为5h,采用曝气方式,当原水CODCr浓度为9000~13000 mg/ L时,在最佳条件下通过该法处理的废水,CODCr去除率可达50%以上;微电解-Fenton联合试验表明:pH值采用微电解出水pH=4.5,反应时间为60min,H2O2用量为4mL/L,H2O2的投加方式为滴加,当原水CODCr浓度为9000~13000 mg/ L时,在最佳条件下通过该法处理的废水,CODCr去除率可达60%以上。
Garlic wastewater is the garlic juice mixed with a large number of water. Garlic wastewater contains bioactive substances, natural garlic oil, which has strong anti-bacterial effect. This has resulted in weak biodegradability of garlic wastewater. In addition, garlic wastewater is a high concentration organic waste, which increases the difficulty of garlic wastewater treatment. As a result, previous biochemical treatment of wastewater can not effectively deal with the garlic wastewater. The process that can effectively deal with garlic wastewater is still in the research stage internationally. Pollution index of processing wastewater seriously exceeded standards. Thus, this constrains the sustainable development of garlic industry in China. Therefore, it is very urgent to speed up the study of garlic wastewater treatment. If we can develop a highly efficient and practical garlic wastewater treatment process, then the water pollution can be greatly reduced, and the water environment can be protected. As a result, the shortage of water resources such as water quality can be effectively alleviated and considerable economic benefits and social values can be created.
     The concentration of organic sulfides in garlic wastewater is determined in current study. According to the comparison of various methods of measuring organic sulfides concentration in garlic oil, the absorptiophotometric turbidimetry was selected to determine the concentration of organic sulfides in garlic wastewater. At the same time, due to the limited laboratory facility, the absorbance was determined by COD rapid detector instead of UV-V is spectrophotometer. In this study, we have improved the determination of absorptiophotometric turbidimetry in the following two ways. First of all, we select the best conditions of the determination method. On the other hand, we also examined its feasibility and reliability. Experimental results show that the method of absorptiophotometric turbidimetry meets the requirements of experiments under certain experimental conditions.
     In this thesis, the theory on pH and pre-heat treatment to remove organic sulfides was introduced briefly. The experimental results show that pre-heat treatment method to remove organic sulfur is useful, but it can not meet the actual needs of production. However, pH pre-treatment method of wastewater to remove organic sulfur garlic is extremely effective, and it is simple and suitable for wide application.
     During the removal of bioactive substances in the pH pre-treatment, it was found that the color of garlic wastewater changed from yellow to white in the strong acid conditions. Meanwhile, a large number of white cotton like substances was generated. The removal efficiency of organic sulfides of garlic wastewater can be up to 80%-90%. This shows that the antibacterial activity of organic sulfides is the strongest in acidic conditions as compared with the weak acid. The majority of organic sulfides have turned into removable cotton like substances in the strong acidic conditions.
     To reduce the high concentration of organic matter in the garlic wastewater, we can use a series of processes such as flocculation, micro-electrolysis and Fenton reagent oxidation. The optimal operating parameters are determined by single factor flocculation experiment. The degree of importance of influence factors is determined by micro-electrolysis orthogonal experiment. And then the possibility of connecting micro-electrolysis with Fenton reagent oxidation is demonstrated in theory. At last, the optimal operating parameters are determined by single factor micro-electrolysis and Fenton reagent oxidation joint experiment.
     The experiment result of garlic wastewater indicates that the optimal operating parameters are different in various experiments.
     1. Flocculation experiments show that compared with the same wastewater treatment, the flocculation experiments reducing COD content is not optimistic.
     2. In the micro-electrolysis experiments, it has been shown that the optimal operating parameters are the following: the volume ratio of iron versus carbon is 4.0, pH value is 3.0, the reaction time is 5 hours, aeration mode, and the removal efficiency of COD is more than 50%.
     3. Micro-electrolysis and Fenton reagent oxidation: the optimal operating parameters are the following: pH value is 4.5, reaction time is 60 minutes, the dosage of hydrogen peroxide is 4ml/L, the dropwise manner of hydrogen peroxide use, and the removal efficiency of COD is more than 60%.
引文
1于新,丛月珠.大蒜的化学成分及其药理作用研究进展.中草药. 2003, 25(3): 158~160
    2 R. Martin Lagos, Artacho. Determ Ination of Organic Sulphur Copmounds in Garlic Extracts by Gas Chromatography and Mass Spectrometry. Food Chem. 1995, 53 (1) : 91~93
    3熊伟.大蒜素的提取工艺研究.南昌大学硕士学位论文. 2006: 4
    4 M.Keusgen . TLC Analysis of Allium sativum Constituents. Planta Med. 1997, 63 (1): 93~94
    5苏凤贤,张宝善.大蒜素杀菌作用及其在食品中应用.粮食与油脂. 2006, 4: 43~45
    6孙永泰.大蒜干制品的加工与出口.山东食品科技. 2004, 4: 5
    7苏凤贤.大蒜汁生物抑菌特性的研究.陕西师范大学硕士学位文. 2007: 16~25
    8郑屏,盛旋,张祥,等.天然大蒜油及合成大蒜素的气相色谱-质谱分析.分析化学研究简报. 2005, 9(33): 1321~1323
    9能煜,伍睿,陈丽等.大蒜研究进展.天然产物研究与开发. 2000, 12(2): 67~74
    10 Anna Herman-Antosiewicz, V. Shivendra Singh. Signal Transduction Pathways Leading to Cell Cycle Arrest and Apoptosis Induction In Cancer Cells by Allium Vegetable-derived Organosulfyr Compounds: a Review. Mutation Researeh. 2005, 555: 2~ 3
    11张学俊,史鉴立,曾荣妹,何梅.大蒜素产生机理的探讨.中国调味品. 1996, 1: 2~4
    12乔旭光,张振华,韩雅珊.蒜氨酸酶动力学特性研究.山东农业大学学报. 1999, 30(1): 42~46
    13孙灶君,高孔荣.蒜酶及其动力学研究.食品科学. 1995, 16(9): 13~15
    14周重阳,陈海波,罗艳.用生物检定法测定大蒜油中大蒜辣素和大蒜新素的含量.中草药. 1997, 28(1): 18~20
    15 B. B. Adler, LR. Beuchat. Death of Salmonella, Escherichia Coli O-157, and ListeriaMonocytogenesin Garlic Butter as Affected by Storage Temperature.Journal of Food Protection. 2002, 65(12): 1976~1980
    16 R. G. Leuschner, V. Ielsch. Antimicrobial Effects of Garlic, Clove and Red Hot Chill on Listeria Monocytogenes in Broth Model Systems and Soft Cheese International. Journal of Food Sciences and Nutrition. 2005, 54(2): 127~133
    17 R. Unal, H. Fleming. Novel Quantitative Assays for Estimating the Antimicrobial Activity of Fresh Garlic Juice. JFood Prot. 2001, 64(2): 189~194
    18 T. M. Muhsin. Effect of Garlic Bulb Extract on the Growth and Enzymatic Activities of Rhizosphere and Rhizop Lane Fungi. MycopAthologia. 2001, 152(3): 143~146
    19 S. Babu, SeetharamanK. Fungitoxie ProPer Ties of Some Plant Extracts Agains Alternariasolani, the Tomato Leaf Blight Pathogen. Joumal of Eeotoxicologyan Environmental Monitoring. 2000, 10(2): 157~159
    20 R. Martin-Lagos, M.F.O. Serrano, M. D. R. Lopez. Determination of Organic SulphurCompounds in Garlic Extracts by Gas Chromatography and MassSpectrometry. Food Chem. 1995, 53: 91~93
    21 P. Bocchini, C. Andato.Detemination of Diallyl Thiosulfinate (allicin) in Garlic(Allium sativum L.) by High-performance Liquid Chromatography with a Post-column Photochemical Reaetor. Anal Chim Acta. 2001, 441: 37~43
    22 J. Han, L. lawson, G. Han, P. Han, et al. Speetrophotometric Method for Quantitative Determinatio of Allicin and Total Garlic Thiosulfinates. Anal Biochem. 1995, 225: 157~160
    23 Tsao Shyming,Yin Meichin.In Vitro Antimicrobial Sulphides Ocuuring Naturally in Garlic and Chinese Leek Oi1. Journal of Medieal Microbiology. 2006, 50(7): 646~649
    24 S. F. Mohammad. Characterization of a Potent Inhibitor of Platelet Aggregation and Release Reaction Isolated From Allium Sativum (garlic). Thromb Res. 1986, 44(6): 793~806
    25 E.Bloek.The Organosulfur Chemistry of Genus Allium-Implications for the Organic Chemistry of Sulfru Angew. Chem. 1992, 31(9): 1135~1178
    26 M. L. Motsei, K. L. Lindsey, J. Staden, et al. Screening of Traditionally Used South African Plants for Antifungal Activity against Candidaalbicans. Jethnopharmacology. 2003, 86(2-3): 235~241
    27 N. L. Guo, D. P. Lu, G. L. Woods, etal. Demonstration of the Anti-viral Activity of Garlic Extract Against Human Cytomegalovirus in Vitro. Chin Med J(Eng).1993, 106(2): 93
    28 E. Ledezma, L. Desousa, A . Jorquera, J. Sanchez, A.Lander, et al.Efficacy of Ajoene,an Organosulphur Dderived from Garlic, in the Short-term Therapy of Tinea Pedis. Mycoses. 1996, 39(9-10): 393
    29 F. Reimers, S. E. Smolka. Effect of Ajoene, a Compound Derived from Allium Sativum, on Phytopathogenic and Epiphytic Microorganisms. Zeitschrift Fur Pflanzenkrankheiten and Pflanzenschutz. 1993, 100(6): 622~633
    30 U. P. Singh, V. B. Chauhan. Effect of Ajoene, a Compound Derived from Garlic (Allium sativum), on Phytophthora Drechslerif. Cajani. Mycologia. 1992, (1): 105~108
    31 G. San Blas, F. San Blas. Inhibition of Growth of the Dimorphic Fungus Paracocidioides Brasiliensis by Ajoene. Antimicrobial Agents and Chemotherapy. 1989, 33(9): 1641~1644
    32 H. Yoshida, H. Katsuzaki. An Organosulfur Compound Isolated from Oi1 Macerated Garlic Extract, and Its Antimicrobial Effeet. Bioscience Biotechnology and Biochemistry. 1999, 63(3): 588~590
    33周重阳,陈海波,罗艳,邓青,赵棠.用生物检定法测定大蒜油中大蒜素和大蒜新素的含量.中草药. 1997, 28(1): 18~20
    34马往校,段敏,孙新涛,李岚.定硫法测定大蒜中大蒜素含量及影响因素.天然产物研究与开发. 2002, 14(6): 22~23
    35马茜.硫酸钡吸光比浊法测定大蒜中大蒜素含量.光谱实验室. 2007, 24(3): 345~347
    36 C. Kumar, J. Hanseung, R. Kavali, et al. Characteri Zation of an Extracellular Biopolymer Flocculant from a Haloalkalophilic Bacillus isolate. World Journal of Microbiology and Biotechnology, 2004, 20 : 837~843
    37 H. Salehizadeh, S. A. Shojaosadati. Isolation and Char Acterisation of a Bioflocculant Produced by Bacillus. Biotechnology Letters. 2002, 24: 35~40
    38苏会东,孙玉凤,王艳君.微电解-两相厌氧处理糠醛废水研究.沈阳理工大学学报. 2005, 24 (1): 53~55
    39杨家村.铁碳微电解-生化法处理医药废水.环境卫生工程. 2006, 14 (3): 56~57
    40宋晓敏,王惠娥,李广学等.铁屑-粉煤灰微电解法处理DDNP废水.爆破器材, 2005, 34(4): 36~38
    41肖仙英,陈中豪,陈元彩等.微电解法处理造纸中段废水及其机理探讨.中国造纸. 2005, 24(7): 14~17
    42伊向艺,卢渊.用微电解氧化还原法处理油田废弃液.钻进液与完井液. 2005, 22(4): 55~57
    43 Chin-Pao Huang, Huang-Wen Wang, Pei-Chun Chin, et al. Nitrate Reduction by Metallic Iron. Wat. Res. 1998, 32(8): 2257~2264
    44 Sopa, Tuntoolvest. Anaerobic Decolorization of Reactive Dyebath Effluents by a Two-stage UASB System with Tapioca as a Co-substrate. Water Res. 2000, 34(8): 2223~2232
    45 T. H. Kim, C. H. Park. Comparison of Disperse and Reactive Dye Removals by Chemical Cogulation and Fenton Oxidation. Hazardous Materials. 2004, 112: 95~103
    46 D. H. Ahn, W. S. Chang, T. L. Yoon, et al. Dyestuff Wastewater Treatment Using Chemical Oxidation.Physical Adsorption and Fixed Bed Biofilm Process. 1999, 34: 429~439
    47 C. Walling, S. I. Kato. The Oxidation of Alcohols by Fenton’s Reagent: the Effect of Copper ion. J. Chem. Soc. 1971, 93: 4275~4281
    48李金莲,金永峰,钱慧娟等. Fenton试剂在水处理中的应用研究.化工科技市场. 2006, 29(6): 28~33
    49张德莉,黄应平,罗光富等. Fenton及Photo-Fenton反应研究进展.环境化学. 2006, 25(2): 121~127
    50王春敏,步启军,王维军. Fenton法处理焦化废水的试验研究.辽宁化工. 2006, 35 (3): 147~149
    51 M. L. Kremer. Complex Visas Free Radical Mechanism for the Catalytic Decomposition of H2O2 by Fe2+. Int. J. Chem Kinet. 1985, 17: 1299~1314
    52 D. A. Wink, R. W. Nimbus, M. F. Deserters, et al. A Kinetic of Investigation of Intermediates Formed during the Fenton Reagent Mediated Degradation of N-nitrosodimethyl Amine: Evidence for an Oxidative Pathway not Involving Hydroxyl Radical. Chem. Rev Toxicol. 1991, (4): 510~512
    53 M. L. Kremer, G. Stein. The Catalytic Decomposition of Hydrogen Peroxide by Ferric Percholorate. Trans Faraday Soc, 1959, 55: 959~973
    54 W. G. Barb, J. H. Baxendale. Reaction of Ferrous and Ferric Ions with Hydrogen Peroxide. Faraday Soc. 1951, 47: 462~500
    55 S. H. Bossmann, E. Olivero. New Evidence Against Hydroxyl Radicals as Reactive Intermediates in the Thermal and Enhanced Fenton Reaction. J. Phys.Chem. 1998, 102(28): 5542~5550
    56万俊锋,李光明. Fenton试剂在污水处理上的发展与展望.江苏环境科技. 2005, 18(3): 36~39
    57张键,王子波,朱宜平等. Fenton试剂-微电解预处理硝基苯类废水试验.扬州大学学报(自然科学版). 2006, 9(2): 74~78
    58 I. Arslan, I. A. Balciglu, D. W. Bahnemann , et al. Advanced Chemical Oxidation of Reactive Dyes in Simulated Dyehouse Effluents by Ferrioxalate Fenton/UV-A and TiO2/UV Process. Dyes and pigments. 2000, 47: 207~218
    59朱琳娜,吴超,何争光. Fenton试剂法处理难生物降解有机废水最新进展.能源技术与管理. 2006, 2: 59~61
    60张传君,李泽琴,程温莹等. Fenton试剂的发展及在废水处理中的应用.世界科技研究与发展. 2005, 27(6): 64~68
    61齐旭东,赵庆良,王琨等.腐蚀电池-Fenton工艺用于垃圾渗滤液的预处理研究.环境科学学报. 2006, 26(1): 61~69
    62秦普丰,周惜时,铁柏清等. Fenton氧化-混凝-活性炭吸附联合工艺处理酚醛树脂废水.湖南农业大学学报(自然科学版), 2006, 32(5): 544~547
    63黄亚锦,周永春,鲁军.微电解与Fenton试剂预处理丙烯酸酯废液的研究.浙江化工. 2005, 36(3): 25~27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700