天然高分子材料的改性及其对染料的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过对几种天然高分子材料—壳聚糖、β-环糊精和瓜尔胶进行接枝改性,研究其在不同实验条件下对染料废水吸附性能的影响,对印染行业染料废水的处理有一定的指导作用。
     本研究首先制备了β-环糊精微球,再将壳聚糖键接到β-环糊精微球上,合成新的衍生物,利用X射线衍射仪、傅里叶变换红外光谱仪、扫描电镜和比表面孔径测定仪表征原料和产物的结构和微观形貌,通过改变搅拌时间、温度和pH值等实验条件比较原料和键接产物对甲基橙溶液的吸附效果。研究结果表明,壳聚糖键接β-环糊精微球对甲基橙的吸附效果要比β-环糊精微球和壳聚糖好,且键接产物的吸附量随温度和pH值升高而增大,最大吸附量可达到20 mg·g-1,其吸附过程符合Freundlich吸附模型,是非自发的吸热过程。其次,本研究将瓜尔胶键接到β-环糊精微球上,制备了一系列衍生物,利用X射线衍射仪和傅立叶变换红外光谱表征原料和键接产物的结构,采用酚酞分光光度法测定系列键接产物中β-环糊精的含量,通过改变各种实验条件和吸附剂种类,研究不同键接产物对碱性品红的吸附性能。结果表明反应时间为2h,氯丙基羟基瓜尔胶:β-环糊精微球:碳酸钠的质量配比为0.6:0.8:1.0时的键接产物对碱性品红的吸附量最高,达到24mg·g-1。为了提高对酸性染料的吸附效果,利用阳离子醚化剂,将制得的瓜尔胶键接β-环糊精微球阳离子化,得到阳离子化衍生物,接着改变阳离子化衍生物的离子化程度,研究其对酸性大红GR的吸附情况,研究表明常温下,pH=7.5,搅拌时间为50min, Zeta电位值为-5.53mv时的阳离子化衍生物对酸性大红GR的最大吸附量可达到50 mg·g-1。
     此外,本研究还分别将纳米锂藻土和纳米蒙脱土原位复合到聚丙烯酰胺水凝胶里,制备有机—无机复合水凝胶,分别改变单体和纳米锂藻土/纳米蒙脱土的加入量以及温度、浓度、pH值等实验条件,考察复合水凝胶对碱性品红的吸附情况。结果发现:随着锂藻土和蒙脱土加入量的增多,水凝胶的吸附量增幅并不明显;随着丙烯酰胺单体加入量的增加,对于锂藻土复合水凝胶而言,吸附量显著增加,由4.62 mg·g-1增加到24.45 mg·g-1,而蒙脱土复合水凝胶的吸附量明显下降;提高染料废水溶液的pH值和温度,锂藻土复合水凝胶的吸附量分别提高了11.10 mg·g-1和1.84 mg·g-1,而蒙脱土复合水凝胶的吸附量增幅不明显。
Some natural macromolecular materials such as chitosan,β-cyclodextrin and guar gum were modified in this research. The effect of absorption capacity of derivatives by changing the environmental condition was studied, which could provide a useful guide for the treatment of printing and dyeing wastewater.
     Theβ-cyclodextrin microsphere was prepared firstly, and then the chitosan was bonded on it to form a new derivative. XRD, FTIR, SEM and surface area determinator were used to characterize the structure and micro-morphology of derivatives and stuff. Raw materials were compared with derivative in absorbing methyl orange through changing stirring time, temperature and pH value. It was proved that the absorption capacity of chitosan bondedβ-cyclodextrin microsphere was better than that of chitosan and P-cyclodextrin microsphere. In addition, the absorption capacity of derivative was increased with temperature and pH value, the maxium absorption capacity was 20 mg·g-1. The process of absorption was fitted with Freundlich absorption model well. Moreover, the absorption action was an unspontaneously endothermic process. Then the guar gum was bonded toβ-cyclodextrin microsphere, a series of derivatives were synthesized. The structure of stuff and polymer were characterized by XRD and FTIR. The content ofβ-cyclodextrin within derivatives was determined using phenolphthalein spectrophotometry. By changing experimental conditions and types of absorbents, the absorption capacity of derivatives was studied. It was proved that the derivative which was prepared in 2 hours, when stuff mass ratio of chloro-hydroxypropyl guar gum,β-cyclodextrin microsphere and sodium carbonate was 0.6:0.8:1.0, the best result among the series of derivatives was 24mg-g"1. At last, the cationic etherification agent was grafted to the guar gum bonded P-cyclodextrin microsphere, in order to enhance the absorption towards acid red GR. The absorption capacity towards acid red GR was studied. It was proved that under the condition of pH value at 7.5, stirring time at 50 min, Zeta potential value at-5.53mv,50 mg-g"1 acid red GR was absorbed in room temperature.
     Moreover the organic-inorganic hydrogels were prepared using in-situ radical polymerization of acrylamide monomers in the suspension of nano-laponite clay and nano-montmorillonite respectively. The added amount of inorganic materials and monomer, the temperature concentration, and the value of pH were changed, the absorption capacity of hydrogels towards basic fuchsin was studied. It was proved that the absorption capacity was increased slowly with the increase of the added amount of inorganic materials. When the weight of acrylamide monomers was increased in laponite clay complex hydrogel, their absorption capacity was increased obviously from 4.62 mg-g-1 to 24.45 mg-g-1. Under the same experimental conditions, the absorption capacity of montmorillonite complex hydrogel was decreased obviously; but for the two complex hydrogels, when the pH value and temperature of dye solution were increased, the absorption of laponite clay complex hydrogel increased by 11.10 mg-g-1 and 1.84 mg-g-1 respectively. On the contrary, there was no much change in the absorption of montmorillonite complex hydrogel.
引文
[1]张宇峰,滕洁,张雪英等.印染废水处理技术的研究进展[J].工业水处理,2003,23(4):23-27.
    [2]彭会清,许开.印染废水处理方法进展与述评[J].南方冶金学院学报,2003,24(4):57-61.
    [3]冯天照,王红林,严宗诚等.印染废水脱色研究进展[J].科技导报,2009,27(19):112-115.
    [4]黄旭.印染废水处理方法简析[J].黑龙江科技信息,2009,13:106.
    [5]薛艳龙.印染废水现有处理工艺比较研究[J].科技咨询,2009,32:151-152.
    [6]贺启环,张勇.印染废水复合混凝剂的研究[J].染料工业,2002,39(3):3841.
    [7]黎载波,王国庆,邹龙生.有机高分子絮凝剂在印染废水处理中的应用[J].工业水处理,2003,23(4):14-17.
    [8]方旭,刘强,边明华.复合型混凝剂处理印染废水的研究[J].环境保护科学,2005,31(128):30-32.
    [9]王翠,史佩红,杨春林等.电化学氧化法在废水处理中的应用[J].河北工业科技,2004,21(1):49-53.
    [10]张旭,陈胜,孙德智.印染废水生物法处理技术研究进展[J].长春工业大学学报:自然科学版,2009,30(1):26-32.
    [11]冯凯,邱木清.生物法处理染料废水的研究与进展[J].工业水处理,2009,29(2):19-21.
    [12]Darder M, Aranda P, Ruiz-Hitzky E. Bionanocomposites:A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials[J]. Adv Mater,2007,19:1309-1319.
    [13]肖锦,周勤.天然高分子絮凝剂[M].化学工业出版社,2005:133-189.
    [14]刘燕珍,廖双泉,廖建和,等.壳聚糖功能材料的研究进展[J].热带农业科学,2007,27(4):71-75.
    [15]赵晓斌,何炳林.环糊精高聚物研究与开发应用进展[J].离子交换与吸附,1994,5:472-476.
    [16]朱利中,戚文彬.环糊精在分析化学中的应用[J].化学试剂,1991,13(3):156.
    [17]孔俊豪,史劲松,孙达峰等.瓜尔胶及其衍生物最新研究进展[J].食品研究与开发, 2009,30(4):167-170.
    [18]黄惠莉,林文玺,陈建新.羧甲基壳聚糖用于印染废水的处理[J].华侨大学学报:自然科学版,2002,23(2):177-179.
    [19]杨智宽,袁杨,鲁画芬.羧甲基壳聚糖对水溶性染料废水的脱色研究[J].环境科学与技术,1999,85(2):8-10.
    [20]范大和,蔡照胜.两性壳聚糖复合絮凝剂对印染废水的絮凝性能研究[J].工业水处理,2008,28(9):47-50.
    [21]吴纯德,范瑾初.环糊精在水处理中的研究及应用[J].水处理技术,1998,(6):167-170.
    [22]Elif Y O, Mustafa Y. Use of β-cyclodextrin and starch based polymers for sorption of congo red from aqueous solutions[J]. Journal of Hazardous Materials,2007,148:303-310.
    [23]Gregorio C. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer[J]. Dye and Pigments,2008,77: 415-426.
    [24]Roza A, Michael A, Gerold H, et al. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers[J]. Water Research,2007,41:476-486.
    [25]Singh P, Sagar P, Mal D. A high performance flocculating agent and viscosifiers based on cationic guar gum[J]. Macromol. Symp,2006,242:227-234.
    [26]Wan X F, Li Y M, Wang X J, et al. Synthesis of cationic guar gum-graft-polyacrylamide at low temperature and its flocculating properties[J]. European Polymer Journal,2007,43(8): 3655-3661.
    [27]Nayak R, Singh P. Development of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide[J]. Journal of Applied Polymer Science,2001, 81:1776-1785.
    [28]Khaled El T, Mohamed A G, Safaa El-Rafie. Novel method for preparation of β-cyclodextrin/grafted chitosan and it's application[J]. Carbohydrate Polymers,2006,63: 385-392.
    [29]Nobuyoshi A, Kenji K, Katsuhiko M, et al. Adsorption of 4-nonylphenol ethoxylates onto insoluble chitosan beads bearing cyclodextrin moieties[J]. J Incl Phenom Macrocycl Chem, 2007,57:237-241.
    [30]Etsuko F, Yoshiharu U, Nobuo S, et al. Facile preparation and inclusion ability of a chitosan derivative bearing carboxymethyl-β-cyclodextrin[J]. Carbohydrate Polymers,1996,29(1): 29-34.
    [31]Fusao T, Tomoya T, Han S M, et al. Novel synthesis of a water-soluble cyclodextrin-polymer having a chitosan skeleton[J]. Polymer,1998,39(21):5261-5263.
    [32]Rachel A V, Marguerite R. Chitosan derivatives bearing pendant cyclodextrin cavities: Synthesis and inclusion performance[J]. Macromolecules,2001,34:3574-3580.
    [33]Nobuyoshi A, Ryo A, Kenjiro H. Improved synthesis of chitosan-bearing β-cyclodextrin and its adsorption behavior towards bisphenol A and 4-nonylphenol[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2004,50:115-120.
    [34]Prabaharan M, Mano J F. Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices[J]. Carbohydrate Polymers,2006,63:153-166.
    [35]Tojima T, Katsura H, Nishiki M, et al. Chitosan beads with pendant a-cyclodextrin: preparation and inclusion property to nitrophenolates[J]. Carbohydrate Polymers,1999,40: 17-22.
    [36]Aydan Y, Elif Y, Mustafa Y, et al. Removal of azo dyes from aqueous solutions using calix[4] arene and b-cyclodextrin[J]. Dye and Pigments,2007,74:54-59.
    [37]Elif Y O, Mehmet S, Aydan Y, et al. Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions[J]. Bioresource Technology,2008, 99:526-531.
    [38]Zha F, Li S G, Chang Y, et al. Preparation and adsorption kinetics of porous gamma-glycidoxypropyltrimethoxysilane crosslinked chitosan-beta-cyclodextrin membrane[J]. Journal of Membrane Science,2008,321(2):316-323.
    [39]Zhang X Y, Wang Y T, Yi Y. Synthesis and characterization of grafting b-cyclodextrin with chitosan[J]. Journal of Applied Polymer Science,2004,94:860-864.
    [40]Reddy K, Babu V, Sairam M, et al. Development of chitosan-guar gum semi-interpenetrating polymer network microspheres for controlled release of cefadroxil[J]. Design Monomers and Polymers,2006,9(5):491-501.
    [41]Mutalik V, Manjeshwar L, Wail A, et al. Thermodynamics/hydrodynamics of aqueous polymer solutions and dynamic mechanical characterization of solid films of chitosan, sodium alginate, guar gum, hydroxy ethyl cellulose and hydroxypropyl methylcellulose at different temperatures[J]. Carbohydrate Polymers,2006,65(1):9-21.
    [42]Xiao C B, Zhang J H, Zhang Z J, et al. Study of blend films from chitosan and hydroxypropyl guar gum[J]. Journal of Applied Polymer Science,2003,90(7):1991-1995.
    [43]蒋文天,邱祖民.复合高分子絮凝剂在废水处理中的应用进展[J].工业水处理,2008,28(11):5-8.
    [44]韩耀霞.聚丙烯酰胺和聚合氯化铝联合投加净化微污染水源水的试验研究[J].环境科学与管理,2009,34(12):66-69.
    [45]石宝友,汤鸿霄.聚合铝与有机高分子复合絮凝剂的絮凝性能及其吸附特性[J].环境科学,2000,21(1):18-22.
    [46]陈忻,袁毅桦,黄文玲,等.联合使用瓜尔胶及聚合氯化铝对染料废水脱色研究[J].环境科学与技术,2007,8(30):74-77.
    [47]左演声,梁伟,陈文哲.材料现代分析方法[M].北京:北京工业大学出版社,2006.:344.
    [48]田艳,张敏,程爱民.壳聚糖及其衍生物在工业污水处理中的研究及应用[J].工业水处理,2007,27(3):7-9.
    [49]贾海红,韩宝平,马卫,等.壳聚糖对4种染料的吸附行为研究[J].淮海工学院学报:自然科学版,2008,17(3):48-51.
    [50]刘夺奎,董振礼,刘丹.β-环糊精-分散染料包合物的制备及其影响因素[J].染料与染色,2003,40(6):331-333.
    [51]龙家杰,王惠珍,陈霞.β-环糊精对阳离子染料的包合作用[J].纺织学报,2002,23(4):281-283.
    [52]胡晖,刘郁杨,范晓东,等.温度及pH敏感的β-环糊精聚合物微球的合成及药物控制释放研究[J].高分子学报,2005,(3):357-362.
    [53]李和平,罗小锋,肖子丹.壳聚糖微球的制备及其对甲基橙的吸附研究[J].印染,2006,(15):1-6.
    [54]易英,汪玉庭.壳聚糖-g-β-环糊精的制备与表征[J].合成化学,2005,13(2):180-182.
    [55]张学勇,汪玉庭,易英.壳聚糖固载化β-环糊精的制备、表征及其性能研究[J].武汉大学学报:理学版,2004,50(2):197-200.
    [56]邵旭平,陶精言,张慧中,等.吸附法测定U3O8粉末比表面积[J].原子能科学技术, 2004,38(4):366-369.
    [57]韦薇,管春平.高比表面纳米γ-Al2O3的制备研究[J].楚雄师范学院学报,2007,22(9):46-49.
    [58]Crini, G Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer[J]. Dyes and Pigments,2008, 77(2):415-426.
    [59]刘夺奎,董振礼.环糊精包合客体分子机理的研究[J].染料与染色,2004,41(3):155-157.
    [60]Ozmen E Y., Sezgin M, Yilmaz A, et al. Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions[J]. Bioresour Technol,2008, 99(3):526-531.
    [61]张清峰,姜子涛,占豪,等.紫外分光光度法研究β-环糊精与甲基橙的包结行为[J].光谱实验室,2005,22(5):1074-1078.
    [62]Zha F, Li S G, Chang Y. Preparation and adsorption property of chitosan beads bearing P-cyclodextrin cross-linked by 1,6-hexamethylene diisocyanate[J]. Carbohydrate Polymers, 2008,72(3):456-461.
    [63]刘剑锋,陈羡琳,刘明华,等.一种复合脱色剂在印染废水中的应用研究[J].化学研究与应用,2010,22(3):397-400.
    [64]朱昌玲,薛华茂,孙达峰,等.改性瓜尔胶的研究进展[J].中国野生植物资源,2005,24(4):9-12.
    [65]吉毅,李宗石,乔卫红.瓜尔胶的化学改性[J].日用化学工业,2005,35(2):111-114.
    [66]罗彤彤,卢亚平,潘英民.羧甲基羟丙基瓜尔胶合成工艺的研究[J].化工时刊,2007,21(2):26-27.
    [67]Richard S.Blackburn. Natural polysaccharides and their interactions with dye molecules: Application in effluent treatment[J]. Environ.Sci.Technol.,2004,38:4905-4909.
    [68]Kalani S L, Aditya P, Kapoor R C. Synthesis of an adsorbent from guar gum and its use in the removal of basic dyes from textile effluent[J]. Research and Industry,2009, 29(4):283-287.
    [69]Sinqh V, Pandev S, Sinqh S K, et al. Removal of cadmium from aqueous solutins by adsorption using poly(acrylamide) modified guar gum-silica nanocomposites[J]. Separation and Purification Technology,2009,67(3):251-261.
    [70]Sinqh V, Kumari P, Pandev S, et al. Removal of chromium(VI) using poly(methylacrylate) functionalized guar gum[J]. Bioresource Technology,2009,100(6):1977-1982.
    [71]Bhaskar S G, Jubilant E A. Application of guar gum as a flocculant aid in food processing and potable water treatment[J]. Eur Food Res Technol,2005,221:746-751.
    [72]刘夺奎,董振礼,刘丹.β-环糊精-分散染料包合物的制备及其影响因素[J].染料与染色,2003,40(6):331-333.
    [73]龙家杰,王惠珍,陈霞.β-环糊精对阳离子染料的包合作用[J].纺织学报,2002,23(4):281-283.
    [74]胡晖,刘郁杨,范晓东,等.温度及pH敏感的β-环糊精聚合物微球的合成及药物控制释放研究[J].高分子学报,2005,(3):357-362.
    [75]易英,汪玉庭.壳聚糖-g-β-环糊精的制备与表征[J].合成化学,2005,13(02):180-182.
    [76]李文德,周俊厦,张力田.改进的酚酞分光光度法测定β-环糊精[J].华南理工大学学报:自然科学版,1995,23(7):34~39
    [77]李明时,张帆.β-环糊精的分光光度测定[J].分析化学,1998,26(7):912.
    [78]万军民,胡智文,陈文兴,等.纤维素纤维接枝β-环糊精的合成及其富集金属离子研究[J].高分子学报,2004,4:566-572.
    [79]Sagar P, Mal D, Singh R P. Syntheses and characterization of cationic guar gum: A high performance flocculating agent[J]. Journal of Applied Polymer Science,2007,105(6): 3240-3245.
    [80]王少宝,彭成松,张晓梅.环糊精聚合物对碱性品红的吸附[J].云南化工,2009,36(3):17-21.
    [81]刘夺奎,董振礼.环糊精包合客体分子机理的研究[J].染料与染色,2004,41(3):155-157.
    [82]Ozmen E Y., Sezgin M, Yilmaz A, et al. Synthesis of p-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions[J]. Bioresour Technol,2008, 99(3):526-531.
    [83]Yue Q Y, Gao B Y, Wang Y, et al. Synthesis of polyamine flocculants and their potential use in treating dye wastewater[J]. Journal of Hazardous Materials,2008,152(1):221-227.
    [84]Liu P, Guo J S. Polyacryl amide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes[J]. Colloids and Surfaces A: Physicochem,2006,282:498-503.
    [85]Gao B Y, Wang Y, Yue Q Y. The Chemical Species Distribution of Aluminum in Composite Flocculants Prepared from Polyaaluminum Chloride (PAC) and Polydimethyl diallylammonium Chloride (PDMDAAC) [J]. Acta hydrochim. hydrobiol,2005,33(4): 365-371.
    [86]许世美,张淑芬,杨锦宗.有机-无机纳米复合水凝胶[J].化学进展,2009,5(21):1008-1014.
    [87]Hajjaji M, Alami A, Bouadili A El. Removal of methylene blue from aqueous solution by fibrous clay minerals[J]. Journal of Hazardous Materials,2006, B135:188-192.
    [88]Li P, Siddaramaiah, Kim N H, et al. Poly(Acrylamide/Laponite) Nanocomposite Hydrogels: Swelling and Cationic Dye Adsorption Properties[J]. Journal of Applied Polymer Science, 2009,111(4):1786-1798.
    [89]Li P, Kim N H, Siddaramaiah, et al. Swelling behavior of polyacrylamide/laponite clay nanocomposite hydrogels: pH-sensitive property[J]. Composites: Part B,2009,40:275-283.
    [90]Zhang L M, Zhou Y J, Wang Y. Novel hydrogel composite for the removal of water-soluble cationic dye[J]. J Chem Technol Biotechnol,2006,81(3):799-804.
    [91]Yi J Z, Zhang L M. Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels[J]. Bioresource Technology, 2008,99(7):2182-2186.
    [92]熊丽君,胡小波,刘新星,等.超拉伸聚合物-锂藻土纳米复合水凝胶[J].化学进展,2008,20(4):464-468.
    [93]高党鸽,马建中.蒙脱土在废水处理中的应用及在制革废水处理方面的应用前景[J].皮革科学与工程,2005,15(4):52-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700