氨基修饰纳米SiO_2吸附4种染料的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用原位修饰法制备的γ-氨丙基三乙氧基硅烷(APS)表面修饰的纳米二氧化硅(AMNS)作为新型吸附剂,探讨了将其作为吸附剂对茜素红AR、刚果红CR、结晶紫CV和孔雀石绿MG等染料模拟废水进行处理的可行性,研究了其对染料的吸附性能、吸附机理和吸附动力学,为开发利用AMNS作为吸附剂提供了理论依据。此外,并与未修饰的纳米SiO2在相同条件下进行了吸附性能的比较;考察了AMNS与活性炭在吸附容量、吸附速度、再生性能方面的对比,实验结果如下:
     (1)影响吸附的因素有:染料溶液初始pH、吸附剂用量、吸附时间、染料溶液初始浓度和温度。AMNS吸附性能受溶液的pH影响很大,对于AR、CR,随着溶液pH的降低吸附率增加,而CV和MG随pH的降低吸附率减少,这与不同pH值下吸附剂表面电荷有关; CR、CV和MG随着温度升高吸附率增加,AR随着温度升高吸附率减少;增加吸附剂用量和吸附时间、染料初始浓度都能提高对染料的吸附率,但吸附量却随着吸附剂用量的增加而降低,随着染料溶液初始浓度的增加而增加。而随着溶液初始浓度的增加,AMNS对染料的吸附量增加,吸附率降低,因此,在实际应用时要同时考虑这两方面。
     (2) AMNS吸附两种阴离子染料(AR、CR)和两种阳离子染料(CV、MG)都较好的符合Langmuir吸附等温式。在实验最佳条件下对阴离子染料(AR、CR)和阳离子染料(CV、MG)的饱和吸附量分别达到200.0 mg·g-1、133.3 mg·g-1、40.0 mg·g-1和102.0 mg·g-1。其中,对阴离子染料具有较高的饱和吸附量。
     (3) AMNS对这四种染料吸附速率都较快,前10min时的吸附率和吸附量上升最快,然后时间持续60min时吸附基本达到平衡,吸附动力学都较好的符合Lagergren准二级反应模型;其吸附阴、阳离子染料主要是通过静电作用完成。
     (4)热力学分析表明,AMNS吸附AR时,△H 0<0,△S0<0,△G 0<0,是自发放热过程,吸附后体系变得更加有序;AMNS吸附CR、CV和MG时,△H 0>0,△S0>0,△G0<0,是自发吸热过程,吸附后体系变得更加紊乱。
     (5)将AMNS对阳离子染料、阴离子染料的吸附性能进行了对比,结果表明:对阴离子染料的饱和吸附容量比较大。
     (6)在相同实验条件下,AMNS吸附AR、CR和MG比未修饰的纳米SiO2效果好,这可能是因为AMNS表面存在活性官能团-NH2,更易于与其他官能团相互作用。
     (7) AMNS比活性炭相对的更适合用于吸附AR、CR和MG染料废水,主要有下面3个优点:①吸附容量较大;②吸附速度快;③可再生,AMNS在酸性或碱性解吸剂的作用下,能够释放出来被吸附的染料分子,吸附剂达到重复利用,染料浓缩回收,从而获得两方面的效益。因此,AMNS作为一种新型的吸附剂对染料废水的预处理或深度处理具有很大的优势,将它应用于工业化处理,有利于降低成本,提高处理效率。
The adsorption behaviors of alizarin red-S, Congo red, crystal violet and malachite green on modified nano-SiO2 (AMNS) were investigated. The adsorption properties, mechanism and dynamics were discussed. The results supported the feasibility that AMNS as an absorbent theoretically. As comparisons, no modified nano-SiO2 and activated carbon was also taken into the experiments. The conclusions were obtained by follow.
     (1) The factors that affect the adsorption of dyes on AMNS included pH, adsorbent dose, adsorption time, initial concentration of the dyes and temperature. The initial pH of the dyes solution was an important influence factor on adsorption capacity. The adsorption capacities of alizarin red-S and Congo red increased with the medium pH decreased, while those of crystal violet and malachite green decreased. That might be related to adsorbent surface charge state. Adsorption capacities of Congo red, crystal violet and malachite green increased with the temperature increase, while that of alizarin red reduced. Increase the dose of adsorbent could improve removal ratios of dyes, as well as increase adsorption time and the initial concentration of the dyes. The adsorption capacities decreased with adsorbent dose increase and increased with the initial concentration of the dyes increase. The adsorption capacity increased and the adsorption rate decreased with the initial concentration increase of dyes. So, it should be considered in practical process.
     (2) The adsorption behaviors of the dyes on AMNS were accorded with Langmuir isotherm model. Under the optimum conditions, the maximum adsorption capacities of anionic (alizarin red and Congo red) and cationic dyes (crystal violet and malachite green) were 200.0 mg·g-1, 133.3 mg·g-1, 40.0 mg·g-1 and 102.0 mg·g-1, respectively. Moreover, adsorbent has high adsorption capacity for anionic dyes.
     (3) All the adsorption processes were rapid. The removal and adsorption capacity of dyes rose rapidest at the beginning of 10 min. The adsorption equilibrium was near to equilibrium at 60 min. The adsorption dynamics were all followed Lagergren pseudo-second-order kinetics. The adsorption mechanisms were shown to be the electrostatic interactions between the anionic dyes (cationic dyes) and adsorbent.
     (4) The thermodynamic analysis indicated that the standard thermodynamic function changes of the adsorption of AR on modified nano-silica wereΔH0<0,ΔS0<0,ΔG0<0, indicating the adsorption was a spontaneous exothermic process. After the adsorption, the system became order even more;on the other hand, the standard thermodynamic function changes of the adsorption of CR, CV and MG onto the modified nano-silica wereΔH0>0,ΔS0>0,ΔG0<0, which expressed that the adsorption were spontaneous endothermic processes. The increased temperature was advantageous to the adsorption. After the adsorption, the system became more disordered.
     (5) Comparing the adsorption characteristic of anionic dyes and that of cationic dyes, it indicated that the former had a high adsorption capacity.
     (6) Under the same experimental conditions, the adsorption efficiencies of AR, CR and MG by AMNS were better than that of unmodified nano-SiO2. It might be attributed to the existed -NH2 on the surface of AMNS, which could react with other functional groups more easily.
     (7) Comparing with activated carbon, AMNS was more suitable for adsorbing AR, CR and MG from their wastewaters. It had the following advantages: higher adsorption capacity, fast adsorption and regeneration. The adsorpted dye molecules could be released from AMNS with acidic or alkaline desorption agent. Therefore, as a new adsorbent, AMNS has great advantages for the pretreatment or deep processing of dye wastewater. It would reduce costs and improve processing efficiency.
引文
[1] Marpuez N, Bravo B, Chavez G, et al. Analysis of polyethoxylated surfactants inmicroemulsion-oil-water systems. Analytica Chi mica Acta, 2000, 405: 267-275.
    [2] Venkateswarea R.A, Pajonk G.M., Haranath D. Synthesis of hydrophobic aerogels for transparent window insulation applications. Materials Science and Technology, 2001(17): 343.
    [3] J.H. Johnston, A.J. Farlane, T. Borrmann, et al. Nano-structured silicas and silicates-newmaterials and their applications in paper.Current Applied Physics, 2004(4): 411-414.
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社. 2001
    [5]王刚,颜峰,滕兆刚等.二氧化硅表面的APTS修饰.化学进展, 2006, 18: 239-245.
    [6] Jal P K, Patel S, Mishra B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta, 2004, 62: 1005-1028.
    [7] Wang L, Qi T, Zhang Y. Novel organic–inorganic hybrid mesoporous materials for boron adsorption. Colloids Surf. A: Physicochem. Eng. Aspects, 2006, 275: 73-78.
    [8] Quan Zhang, Jack Miller. ZrO2/SiO2 mixed oxides as catalysts for alcohol dehydration. Applied Catalysts A: General, 2001, 209:1-6.
    [9] Yang H H, Qu H Y, Lin P, et al. Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels. Analyst, 2003, 128: 462-466.
    [10] Perruchot C, Chehimi M M. Use of aminosilane coupling agent in the synthesis of conducting, hybrid polypyrrole-silica gel particles. Surf. Interface Anal, 1998, 26: 689-698.
    [11] Li J J, Xu X Y, Jiang Z, Hao Z P, Hao C. Nanoporous silica-supported nanometric palladium: Synthesis, characterization, and catalytic deep oxidation of benzene. Environmental Science and Technology 2005, 39 (5):1319-1323.
    [12] Ma Wanhong, Cai Ruxiu, Lin Zhixin. Chem. J. Chinese Universities, 1998, 19(10):1566-1569.
    [13] Chang G, Jiang Z C, Peng T Y. Acta Chim. Sinica, 2003, 61(1):100-103.
    [14] Liu G H, Wang J L, Zhu Y F. Destructive adsorption of carbon tetrachloride on nanometer titanium dioxide. Phys. Chem. Chem. Phys., 2004, 6(5):985-991.
    [15] Li Y H, Ding J, Luan Z K. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 2003, 41(14):2787-2792.
    [16] Li Wang, Aiqin Wang. Adsorption behaviors of Congo red on the N,O-carboxymethyl-chitosan/montmorillonite nanocomposite. Chemical Engineering Journal 143(2008):43-50.
    [17] Peng Li, Siddaramaiah, Nam Hoon Kim, Seok-Bong Heo, Joong-Hee Lee. Novel PAAm/Laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior. Composites Part B, 2008, 39:756-763.
    [18] Ji-Lai Gong, Bin Wang, Guang-Ming Zeng, Chun-Ping Yang, Cheng-Gang Niu, Qiu-Ya Niu, Wen-Jin Zhou, Yi Liang. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Journal of Hazardous Materials, 2009, 164:1517-1522.
    [19] S.H. Sonawane, P.L. Chaudhari, S.A. Ghodke, M.G. Parande, V.M. Bhandari, S. Mishra, R.D.Kulkarni. Ultrasound assisted synthesis of polyacrylic acid–nanoclay nanocomposite and its application in sonosorption studies of malachite green dye. Ultrasonics Sonochemistry, 2009, 16:351-355.
    [20] Chung-Kung Lee, Kuen-Song Lin, Chian-Fu Wu, Meng-Du Lyu, Chao-Chun Lo. Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes. Journal of Hazardous Materials, 2008, 150:494-503.
    [21] Abbas Afkhami, Razieh Moosavi. Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. Journal of Hazardous Materials, 2010, 174:398-403.
    [22] Sudipta Chatterjee, Min W. Lee, Seung H. Woo. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresource Technology, 2010, 101:1800-1806.
    [23]程薇.过氧化氢催化体系对染料废水的处理研究[D].南京:南京工业大学,2002.
    [24] Bhattacharyya K G, Sarma A. Adsorption characteristics of the dye, Brilliant Green, on Neem leaf powder. Dyes and Pigments, 2003, 57 (3):211-222.
    [25] Bhattacharyya K G, Sarma A. Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachta indica) leaf Powder.Dyes and Pigments, 2005, 65 (1):51-59.
    [26]陈坚,堵国成.环境友好材料的生产与应用[M].北京:化学工业出版社,2002.
    [27] Tsai W T, Chang C Y, Ing C H, et al. Adsorption of acid dyes from aqueous on activated bleaching earth. Journal of Colloid and Interface Science, 2004, 275 (l): 72-78.
    [28] Ciardelli G, Ranieri N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation. Water Research, 2001, 35(2):567-572.
    [29]贾金平,王文华.含染料废水处理方法的现状与进展[J].上海环境科学,2000,19 (1) :26-29.
    [30]林少宁.国外印染废水处理技术评价[J].国外环境科学技术, 1989, 12(4):63-66.
    [31] K.P.Singh, D.Mohan, S.Sinha, G.S.Tondon, D.Gosh. Color removal from wastewater using low-cost activated carbon derived from agricultural wastematerial. Ind.Eng.Chem.Res., 2003, 49:1965-1976.
    [32]阎存仙.粉煤灰吸附去除活性艳蓝X-BR [J].上海交通大学学报, 1998, 9: 35-37.
    [33]程云,周启星,马奇英等.染料废水处理技术的研究与进展[J].环境污染治理技术与设备, 2003, 4 (6) : 56-60.
    [34]阎存仙,罗曼.粉煤灰吸附去处活性艳蓝X-BR[J].上海交通大学学报, 1998. 32(9): 126-129.
    [35] Mall I D, Srivastava C, Agarwa N K. Removal of Orange2G and Methyl Violet Dyes by Adsorption onto Bagasse Fly Ash-Dinetic Study and Equilibrium Isotherm Analyses. Dyes andPigments, 2006, 69(3): 210-223.
    [36] Gupta V K, Ali I, Saini V K, et al. Removal of Dyes from Wastewater Using Bottom Ash. Industrial & Engineering Chemistry Research, 2005, 44(10):3655-3364.
    [37] S. Akin, J. M. Schembre, S. K. Bhat, et al. Spontaneous imbibitions characteristics of diatomite. Journal of Petroleum Science and Engineering. 2000, 25(3-4):149-165.
    [38]罗智文.改性硅藻土吸附废水中氨氮和重金属(铬)的研究[D].重庆大学硕士论文集. 2006.
    [39] Akyüz S., Akyüz T., Ozer N. M. FTIR spectro-scopic investigations of benzidine and bipyridyls ads orbed on diatomite from Anatolia. Journal of Molecular Structure. 2001, 565-566: 493-496.
    [40]谷志攀,何少华,周炀,樊海明,胡志勇.硅藻土吸附废水中染料的研究[J].矿业快报, 2008, 471:43-46.
    [41] Avlonitis S.A., Poulios I., Sotiriou D., Pappas M., Moutesidis K. Simulated cotton dye effluents treatment and reuse by nanofiltration. Desalination, 2008, 221:259-267.
    [42] Cheremisinoff N.P. Handbook of Water and Wastewater Treatment Technologies. Butterworth-Heinemann, Boston, 2002.
    [43] Pignon H, Brasquet C, Cloirec P Le. Coupling ultrafiltration and adsorption onto activated carbon cloth: application to the treatment of highly coloured wastewater. Water Sci. Technol. 42:355-362.
    [44]郭明远,杨牛珍.纳滤膜分离活性染料溶液的研究[J].水处理技术,1996,22(2):97-99.
    [45]Soma C, Rumeau M ,Sergent C.Use of Mineral Membrares in the Treatment of Textile Effluents Pore 1Intl Cont Inorgunic Membranes [C] .France. Monrpellier, 1989, 523-526.
    [46] Ting HuiLiu, Matsuurat, Sourirajon S. Effect of Membrane Material Sand Average Pore Sizes on Reverse Osmosis Separation of Dyes. Ind Eng Chem Prod Ros Dev, 1983, 22: 77-85.
    [47]鲍延镛,方孟伟.反渗透法处理锦纶染色废水[J].水处理技术,1981,7(4):19-21.
    [48]裴振琦,韩式荆.用聚矾超滤膜从染色废水中回收染料[J].环境科学, 1985,4 (2): 1-4.
    [49]王振余,郭树才.炭膜处理染料水溶液的研究[J].膜科学与技术, 1997, 17 (5) : 7-10.
    [50]孙巍,李真,吴松海等.磁分离技术在污水处理中的应用[J].磁性材料及器件, 2006, 8:6-10.
    [51] Oliveira L. C. A., Rios R. V. R. A., Fabris J. D., Garg V., Sapag K., Lag o R. M. Activated carbon Piron oxide magnetic composites for the adsorption of contaminants in water. Carbon, 2002, 40(12):2177-2183.
    [52]罗凡,叶南圣,吴峰,肖玫.还原铁粉/紫外光系对活性艳红X-3B溶液的脱色.环境污染与防治,1999, 21(5):1-4.
    [53] Wang M., Li H., Wu J., Huo Y., Guo G., Cao F. Flocculant for purification of printing and dyeing wastewater. Univ Shanghai Normal, 2006.
    [54] Zhou Y., Liang Z., Wang Y. Decolorization and COD removal of secondary yeast wastewater effluents by coagulation using aluminum sulfate. Desalination, 2008, 225:301-311.
    [55]沈澄英.活性染料废水混凝处理研究[J].安徽化工, 2005,135(3):49-50.
    [56] Pansward T., Luangdilok W. Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water Research, 2000, 34(17):4177-4184.
    [57]罗海航.絮凝和化学氧化法处理染料及印染废水研究的近况[J].染料工业,2001,38(4):42-46.
    [58] Tan B H, Omar A K M., Removal of dyes and industrial dye wastes by magnesium chloride. Water Research, 2000, 34(2):597-601.
    [59] Rccd B. E., Matsumoto M. R., Jensen J. N. Physico-chemical processes. Water Environmental Research, 1998, 70(4):449-473.
    [60] Hoffman M.R. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95(1):69-76.
    [61] Kerzhner B K et al. Khim. Tekhnol. Dye removal from water by ozonation with adsorption on carbon. Vody. 1979, 1(2): 60-63.
    [62]胡文容,钱梦路,高廷耀.超声强压臭氧氧化偶氮染料的脱色效能[J].中国给排水. 1999, 15(11): 1-4.
    [63]戴晓红,田俊莹,姚晓庆. UV/O3/H2O2法处理活性染料废水的研究[J].针织工业, 2006, 3: 65-66.
    [64] Schiavello M. Photocatalysis and Environment: Trends and Applications. Dordrecht : Kluwer Academic Publishers , 1988
    [65] Aguedach A., Brosillon S., Morvan J., Lhadi E.K. Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide. Appl. Catal., 2005, B57, 55-62.
    [66] Akyol A., Yatmaz H.C., Bayramoglu M. Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions.Appl.Catal.,2004, B54,19-24.
    [67]施利毅,李春忠,房鼎业,古宏晨.气相合成二氧化钛超细粒子光催化活性艳红X-3B脱色的研究[J].太阳能学报, 2000, 21(1) :100-105.
    [68]张志兰,戴洁,卞国庆. PbTiO3纳米粉的制备及光催化研究[J].化学研究与应用,2000,12(5) :507-509.
    [69]朱永法,何俣,张利.多孔薄膜型TiO2光催化剂及其环境净化研究[J].宁夏大学学报(自然科学版), 2001, 22(2) :217-218.
    [70]孙平,陈景文.部分水溶性偶氮染料的光催化降解研究[J].环境化学, 1999, 18(37):254-257.
    [71]程沦沧,胡德文,赵俐敏.附着态光降解可溶性染料的研究[J].环境科学与技术, 1998, 82(3): 25-27.
    [72]沈学优,李华英,陈群燕等.载铂二氧化钛对3B艳红染料溶液光催化降解性能的研究[J] .水处理技术, 2001, 27 (1) :33-36.
    [73]邓南圣,刘筱红,罗凡等. Fe(Ⅲ)-草酸盐络合物/H2O2/UV体系对染料废水的处理研究[J] .水处理技术, 2002, 28(1):45-48.
    [74] Hachem C., Bocquillon F., Zahraa O., Bouchy M. Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes and Pigments, 2001, 49 (2):117-125.
    [75] Davis R J, et al., Photocatalytic decolorization of wastewater dyes.Water Environ Res, 1994, 66:50-53.
    [76]王怡中.光催化氧化与生物氧化组合技术对染料化合物降解研究[J].环境科学学报, 2000, 20(6):772-776.
    [77]赵国方.废水高温深度氧化处理技术[J] .现代化工, 2001, 21(1):47-50.
    [78] Zimmerann F J . New Waste Disposal Process. Chemical Engineering, 1958, 65 (8): l17-121.
    [79] Lei L, chen G, Portter J F, et al. Treatment of PVA– containing desizing wastewater promoted wet air oxidation [A], The Third International Conference on Advanced Oxidation Technologies for Water and Air Remediation[C], Cincinati ,1996.
    [80]雷乐成,汪大辉.湿式氧化法处理高浓度活性染料废水[J].中国环境科学, 1999, 19(1):79-84.
    [81]佘刚.超临界水氧化技术及其应用[J] .上海环境科学, 1995, 14(9):13-16.
    [82]婉茹,王鹏,于泽华.超临界水氧化法处理含染料废水的工艺研究[J].哈尔滨商业大学学报(然科学版), 2006, 22(4):30-33.
    [83]卢文森.高浓度制药有机废液的焚烧处理[J].化工环保,1985,5(2):73-77.
    [84] Vlyssides A G, Papaioannou D, Loizidoy M., et al. Testing an electrochemical method for treatment of textile dye wastewater. Waste Management, 2000, 20(7):569-574.
    [85]李亚新.国外印染废水的电化学处理[J].给水排水, 1999, 25(7): 42-44.
    [86]赵少陵,贾金平.活性炭纤维电极法处理印染废水的应用研究[J].上海环境科学, 1997,16(5):24-27.
    [87]贾金平,叶建昌,张舒茶.活性炭纤维电极法制浆造纸黑液的应用研究[J].上海环境科学, 2000, 19(3):120-123.
    [88]管玉江,杨卫身.复极性固定床电解反应器对活性染料的降解[J].环境科学, 1999, 18(3):270-273.
    [89]孙华,洪英,高廷耀等.铁炭床、复合生物反应器处理染料废水[J].中国给水排水, 2001, 17 (5):65-67.
    [90]申哲民,贾金平,徐向荣等.三维电极法和Fenton试剂法对染料废水处理的效果比较[J].上海交通大学学报, 2000, 34 (11) :1531-1534.
    [91]江霜英,洪艳,周荣丰等.电解法应用于染料废水的预处理研究[J].同济大学学报(自然科学版), 2006, 34(5) : 638-641.
    [92]杨玉身,周集体,杨风林.微电解法降解染料的研究[J].上海环境科学, 1996, 15 (7):30 -35.
    [93]贾金平,杨骥,廖军.活性炭纤维(ACF)电极法处理染料废水的探讨[J].上海环境科学, 1997, 16(4):19-22.
    [94] Vlyssides A G, Loizidoy M, Karlis P K. ,et al. Journal of Hazardous Material ,1999 ,70 (1~2) :41-52.
    [95] Bechtold Th, Burtscher E. Treatment of textile wastes. International Textile Bulletin, 1998, 44 (6):64-71.
    [96] Barragan B.E., Costa C., Carmen Marquez M. Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes Pigments, 2007, 75:73-81.
    [97] Shaw C. B., Carliell C. M., Wheatley A. D. Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors. Water Research, 2002, 36(8):1993-2001.
    [98]闫庆松.偶氮染料废水的厌氧好氧处理工程实例[J].工业水处理, 2001, 21(1):44-46.
    [99]余志晟,文湘华.酵母菌株Pseudozyma rugulosa对合成染料脱色的初步研究[J].环境科学, 2005, 24(2):186-188.
    [100] Barclay J. S., Farquhar G. F., Legge R. L. Biodegradation and sorption of polyaromatic hydrocarb ons by phanerochaete chrysospirium. Appl. Microbiol Biotechnol. 1995, 42:958-963.
    [101] Conneely A., Smyth W. F., McMullan G. Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography. Analytica Chimica Acta, 2002, 451(2):259-270.
    [102] Priya M H, Madras G. Kinetics of TiO2 catalyzed ultrasonic degradation of rhodamine dyes.Ind Eng Chem Res, 2006, 45:913-921.
    [103] Sayan E. Optimization and modeling of decolorization and COD reduction of reactive dye solutions by ultrasoundssisted adsorption. Chemical Engineering Journal, 2006, 119:175-181.
    [104]张洪林.难降解有机物的处理技术进展[J].水处理技术, 1998, 24(5):259-264.
    [105] Borgia I, Brunetti B, Mariani I. Heterogeneous distribution of metal nanocrystals in glazes of historical pottery. Appl.Surf. Sci., 2002, 185(3-4):206-216.
    [106] Zhou Z L, Licklider L J, Gygi S P. Comprehensive proteomic analysis of the human spliceosome.Nature, 2002, 419(6903):182-185.
    [107] Ferris M M, McCabe M O, Doan L G. Rapid enumeration of respiratory viruses. Anal. Chem., 2002, 74(8):1849-1856.
    [108] Elliott D W, Zhang W X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol., 2001, 35(24):4922-4926.
    [109] Kong J, Franklin N R, Zhou C W. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453):622-625.
    [110]韦奇,钟振兴,聂祚仁,等.高度有序介孔氧化硅材料SBA-15:高浓度氨基官能化及氨基及氨基团的可利用性.无机化学学报, 2008, 24 (1): 130-137.
    [111]张志胜,杨屹.以枝形大分子聚酰胺-胺(PAMAM)为键合固定相的开管毛细管电色谱柱的制备及评价.高等学校化学学报, 2006, 27 (1): 47-51.
    [112] Sakai K, Teng T C, Katada A, et al. Designable size exclusion chromatography columns based on dendritic polymer-modified porous silica particles. Chem. Mater., 2003, 15: 4091-4097.
    [113] Heberger K, Milczewska K. Principal component analysis of polymer-solvent and filler-solvent interactions by inverse gas chromatography. Colloids and Surfaces A, 2005, 260: 29-37.
    [114] Vansant E F, van der Voort P, Vrancken K C. Characterizationand Chemical Modification of the Silica Surface. Amsterdam: Elsevier, 1995, 149-297.
    [115] Jaroniec C P, Kruk M, Jaroniec M, et al. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. J. Phys. Chem. B, 1998, 102: 5503-5510.
    [116] Nehilla B J, Popat K C, Vu T Q, et al. Neurotransmitter analog tethered to a silicon platform for neuro-BioMEMS applications. Biotechnology and Bioengineering, 2004, 87: 669-674.
    [117] Levy L, Sahoo Y, Kim K, et al. Nanochemistry: Synthesis and Characterization of Multifunctional Nanoclinics for Biological Applications. Chem. Mater., 2002, 14 : 3715-3721.
    [118]宁巧玉,孟建新,王海鸣.新型铽配合物掺杂SiO2荧光纳米粒子的制备.中国稀土学报, 2006, 24 (3): 289-292.
    [119] Ferreira L, Ramos M A,. Exquisite Regioselectivity and Increased Transesterification Activity of an Immobilized Bacillus subtilis Protease. Biotechnol. Prog, 2002, 18: 986-993.
    [120] Liu Z G, Li Z, Zhou H, et al. Imaging DNA molecules on mica surface by atomic force microscopy in air and in liquid. Microscopy Research and Technique, 2005, 66: 179-185.
    [1] Lin J., Siddiqui J.A., Ottenbrite R.M., Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polym. Adv. Technol. 2001, 12: 285-292.
    [2] Sales J.A.A., Airoldi C., Epoxide silylant agent ethylenediamine reaction product anchored on silica gel thermodynamics of cation–nitrogen interaction at solid/liquid interface. J. Non-Cryst. Solids. 2003, 330: 142-149.
    [1]潘湛昌,孔祥晋,肖楚民,等.负载型二氧化钛光阳极对茜素红的光电催化降解.化学与生物工程, 2006, 23(8): 45-47.
    [2]牛淑妍,张书圣,马立波,等.茜素红S与脱氧核糖核酸相互作用的电化学研究.分析化学,2004, 32(9):1234-1236.
    [3] G. L. Baughman, E. J. Weber. Transformation of dyes and related compounds in anoxic sediment: kinetics and products. Environ Sci Technol, 1994, 28 (2): 267-276.
    [4] R.A.A. Muzzarelli Chitin. 1977, P184, Pergamon Press, Oxford.
    [5] E. Lorenc-Grabowska, G. Gryglewicz, Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigments 2007, 74: 34-40.
    [6] I. Langmuir, The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38: 2221–2295.
    [7] H. Freundlich, the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II. Transactions of the Faraday Society 1932, 28:195-201.
    [8] M. Alkan, S. Celikcapa, O. Demirbas, M. Dog?n, Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes Pigments 2005, 65:251-259.
    [9] M.K. Purkait, D.S. Gusain, S. DasGupta, S. De, Adsorption behavior of chrysoidine dye on activated charcoal and its regeneration characteristics using different surfactants. Sep. Sci. Technol. 2004, 39 (10):2419-2440.
    [10] A. Khenifi, Z. Bouberka, F. Sekrane, M. Kameche, Adsorption study of industrial dye by an organic clay. Adsorption 2007, 13:149-158.
    [11] Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskaps akademiens, Handlingar 1898, 24(4):1-39.
    [12] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochemistry 1999, 34:451-465.
    [13] A. Gucek, S. Sener, S. Bilgen, M.L. Mazmanci, Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions. J. Colloid Interf. Sci. 2005, 286: 53-60.
    [1] Alderman D. J. Malachite green-a review. J Fish Dis, 1985, 8:289-298.
    [2]王明俊.兽医生物制品学.北京:中国农业出版社, 1997: 344
    [3] M. Alok, V. Gajbe, M. Jyoti, Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. J Hazard Mater, 2008, 150: 364-375.
    [4] S.J. Culp, L.R. Blankenship, D.F. Kusewitt, D.R. Doerge, L.T. Mulligan, F.A. Beland, Toxicity and metabolism of malachite green and leucomalachite green during shortterm feeding to Fischer 344 rats and B6C3F(1) mice. Chem. Biol. Interact. 1999, 122 (3): 153-170.
    [5] Y. Sawa, M. Hoten, Antibacterial activity of basic dyes on the dyed acrylic fibers. Sen-I Gakkaishi 2001, 57 (5):153-158.
    [6] S.J. Culp, L.R. Blankenship, D.F. Kusewitt, D.R. Doerge, L.T. Mulligan, F.A. Beland, Toxicity and metabolism of malachite green and leucomalachite green during short-term feeding to Fischer 344 rats and B6C3F1 mice. Chem. Biol. Interact. 1999, 122:153-170.
    [7] E. Klein, M. Edelhauser, R. Lippold, Occurrence and determination of residues of malachite green and Leuco-malachite green in edible fish. Dtsch. Lebensm. Rdsch. 1991, 87: 350-352.
    [8] B.H. Hameed, Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J. Hazard. Mater. 2008, 154: 204-212.
    [9] E. Lorenc-Grabowska, G. Gryglewicz, Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigments 2007, 74: 34-40.
    [10] I. Langmuir, The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38: 2221-2295.
    [11] H. Freundlich, the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II. Transactions of the Faraday Society 1932, 28:195-201.
    [12] M.K. Purkait, D.S. Gusain, S. DasGupta, S. De, Adsorption behavior of chrysoidine dye on activated charcoal and its regeneration characteristics using different surfactants. Sep. Sci. Technol. 2004, 39 (10): 2419-2440.
    [13] S. Lagergren,About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens, Handlingar 1898, 24(4):1-39.
    [14] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 1999, 34 (5): 451-465.
    [15] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution. J. Sanity Eng. Div. Am. Soc. Civil Eng. 1963, 89:31-59.
    [16] S.H. Chien, W.R. Clayton, Application of Elovich equation to the kinetics of phosphate release and sorption on soils. J. SoilSci. Soc. Am. 1980, 44:265-268.
    [17]罗刚,张全兴,李爱民等.吸附树脂对山梨酸的吸附作用及其热力学性质.应用化学,2003, 20(12):1139-1142.
    [18]余颖,庄源益,谷文新等.树脂NKY对活性艳蓝KN-R的吸附特性.离子交换和吸附, 2000, 16(5):432-440
    [19] Yu Y, Zhuang Y Y, Wang Z H, et al. Adsorption of water-soluble dyes onto modified resin. Chemosphere, 2004, 54(3):425-430.
    [20] Yu Y, Zhuang Y Y, Wang Z H. Adsorption of water-soluble dyes onto functionalized resin. Journal of Colloid and Interface Science, 2001, 242(2):288-293.
    [21] M.J. Jaycock, G.D. Parfitt, Chemistry of Interfaces, Ellis Horwood Limited. 1981, pp.12-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700