聚合物驱含油污水乳状液稳定性及破乳絮凝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱是一种重要的三次采油技术,为中国胜利油田原油稳产提供了重要保证。但由于污水中含有一定量的水解聚丙烯酰胺(HPAM),而且污水油含量高、油珠平均粒径小、悬浮物含量高,处理难度很大。目前对含聚污水中乳化活性物质的组成、稳定性影响因素及处理对策还缺乏深入认识。本论文首先对孤岛采油厂含聚采油污水中乳化活性物质进行了系统分离及组成结构表征,在此基础上研究了乳化活性亚组分及污水中残余HPAM对乳状液稳定性的影响,考察了污水中各亚组分及HPAM对不同结构水处理剂作用效果的影响,提出了含聚采油污水处理对策,研发了针对孤岛油田含聚采油污水的处理剂并进行了现场试验,取得了明显效果。
     用石油醚和三氯甲烷依次萃取孤二联和孤五联含聚污水中的油分,得到弱极性组分F1和强极性组分F2;然后用石油醚沉淀及甲醇/异丙醇抽提,将两个组分分成六个亚组分。六个亚组分的结构组成分析及乳化性能研究结果表明,固体亚组分SF41和SF42的H/C低,相对分子质量高,杂原子含量高,金属钙、铁含量高(SF42相对分子质量高达4533,总杂原子含量25.3%,钙、铁含量分别达到2357mg·kg~(-1)和455.8mg·kg~(-1)),低浓度下( < 0. 5g·L~(-1))界面活性强,乳化能力强;液体亚组分SF1和SF31酸值高(SF31酸值高达23.9mgKOH·g~(-1)),界面活性和乳化能力均较强;黏稠液体亚组分SF32和SF2酸值较低,界面活性和乳化能力相对较弱;各亚组分按界面张力由小到大排序为:SF42≤SF41 < SF31≈SF1      孤二联含聚污水中酸性物质以石油酸和降解HPAM为主,降解HPAM约占酸性物质的30%;孤二联含聚污水中的轻质石油酸以单环环烷酸、四环环烷酸和脂肪酸为主,其中环烷酸的含量远大于脂肪酸的含量。脂肪酸以C16和C18为主,单环环烷酸以C14~18为主,四环环烷酸以C18~21为主;孤二联含聚污水中降解HPAM水解度为30.1%,相对分子质量为2.26×106。
     孤二联含聚污水比孤五联含聚污水稳定性强的原因是污水中HPAM含量及三氯甲烷萃取物含量高,而且高酸值亚组分SF31的含量高。污水中HPAM与强极性亚组分SF31、SF42有很强的相互作用,当HPAM质量浓度大于200mg·L~(-1),亚组分SF31与SF42质量浓度的比值在3~10之间时,含聚乳状液的稳定性很强;HPAM、强极性物质、无机固体颗粒是含聚污水中悬浮物的重要组成成分,无机固体颗粒质量浓度在0~50mg·L~(-1)范围内,对乳状液的稳定作用很强;HPAM的盐敏效应导致盐质量浓度超过1800mg·L~(-1)后,乳状液的稳定性增强,盐质量浓度超过7000mg·L~(-1)以后,zeta电位变成正值;因此,含聚污水不易用聚铝等以电中和作用为主的絮凝剂进行处理。
     对于不含聚的模拟乳状液,水处理剂PAC、PDMDAA、PAMAM系列都具有较好的处理效果,但HPAM的盐效应导致具有一定阳离子度的高相对分子质量处理剂CPAM~(-1)与污水中较大相对分子质量HPAM在较宽的浓度范围内都有很强的协同破乳絮凝作用;高相对分子质量、强极性亚组分SF42与HPAM共同稳定的乳状液比弱极性亚组分SF2所稳定的乳状液更难处理;CPAM~(-1)与污水及采出液剧烈混合时处理效果更好,污水中浮油与CPAM~(-1)有协同除油效果,适合在井排加药,提高处理效果,减少污油的产生。
     研发了针对孤二联和孤五联含聚污水处理的复合阳离子处理剂FX-02和FX-05。现场实验取得了明显的效果,孤二联和孤五联外输污水油含量分别由试验前的平均2700 mg·L~(-1)和950 mg·L~(-1)降为平均180 mg·L~(-1)和144 mg·L~(-1)。
Polymer flooding technology is an important technology in tertiary oil recovery, which plays a significant role in maintaining oil production in old oilfield of China such as Shengli Oilfield. Compared with the produced water from water flooding, the produced water from polymer flooding contains more oily substances and degradation products of hydrolyzed polyacrylamide (HPAM), which makes it more difficult to treat. At present, although flocculation is widely used in treating polymer flooding produced water, the composition and property of the oily substances in polymer flooding produced water have not been completely elucidated, and there is still not a standard way to choose appropriate flocculants effectively and efficiently. This paper is intended to carry out the basic study on separation, analysis and emulsifying activity of sub-fractions of oily substances in polymer-flooding produced water, and then to intensively investigate the interaction between sub-fractions and flocculants as well as the effect of other components on the process, aiming at developing a useful way to screen out effective flocculants and efficient ways for the treatment of the oily water produced by polymer flooding.
     The oily substances in the produced water from a polymer flooded reservoir of Gudao, Shengli, were extracted by petroleum ether and trichloromethane successively. Then, the two fractions were separated into six sub-fractions based on polarity by using solvent deposition and extraction. The results of composition, structure and emulsifying activity of these sub-fractions showed that high heteroatom content (25.3% for SF42), high molecular mass(Mm) (4533 for SF42), high metal content (Ca 2357 mg·kg~(-1) and Fe 455.8mg·kg~(-1) for SF42), low H/C ratio, and strong emulsifying capacity are observed for solid sub-fractions SF41 and SF42 at low concentrations. SF31 and SF1, which contributed to the stability of polymer- flooding produced water, had higher acid values (23.9mgKOH·g~(-1) for SF31) and stronger emulsifying activity than SF2 which had weaker emulsifying activity. The interfacial tension for these sub-fractions is arranged as follows:SF42≤SF41 < SF31≈SF1 < SF32≈SF2.
     The acid substances in polymer-flooding produced water of Gudao2# were dominated by petroleum acid and degradation products of HPAM, the percentage of degradated HPAM was about 30%. The light petroleum acids in water produced by polymer flooding in Gudao2# were mainly composed of C16 and C18 aliphatic acids, C14~(-1)8 naphthenic acids and C18~21 tetracyclic naphthenic acids, and the amount of naphthenic acids were more compared with the aliphatic acids. The hydrolytic degree of HPAM in water produced by polymer-flooding in Gudao oilfield was 30.1% and its Mm was 2.26×106.
     The contents of HPAM and polar materials extracted by CHCl3 and its sub-fraction SF31 which acid value was the highest among six sub-fractions in produced water of Gudao2# were high than those in produced water of Gudao5#. The strong interaction between HPAM and polar sub-fractions such as SF31 and SF42 was observed, and the emulsion was extremely stabile and the oil content in water was high when HPAM concentration surpassed 200mg·L~(-1) and the content ratio of SF31 and SF42 was among 3~10. HPAM, polar sub-fractions and inorganic particles were the important components of the suspended solids in water produced by polymer flooding, and the emulsion was extremely stabile when the concentration of the inorganic particles was 0~50mg·L~(-1).
     The emulsion was more stable and Zeta-potential became positive as NaCl concentration up to 7000mg·L~(-1) in the present of HPAM, and especially the interaction between HPAM and salt was a key factor to impact the efficiency of the treatment of the polymer-flooding produced water. Because of the strong synergistic flocculation between cationic polyacrylamide (CPAM~(-1), as flocculant) and HPAM in the produced water, CPAM~(-1) had a good performance of treating polymer flooding produced water in Gudao oilfield than other flocculants such as PAC and PDMDAA. The strong interaction between HPAM and high Mm, strong polarity sub-fractions SF42 and high acid number SF31 caused the emulsions were more difficult to depose than emulsion composed of HPAM and weak polarity sub-fraction SF2.
     The efficient mixing between produced liquid and CPAM-1 can increase collision frequency that leads to adhesion of oil droplets and increasing flocculation efficiency. The floating oil also increases flocculation efficiency because the destabilized oil droplets can adhere to it. To improve water treatment efficiency and reduce waste oil creation, the water treating agent should be injected at well-drain.
     Two water treating agents FX-02 (for Gudao2#) and FX-05 (for Gudao5#) which main component was CPAM~(-1) were developed. The oil content of the treated water decreased from 2700mg·L~(-1)and 950mg·L~(-1) to 180mg·L~(-1)and 144mg·L~(-1) in Gudao2# and Gudao5#.
引文
[1]荆国林,于水利,韩强.聚合物驱采油污水处理技术研究进展.工业用水与废水, 2004, 35(2): 16-18.
    [2]邓述波,周抚生,陈忠喜.聚丙烯酰胺对聚合物驱含油污水中油珠沉降分离的影响.环境科学, 2002, 23(2):69-72.
    [3]孙江波.飞雁滩油田聚合物驱采出液处理技术.油气地质与采收率,2004,11(4):56-57.
    [4]李大鹏,樊庆锌,周定.油田聚合物采油废水混凝处理方法的试验研究.环境科学学报, 2000, 20 (增刊):64-68.
    [5]Scoggins M W, Miller J W. Spectrophotometric determination of water soluble organic amides. Analytical Chemistry,1975,47(5):152-155.
    [6]李学军,谭新富,刘学.浊度法检测聚丙烯酰胺浓度的研究.油田地面工程,1992,11(3): 41-44.
    [7]张伟,孙金蓉,赵立新,等.含油污水中油的四组份组成分析.工业水处理,1996, 16(3): 29-30.
    [8]范维玉,宋远明,南国枝,等.水包稠油乳状液稳定性研究(I).石油学报(石油加工),2001,17(增刊):1-8.
    [9]丁德磐,孙在春,杨国华,等.原油乳状液的稳定与破乳.油田化学,1998,15(1):82 - 86.
    [10]杨小丽,陆婉珍.有关原油乳状液稳定性的研究.油田化学,1998,15(1):87-96.
    [11]Waller P R, William A, Bartle K P. The structural nature and solubility of residual oil fraction. Fuel ,1989 ,68 :520-526.
    [12]Barth T, Hφiland S, Fotland P, et al. Relationship between the content of asphaltenes and bases in some crude oils. Energy & Fuels,2005,19(4):1624-1630.
    [13]DickieJ P, Yen T F. Macrostrutures of the asphaltic fractions by various instrumental method. Anal. chem.,1967,39(14):1847-1857.
    [14]Strausz O P, Mojelsky T W, Lown E M. The molecular structure of asphaltene: an unfolding story. Fuel,1992,71(12):1355-1363.
    [15]Eley D D, Hey M J, Lee M A .Rheological Studies of Asphaltene Films adsorbed at theoil/water Interface. Colloids and Surfances . 1987, 24:173-182.
    [16]Mclean J D, Kilpatrick P K. Effects of asphaltene solvency on stability of water-in-oil emlusions. Journal of colloid and interface science,1997,189:242-253.
    [17]Xia lixin, Lu shiwei, Cao guoying. Stability and demulsification of emulsions stabilized by asphaltenes or resins. Journal of colloid and interface science, 2004, 271: 504-506.
    [18]徐志成,安静仪,马金石,等.孤岛原油乳化活性组分剖析.油田化学,1999,16(2):163 -166.
    [19]Poteau S. Argillier J-F. Langevin D. Influence of pH on stability and dynamic properties of asphaltenes and other amphiphilic molecules at the oil-water interface. Energy & Fuels 2005, 19(4), 1337-1341.
    [20]Horváth-SzabóG, Masliyah J H, Elliott J A W,et al. Adsorption isotherms of associating asphaltenes at oil/water interfaces based on the dependence of interfacial tension on solvent activity. Journal of Colloid and Interface Science, 2005,283: 5–17.
    [21]张路,赵濉,罗澜,等.胜利孤东原油中酸性组分的分离、分析及界面活性.油田化学,1998,15(4): 344-347.
    [22]徐志成,安静仪,张路,等.胜利原油酸性组分的结构与界面活性.石油学报(石油加工), 2001, 17 (6):1-5.
    [23]徐志成,安静仪,张路,等.原油乳状液油-水界面活性物的结构和活性.石油学报(石油加工), 2003,19(5): 1-6
    [24]李明远,俎永平.原油乳状液稳定性研究(蜡与原油乳状液稳定性).油气田地面工程, 1997, 16 (2):1-3.
    [25]李明远,甄鹏,纪淑玲,等.原油乳状液稳定性研究.石油学报(石油加工),1999, 15(5): 1-5.
    [26]吴迪,艾广智,李克顺,等.聚合物驱和三元复合驱采出水流变性和采出液稳定性研究.日用化学品科学,2000,23(增刊1):110-115.
    [27]康万利,岳湘安,胡靖邦.聚合物对乳状液及液膜的稳定性.石油学报,1997,18(4): 122-125.
    [28]康万利,岳湘安,胡靖邦.含聚合物原油乳状液的稳定性研究.油气田地面工程, 1995,14(2):28-30.
    [29]鄢捷年,王富华,范维庆,等.固体微粒对油水体系的乳化稳定作用.油田化学,1995, 12(3):191-196.
    [30]Yan N, Masliyah J H. Characterization and demulsification of solids-stabilized oil-in-water emulsions.Part1.partitioning of clay particles and emulsions. Colloids Surfaces A: Physicochemical Engingeering Aspects,1995,96,229-242.
    [31]Yan N, Masliyah J H. Characterization and demulsification of solids-stabilized oil-in-water emulsions.Part 2.Demulsification by the addition of fresh oil. Colloids Surfaces A: Physicochemical Engingeering Aspects,1995,96,243-252.
    [32]Menon V B,Wasan D T. A Review of the Factors affecting the stability of solids-stabilized Emulsion. Separation Science Technology,1988,23,21-31.
    [33]Gelot A,Friesen W,Hamza H A. Emulsification of oil and water in the presence of Finely Divided solids and surface active agents. Colloids Surfaces A: Physicochemical Engingeering Aspects, 1984, 12: 271-303.
    [34]刘宏.电解质破乳特性研究.江苏理工大学学报(自然科学版),2000,21(2):27-29.
    [35]张荣明,仇念海等.胶质、沥青质对模拟原油乳状液破乳影响的探索性研究.大庆石油学院学报,1995,19(1):55-58.
    [36]Breen P J, Yen A, Tapp J. Demulsification of asphaltene-stabilized emulsion- correlations of demulsifier performance with crude oil composition. Petroleum science and technology, 2003, 21(3, 4): 437-447.
    [37]León O,Contreras E, Rogel E, et al. Adsorption of native resions on asphaltene particles: A Correlation between adsorption and activity. Langmuir, 2002, 18(13): 5106-5112.
    [38]Stlund J-A, Nyden M, Auflem I H, et al. Interactions between asphaltenes and naphthenic acids. Energy &fuels,2003,17(1):113-119.
    [39]Sullivan A P, Kilpatrick P K.The effect of inorganic solid particles on water and crude oil emulsion stability.Ind.Eng.chem.Res.2002.41:3389-3401.
    [40]江龙.胶体化学概论.第一版.北京,科学出版社,2002:180-184.
    [41]沈钟,王果庭.胶体与表面化学.第二版.北京,化学工业出版社,1997:389-393.
    [42]Chanamai R, Horn G, McClements D J. Influence of Oil Polarity on Droplet Growth in Oil-in-Water Emulsions Stabilized by a Weakly Adsorbing Biopolymer or a Nonionic Surfactant. Journal of Colloid and Interface Science, 2002, 247(1), 167-176
    [43]Rudin J, Wasan D T. Mechanisms for Lowering of Interfacial Tension in Alkali/Acidic Oil Systems: Effect of Added Surfactant.Ind. Eng. Chem. Res. 1992,31(8): 1899-1906.
    [44]Bijsterbosch H D, Cohen Stuart M A, Fleer G J. Effect of block and graft copolymers on the stability of colloidal silica. Journal of Colloid and Interface Science, 1999,210, 37-42.
    [45]Kralchevsky P A, Ivanov I B, Ananthapadmanabhan K P,et al. On the Thermodynamics of Particle-Stabilized Emulsions:Curvature Effects and Catastrophic Phase Inversion. Langmuir, 2005, 21(1), 50-63.
    [46]荆国林,于水利,韩强.聚合物驱采油废水回用技术研究.给水排水,2005,31(3):60-63.
    [47]齐文章,李泽勤,林琳.聚合物驱采出液破乳脱水的室内实验研究.油田化学, 1996, 13(4):357-360.
    [48]张伟,徐文杰,卢维年.聚合物驱采出水的处理与利用.石油规划设计,2000,11(3): 13-16.
    [49] Briscoe B J, Luckham P F, Jayarajah J N, et al. Separation of emulsions using fibrous fabric. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000,163:151–164.
    [50] Mueller J, Cen Y W, Davis R H. Crossflow microfiltration of oily water. Journal of Membrane Science, 1997,129(2):221-235.
    [51]王兰娟,张才箐.含有乳化油污水的超滤膜分离模型.石油大学学报(自然版),1998, 22(3):79-81.
    [52] Gray S R, Harbour P J, Dixon D R. Effect of polyelectrolyte charge density andmolecular weight on the flotation of oil in water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997,126: 85-95.
    [53] Viraraghavan T, Mathavan G N. Treatment of oily waters using peat.Water Pollution Research Journal of Canada, 1990, 25(1): 73-90.
    [54] Moazed H, Viraraghavan T. Use of orangano-clay/anthracite mixture in the separation of oil from oily water. Energy sources, 2005,27(1-2):101-102.
    [55] Fasoli U, Conti R, Genon G. Continuous radial filtration in the purification of oil water. Water Research, 1976,10 (7): 633-635.
    [56] Kenawy F A, Kandil M E, Fouad M A, et al. Environmental protection from refinery oily waste water effluents by using coalescers. SPE. 1997,37720:363-370.
    [57] Peachey B. R. Method for borehole separation of oil and water in an oil well. US 5,830,368. 1998-11-3: 1-9.
    [58]蒋明虎,赵立新.产出液预分离水力旋流器的机理及实验研究.石油学报,1998,19 (4):104-108.
    [59]Fang C S, Lai Peter M C, Chang Bruce K L,et al. Oil recovery and waste reduction by microwave radiation. Environmental Progress. 1989; 8 (4) : 235-238.
    [60]傅大放,吴海锁.微波辐射破乳的试验研究.中国给水排水,1998,14(4):4-7.
    [61]Vega Camila,Dalgado Mayolett,Vega, Bolivia. Treatment of waste-water/oil emulsions using microwave radiation. International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, 2002:1483-1494.
    [62]Xia Lixin, Cao Guoying, Lu Shiwei, et al. Demulsification of solids-stabilized emulsions under microwave radiation. Journal of macromolecular science - Pure and applied Chemistry, 2006, 43A(1): 71-81.
    [63]Xia Lixin, Lu Shiwei, Cao Guoying. Demulsification of emulsions exploited by enhanced oil recovery system. Separation science and technology, 2003, 38(16):4079-4094.
    [64]Xia Lixin, Lu Shiwei, Cao Guoying.Salt-assisted microwave demulsification.Chemical Engineering Communications, 2004,191(8): 1053-1063.
    [65]孙宝江,付静.三次采油生产中含油污水超声波分离实验.石油大学学报(自然科学版), 1999, 23(5):115-117.
    [66]孙宝江,乔文孝,付静.三次采油中水包油乳状液的超声波破乳.石油学报, 2000, 21(6): 97-102.
    [67]Ichikawa T, Itoh K, Yamamoto S, et al. Rapid demulsification of dense oil-in-water emulsion by low external electric field. I. Experimental evidence. Colloids and surfaces A: Physicochem. Eng. Aspects, 2004,242:21-26.
    [68]Yan nianxi,Kurbis C, Masliyah J H. Continuous demulsification of solids-stabilized oil-in-water emulsions by addition of fresh oil. Ind. Eng. Chem. Res. 1997, 36(7): 2634– 2640.
    [69]韩晶,张小燕,余中.我国水处理剂的研究与应用现状展望.精细石油化工,2001,(3): 38-42.
    [70]张光华.水处理化学品制备及应用指南.中国石化出版社,2003: 31-40.
    [71]张群正.聚硅氯化铝的研制及对油田污水的絮凝性能.油田化学,2004,21(3): 241- 243.
    [72]郝红英,崔子文.新型絮凝剂碱式聚硅硫酸铝的制备.华北工学院学报, 2000,21 (1):37-40.
    [73]高宝玉,岳钦艳,王占生,等.聚硅氯化铝混凝剂的混凝性能.环境科学,2000,21(2): 46-49.
    [74]肖进新,赵振国.表面活性剂应用原理.第一版.北京:化学工业出版社,2003: 303-305.
    [75]Singh R P, Nayak B R, Biswal D R, et al. Biobased polymeric flocculants for industrial effluent treatment. Materials Research Innovations, 2003, 7(5):331-340.
    [76]Pal S, Singh R P. Investigation on flocculation characteristics of cationic polysaccharides: Novel polymeric flocculants. Materials Research Innovations, 2005, 9(2):55-56.
    [77]Pal S, Mal D, Singh R P. Synthesis, characterization and flocculation characteristics of cationic glycogen: A novel polymeric flocculant.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289(1-3):193-199.
    [78]Fernandes R S, Gonzalez G, Lucas E F..Evaluation of polymeric flocculants for oily water systems using a photometric dispersion analyzer.Colloid Polym Science,2004,283:219–224.
    [79]Femandes R S, Gonzalez G, Lucas E F. Assessment of polymeric flocculants in oily water systems. Colloid and Polymer Science, 2005,283(4):375-382.
    [80]Feder Jr A L, Gonzalez G, Carmen L S T, et al. The use of polymers in the treatment of produced oily waters. Journal of Applied Polymer Science, 2004, 94(4):1473-1479.
    [81]Zhao H, Yue Q, Gao B, et al.Synthesis and analysis of PDMDAAC and P(DMDAAC-AM) as cationic polymeric flocculants. Jingxi Huagong,2001,18(11): 645-649.
    [82]罗娅君,张新申,王照丽,等.阳离子型高分子絮凝剂P(DMC-AM)的合成.四川大学学报(工程科学版),2003,35(3): 54-57.
    [83]Rawlings M M, Fitzpatrick C S B, Gregory J, et al. The effect of polymeric flocculants on floc strength and filter performance. Water Science and Technology, 2006, 53(7): 77-85.
    [84]Xiao Huining, Cezar N. Organo-modified cationic silica nanoparticles/anionic polymer as flocculants. Journal of Colloid and Interface Science, 2003, 267(2):343-351.
    [85]Yang Wuyuan, Qian Jinwen, Shen Zhiquan, et al. Synthesis and characterization of Al(OH)3-PAM hybrid flocculants. Gaofenzi Cailiao Kexue Yu Gongcheng, 2004, 20(1):68.
    [86]尹华,彭辉,肖锦.天然高分子改性阳离子型絮凝剂的开发与应用,工业水处理, 1998,18(5):1-5.
    [87]赵福麟.乳化原油破乳剂.石油大学学报(自然科学版),1994,18(增刊):104-113.
    [88]吴迪,王瑞泉,孟祥春,等.聚合物驱采出液和含油污水油水分离化学剂的研制.精细化工,2002,19(增刊):80-82.
    [89]Deng Shubo, Yu Gang, Jiang Zhanpeng, et al. Destabilization of droplets in produced water from ASP flooding. Colloids & Surfaces A: Phys. Eng. Asp, 2005,252(2-3): 113-119.
    [90]Jansson M, Pés M A. Demulsification of dilute oil/water emulsions with organic electrolytes. Joural of Colloid and Interface Science.1994, 163(2):512-514.
    [91]罗伟福,史爱娜,王海军.用于高含水注聚采出液的KYYC系列破乳剂.油田化学, 2003,20(3):235-238.
    [92]肖进新,赵振国.表面活性剂应用原理.第一版.北京:化学工业出版社,2003: 227-228.
    [93]徐心茹,张一安,詹敏.炼油厂水包油型乳状液破乳研究.石油学报(石油加工), 1997,13(1): 46-52.
    [94]Giordano-Palmino F, Denoyel R, Rouquerol J. Interfacial Aggregation of a Nonionic Surfactant: Effect on the Stability of Silica Suspensions. Journal of Colloid and Interface Science 1994, 165(1):82-90.
    [95]Swerin A, Odberg L, Wagberg L. An extended model for the estimation of flocculation efficiency factors in multicomponent flocculant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, l13:25-38.
    [96]Hogg R. Collision efficiency factors for polymer flocculation. Journal of Colloid and Interface Science, 1984, 102(1): 232-236.
    [97]Behl S, Moudgil B M, Prakash T S. Control of active sites in selective flocculation I. Mathematical model. J. Colloid Interface Sci., 1993, 161:414-421.
    [98]Saether O, Sjoblom J, Verbich S V, et al. Video-microscopic investigation of the coupling of reversible flocculation and coalescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 142: 189–200.
    [99] Wattana P, Fogler H. S, Yen A. Characterization of polarity-based asphaltene subfractions. Energy & Fuels, 2005, 19(1):101-110.
    [100]管红霞,蔡青松,蒋生祥,等.大庆原油中石油酸组成的GC-MS分析.分析测试技术与仪器, 2002, 8(1): 34-39.
    [101]李宝才,周梅村,张惠芬,等.云南昭通褐煤树脂化学组成与分布特征[J].煤炭学报, 2004,29(3):328-332.
    [102] Laredo G C, Lopez C R, Alvarez R E, et al. Naphthenic, total acid number and sulfur content profile characterization in Isthmus and Maya crude oils[J]. Fuel, 2004,83(11-12):1689-1695.
    [103]杨继萍,李惠生,黄鹏程.部分水解聚丙烯酰胺在多孔介质中的静态吸附研究-水解度对吸附量的影响.高分子学报,1997,(5):601-605.
    [104]王俊,杨锦宗,陈红侠,等.发散法合成树枝状高分子聚酰胺-胺.合成化学,2001,9(1): 62-64.
    [105]许振举,张爱华.聚丙烯酰胺的胺甲基化反应及其产品的应用.齐鲁石油化工. 1996,(4):273-275.
    [106]王雅琼,许文林.聚电解质离子度的测定.精细石油化工,1999,(6):45-47.
    [107]Tomalia D A, Naylor A M, GoddardⅢW A. Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atom to macroscopic matter. Angew.Chem. Int. Ed. Engl, 1990, 29: 139-175.
    [108]吴文娟,徐冬梅,张可达,等.聚酰胺-胺树状大分子的应用.高分子通报,2003,(4): 67 -72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700