吸附过程中的多元平衡与动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用多元线性回归等化学计量学方法对模拟废水体系在脱除过程中的一系列紫外可见吸收光谱进行全面解析,从而获得吸附过程中的各组分之间的竞争或协同作用的吸附机理。
     第二章膨润土对阳离子染料的吸附等温线和动力学研究。以膨润土为吸附剂,研究了孔雀石绿、番红花红、罗丹明B及其混合染料的脱色情况。研究表明,膨润土对阳离子染料有很好的吸附性能,在三种染料的初始浓度为500μmol/L的条件下,加入膨润土的量分别为0.64, 0.98和1.05 g/L时番红花红、孔雀石绿和罗丹明B的脱色率均能达到95%。混合吸附体系中,各染料之间存在竞争吸附,膨润土投加量不足的情况下,吸附常数较大的染料优先被吸附,在三元混合吸附过程中出现罗丹明B和孔雀石绿被解吸的现象。吸附动力学的研究结果表明,单组分染料吸附动力学和混合体系中总动力学过程符合二级动力学模型。同时,单染料体系中的吸附等温线和多元混合体系中总的吸附等温线符合Langmuir等温吸附模型。
     第三章有机-膨润土吸附阴离子染料动力学和等温线研究。为提高膨润土吸附染料的性能,以聚二甲基二烯丙基氯化铵(PDADMA)和钠基膨润土为原料,合成阳离子型的PDADMA改性膨润土,它对阴离子染料废水的吸附能力有了很大提高。以此聚电解质改性的膨润土为吸附剂研究了阴离子染料酸性大红、酸性湖蓝和靛红及其混合溶液的脱色情况,在各染料初始浓度为100μmol/L的条件下,加入PDADMA改性膨润土的量分别为0.42, 0.68和0.75 g/L时,酸性大红、酸性湖蓝和靛红的脱色率都达到95%以上。在单染料吸附体系中,每种染料的吸附等温线均符合Langmuir吸附模型,吸附常数分别为4.31×106,0.372×106和0.629×106 L/mol,最大吸附量为228.7,176.3和149.2μmol/g。混合吸附体系中每种染料的吸附等温线符合扩展的Langmuir吸附模型,而各染料的吸附量总和和平衡浓度总和之间的关系符合Langmuir吸附模型。吸附动力学的研究结果表明,单组分染料吸附动力学和混合体系中总动力学过程符合二级动力学模型。
     第四章浊点萃取法用于模拟染料废水脱色研究。基于表面活性剂的浊点现象所建立浊点萃取是一种绿色环保的萃取方法。本文选用非离子表面活性剂TX-114作浊点萃取剂,研究了由酸性大红、活性紫和曙红构成的单元和混合染料模拟有色废水的萃取脱色过程,讨论了表面活性剂浓度、染料浓度、盐浓度、平衡温度、平衡时间等因素对萃取效率的影响。结果表明,提高表面活性剂浓度、盐浓度有利于提高萃取效率,而染料浓度增加则使萃取效率略有下降。在由活性紫、酸性大红和曙红构成的单元和多元混合染料体系中,酸性大红的萃取效率明显较活性紫高,混合染料体系的萃取脱色行为与单染料体系的萃取脱色行为相差不大。
     第五章CPC和双酚A同时存在时膨润土吸附研究。膨润土作为一种吸附剂已经被广泛应用于废水中有机物的初步处理,但是膨润土对一些有机物的吸附性能不是很好,如双酚A。但是在阳离子表面活性剂存在的条件下,膨润土对双酚A的吸附量远远大于没有表面活性剂存在的吸附量,溶液中阳离子表面活性剂的浓度对膨润土吸附双酚A的过程有很大的影响。当CPC浓度为600mg/l时,实验条件下,双酚A的去除率达到最大值95%,膨润土对双酚A的吸附等温线符合Langmuir吸附模型,吸附动力学过程符合二级动力学反应过程。溶液的pH值和离子浓度对CPC和双酚A的去除率有影响,但是影响不大。总之,在阳离子表面活性剂CPC存在的条件下,膨润土对双酚A的吸附效果良好。
In this thesis, a multiple linear regression method was employed to analyze the spectrophotometric data in color removal processes. The residual color profiles, the color removal efficiencies, as well as the thermodynamic and kinetic data of single dyes in the mixture of dyes were obtained.
     Chapter 2:Adsorption kinetics and isotherm of cationic dyes onto bentonite from single and multisolute systems .The adsorption of Malachite green (MG),Rhodamin B (RM) and Safranine T (SF) onto bentonite from single and multisolute systems was studied. The experimental results show that bentonite is an excellent adsorbent for the cationic dyes used. Under our experimental conditions, the dosage of bentonite needed to remove 95% dyes from initial concentration of 500μmol/L was 0.64, 0.98 and 1.04g/L for SF, MG and RM, respectively. Competitive adsorption was observed in the multisolute dye solutions. In the region of insufficient dosage of bentonite, the dye with a larger adsorption constant is preferentially removed by adsorption. Because of the competitive adsorption of SF, The desorption of RM and MG was observed in the kinetics curves in the adsorption from binary and ternary dye solutions. The adsorption kinetics of dyes from single solutions, and the total amount of dyes adsorbed from binary and ternary dye solutions, can be well fitted by a pseudo-second model. In the case of adsorption from binary and ternary dye solutions, the total adsorption isotherms were fitted well by Langmuir model but the isotherm of each dye had different shape.
     Chapter 3: Adsorption kinetics and isotherm of anionic dyes onto organobentonite from single and multisolute systems The performances of polydiallydimethylammonium modified bentonite as an adsorbent to remove anionic dyes, namely Acid Scarlet GR(AS-GR), Acid Turquoise Blue 2G (ATB-2G) and Indigo Carmine (IC), were investigated in single, binary and ternary dye systems. In adsorption from single dye solutions with initial concentration of 100μmol/L, the dosage of PDADMA-bentonite needed to remove 95% dye was 0.42, 0.68 and 0.75g/L for AS-GR, ATB-2G and IC, respectively. The adsorption isotherms of the three dyes obeyed the Langmuir isotherm model with the equilibrium constants of 0.372, 0.629 and 4.31 L/μmol, the saturation adsorption amount of 176.3, 149.2 and 228.7μmol/g for ATB-2G, IC and AS-GR, respectively. In adsorption from mixed dye solutions, the isotherm of each individual dye followed an expanded Langmuir isotherm model and the relationship between the total amount of dyes adsorbed and the total equilibrium dye concentration was interpreted well by Langmuir isotherm model. In the region of insufficient dosage of PDADMA-bentonite, the dye with a larger affinity was preferentially removed by adsorption. Desorption was observed in the kinetic curve of the dye with lower affinity on PDADMA-bentonite surface by the competitive adsorption. The kinetics in single dye solution and the total adsorption of dyes in binary and ternary dye systems nicely followed pseudo-second-order kinetic model.
     Chapter 4: Color removal of simulated dye wastewaters by cloud point extractionCloud point extraction, which is based one the cloud point phenomenon of surfactant solution, is a new environmentally kind liquid-liquid extraction method. An attempt was made to remove color from simulated wastewater containing Acid Scarlet GR,Reactive violet K-3R and eosin by cloud point extraction using a nonionic surfactant of Triton X-114. The influence of the concentrations (surfactant, slat and dye), equilibrium temperature and equilibrium time on the extraction efficiency were tested. The experimental results show that the extraction efficiency to dye increases with increasing concentration of TX-114 and salt or decreasing initial dye concentration. The extraction efficiency to Acid Scarlet GR is higher than that to Reactive violet K-3R in both single and ternary dye solutions.
     Chapter 5: Simultaneous removal of bisphenol-A and cationic surfactantfrom water by bentonite in one-step process.Bentonite as an adsorbent was applied widely to removal the contamination in the wastewater,however, the adsorption amount is little when bentonite was appied to adsorb some contamination,such as bisphenol-A.In the thesis, we added cationic surfactant CPC to solution in order to hence adsorption capacity of bisphenol A onto bentonite. The influence of the concentrations (CPC) on the removal efficiency was tested. Experiments show that, the addition of CPC can greatly improve adsorption of bisphenol A onto bentonite,when concentration of CPC is 600mg/l,the removal efficiency will reach to 95% .adsorption isotherm of bisphenol-A is fitted to Langmuir and Frundlish adsorption equation , and adsorption kinetics followed pseudo-second-order kinetic model.
引文
[1] F. Bussotti, M.Ferretti, Air pollution, forest condition and forest decline in Southern Europe: An overview, Environ.Pollut.1998,101(1),49-65.
    [2] C. J. Camphuysen, M. Heubeck, Marine oil pollution and beached bird surveys: the development of a sensitive monitoring instrument, Environ.Pollut.2001,112(3), 443-461.
    [3] V.E. Zverev, E.L. Zvereva, M.V. Kozlov ,Slow growth of Empetrum nigrum in industrial barrens:Combined effect of pollution and age of extant plants,Environ.Pollut., 2008,56( 2), 454-460.
    [4] G.R.Liu,M.H.Zheng,W.B.Liu,C.Z.Wang, B.Zhang, Atmospheric Emission of PCDD/Fs, PCBs, Hexachlorobenzene, and Pentachlorobenzene from the Coking Industry, Environ. Sci. Tech. 2009, 43 (24), 9196–9201.
    [5] Q.X.Zhou, Chemical pollution and transport of organic dyes in water soil crops systems of the Chinese coast, Bull.Environ.Contam. Toxicol.2001, 66(6), 784-793.
    [6] D.Solpan, O.Guven, Decoloration and degradation of some textile dyes by amma irradiation, Radiat.Phys. Chem. 2002, 65(4), 549-558.
    [7] L.W.Reiter, C.DeRosa, J.Kavlock, G.Lucier, M.J.Mac, J.Melillo, R.L.Melnick, The US federal framework for research on endocrine disruptors and an analysis of research programs supported during fiscal year 1996. Environ.Health.Perspect.1998, 106,105-113.
    [8] A.Mantovani,A.V.Stazi,C.Macri, F. Maranghi, Problems in testing and risk assessment of endocrine disrupting chemicals with regard to developmental toxicology,Chemosphere, 1999, 39(8), 1293-1300.
    [9] M. C. Fossi, S. Casini, L.Marsili ,Nondestructive biomarkers of exposure to endocrine disrupting chemicals in endangered species of wildlife,Chemosphere, 1999, 39( 8) 1273-1285.
    [10]G.Crini, Non-conventional low-cost adsorbents for dye removal: A review , Bioresour.Technol. 2006,97,1061-1085.
    [11] A.Bhatnagar, A.K. Jain, A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water ,J.Colloid Interface Sci. 2005,28,49-55.
    [12] P.C.C Faria, J.J.Mórf?o, M.F.R Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries,Water Res. 2004,38,2043-2052.
    [13] H.Y.Shu, W.P.Hsieh, Treatment of dye manufacturing plant effluent using an annular UV/H2O2 reactor with multi-UV lamps, Sep.Purif.Technol.2006, 51,379-386.
    [14] B.Utset, J.Garcia, J. Casado, X.Domènech, J. Peral,Replacement of H2O2 by O2 in Fenton and photo-Fenton reactions,chemosphere ,2000,41,1287-1296.
    [15] M.S. Lucas,Peres Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes Pigments, 2006,71,136-244.
    [16] B. André,D.Santos,J.Francisco,B.Jules, Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology,Bioresour. Technol. 2007,98, 2369-2385.
    [17] M.Kornaros,G.Lyberatos,Biological treatment of wastewaters from a dye manufacturing company using a trickling filter,J.Hazard.Mater. 2006,136,95-102.
    [18] Y.Z.Fu, T. Viraraghavan, Fungal decolorization of dye wastewaters: a review, Bioresour. Technol.2001, 79,251-262.
    [19] V.Golob,A.Vinder, M.Simoni?,Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents ,Dyes Pigments ,2005,67,93-97.
    [20] N.Daneshvar, H.A, Sorkhabi, M.B. Kasiri, Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections,J.Hazard.Mater. 2004,112,55-62.
    [21] C.Suksaroj, M.Héran, C.Allègre, F.Persin,Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse,Desalination ,2005,178,333-341.
    [22] F.J.Benítez, J.L. Acero, A.I.Leal, Application of microfiltration and ultrafiltration processes to cork processing wastewaters and assessment of the membrane fouling ,Sep.Purif.Technol. 2006,50,354-364.
    [23] G.Annadurai, L.Y.Ling, J.F.Lee, Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis, J.Hazard.Mater. 2008,152,337-346.
    [24] C. K. Danny, H. K.David, J.F. Porter, G.M.Kay,Applications of Multipore Model for the Mechanism Identification during the Adsorption of Dye on Activated Carbon and Bagasse Pith ,Langmuir, 2003,19,722-730.
    [25] R.M.Gong, M.Li, C.Yang, Y.Z.Sun, J.Chen ,Removal of cationic dyes from aqueous solution by adsorption on peanut hull ,J.Hazard.Mater.2005,121,247-250.
    [26] S.J.Allen, G.Mckay, J.F. Porter,Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems ,J.Colloid Interface Sci. 2004, 280, 322-333.
    [27] R.P.Han, D.D.Ding, Y.F.Xu, W.H.Zou, Y.F.Wang, Y.F.Li, L.N.Zou ,Use of rice husk for the adsorption of congo red from aqueous solution in column mode, Bioresour. Technol. 2008, 99, 2938-2946.
    [28] N.Dizge, C.Aydiner, E.Demirbas, M.Kobya, S.Kara,Adsorption of reactive dyes from aqueous solutions by fly ash: Kinetic and equilibrium studies,J.Hazard.Mater. 2008,150, 737-746.
    [29] R.J.Jain, S.Sikarwar,Removal of hazardous dye congored from waste material,J.Hazard.Mater. 2008, 152, 942-948.
    [30] Q.H.Hu, S.Z.Qiao, F.Haghseresht, M.A.Wilson, G.Q. Lu, Adsorption study for removal of basic red dye using bentonite, Ind. Eng. Chem. Res. 2006, 745, 33–738.
    [31] A.H. Gemeay, Adsorption characteristics and the kinetics of the cation exchange of Rhodamine-6G with Na+-montmorillonite, J.Colloid Interface Sci.2002,251,235-241.
    [31] M.?zacar, ?.A.?engil, Application of kinetic models to the sorption of disperse dyes onto alunite, Colloids and Surf.A ,2004, 242, 105-113.
    [32] M.Do?an, Y.M.?zdemir, M.H.Alkan,Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite ,Dyes Pigments, 2007, 75, 701-713.
    [33] S.K.Alpat, ?.?zbayrak, ?.Alpat, H.M.Ak?ay,The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite,J.Hazard.Mater. 2008, 151, 213-220.
    [34] M.A.M. Khraisheh, M.A. Al-Ghouti, S.J. Allen, M.N. Ahmad,Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite ,Water Res. 2005, 39, 922-932.
    [35] N. K. Lazaridis, T. D. Karapantsios, D. Georgantas Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption,Water Res. 2003,37, 3023-3033.
    [36] D.Sicilia, S.Rubio, D.Pérez-Bendito, N.Maniasso, E.A.G. Zagatto, Anionic surfactants in acid media: a new cloud point extraction approach for the determination of polycyclic aromatic hydrocarbons in environmental samples,Anal.Chim.Acta. 2009, 392 (1), 29-38.
    [37] A.B.Tabrizi, Development of a cloud point extraction-spectrofluorimetric method fortrace copper (II) determination in water samples and parenteral solutions, J.Hazard.Mater. 2007,139, 260–264.
    [38] W.Liu, W.J. Zhao, J.B.Chen,M.M.Yang, A cloud point extraction approach using Triton X-100 for the separation and preconcentration of Sudan dyes in chilli powder, Anal. Chim.Acta.2007, 605(1), 41-45.
    [39] M.K. Purkait , S. DasGupta , S. De, Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction, J.Hazard.Mater, 2006, 137, 827–835.
    [40] M.K. Purkait, S. Banerjee, S. Mewara, S. DasGupta, S. De, Cloud point extraction of toxic eosin dye using Triton X-100 as nonionic surfactant, Water Res. 2005, 39, 3885–3890.
    [41] M.K. Purkait, S.S. Vijay, S. DasGupta, Separation of congo red by surfactant mediated cloud point extraction, Dyes Pigments, 2004, 63, 151– 159.
    [42] S. Mathur, P. Singh, B. M. Moudgil, Advances in selective flocculation technology for solid-solid separations,Int.J. Miner.Process. 2000, 58( 1-4), 201-222.
    [43] B.Y.Shi, G.H.Li, D.S.Wang, C.H.Feng, H.X.Tang, Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species, J.Hazard.Mater. 2007, 143(1-2), 567-574.
    [44] D.J.Joo, W.S.Shin, J.H.Choi, S.J.Choi, M.C.Kim,M.H.Han, Tae Wook Ha, Young-Hun Kim, Decolorization of reactive dyes using inorganic coagulants and synthetic polymer, Dyes Pigments, 2007, 73(1), 59-64.
    [45] F.Zidane, P.Drogui, B.Lekhlif, J.Bensaid, J.F.Blais, Said Belcadi and Kacem El kacemi, Decolourization of dye -containing effluent using mineral coagulants produced by electrocoagulation, J.Hazard.Mater.2008, 155(1-2), 153-163.
    [46] S. Raghu, C. Ahmed Basha, Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater, J.Hazard.Mater. 2007, 149(2), 324-330.
    [47] Q.Y. Yue, B.Y. Gao, Y. Wang, H. Zhang, X. Sun, S.G. Wang, Roy R. Gu, Synthesis of polyamine flocculants and their potential use in treating dye wastewater, J.Hazard.Mater. 2008, 152(1), 221-227.
    [48] A.Szygu?a, E.Guibal, M.A.Palacín, M.Ruiz, Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan, J.Environ.Manage.2009, 90(10), 2979-2986.
    [49] F.T.Alesson, M.Svabova, M.Svab,The role of mixing in high performance Adsorptive Micellar Flocculation ,Colloids Surfaces A, 2010,355( 1-3), 16-22.
    [50] F.I.Hai, K.Yamamoto,F.Nakajima,K.Fukushi, Removal of structurally different dyes in submerged membrane fungireactor—Biosorption/PAC-adsorption, membrane retention and biodegradation J.Membrane Sci.2008, 325(1) 15 ,395-403.
    [51] B.G.?ukasik, S.Koter, J.Kurzawa, Concentration of anthocyanins by the membrane filtration, Sep.Purif.Technol. 2007, 57(3), 418-424.
    [52] Y.He, G.M.L J.F.Zhao, HX.Su, Membrane technology: Reactive dyes and cleaner production, Filtration Separation, 2007, 44(4), 22-24 .
    [53] J.S.Wu, C.H.Liu, K.H.Chu, S.Y.Suen, Removal of cationic dye methyl violet 2B from water by cation xchange ,membranes,J.Membrane Sci. 2008, 309 ,239-245.
    [54] M.Katarzyna, M.Nowak, Application of ceramic membranes for the separation of dye particles, Desalination, 2010, 254(1-3), 185-191.
    [55]C.Wnag.A.Yediler,D.Lienert,Z.Wnag,A.SettruP,Ozonation of an azo dye C.Toxicological assessment of its oxidation products, Chemosphere, 2003, 52, 1225-1232 .
    [56] L.B.Chu, X.H.Xing, A.F.Yu, Y.N.Zhou, X.L.Sun, B.J.Jurcik, Enhanced ozonation of simulated dyestuff wastewater by microbubbles, Chemosphere, 2007, 68(10), 1854-1860.
    [57] A.H.Konsowa, M.E.Ossman, M.E.Ossman, Y.S.Chen, J.C.Crittenden, Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon, J.Hazard.Mater. 2010, 176( 1-3), 181-185.
    [58] N.A.S.Amin, J.Akhtar, H.K.Rai,Screening of combined zeolite-ozone system for phenol and COD removal,Chem.Eng.J.2010,158( 3), 520-527.
    [59] J.H.Ramirez,C.A.Costa,L.M.Madeira,Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton’s reagent,Catal.Today, 2005, 107(108), 68–76.
    [60] M.Kotsou, A.Kyriacou, K.Lasaridi , G.Pilidis, Integrated aerobic biological treatment and chemical oxidation with Fenton’s reagent for the processing of green table olive wastewater, Process Biochem.2004, 39, 1653–1660.
    [61]J.A.Peres,J.B.d.Heredia,J.R.Dom′?nguez, Integrated Fenton’s reagent coagulation flocculation process for the treatment of cork processing wastewaters, J.Hazard.Mater.2004,107, 115–121.
    [62] A.M.Wang, J.H.Qu, J.Ru, H.J.Liu, J.T.Ge, Mineralization of an azo dye Acid Red 14 by electro-Fenton's reagent using an activated carbon fiber cathode, Dyes Pigments, 2005, 65(3), 227-233.
    [62] C.T.Wang, J.L.Hu, W.L.Chou, Y.M.Kuo,Removal of color from real dyeing wastewater by Electro-Fenton technology using a three-dimensional graphite cathode,J.Hazard.Mater. 2008,152(2), 601-606.
    [64] X.J.Ma, H.L.Xia, Treatment of water-based printing ink wastewater by Fenton process combined with coagulation, J.Hazard.Mater. 2009,162(1), 386-390.
    [65] M.J.Davies,R.J.W.Truscott,Photo-oxidation of proteins and its role in cataractogenesis,J. Photochem.Photobio. B, 2001,63(1-3),114-125.
    [66] A.Aleboyeh, M.E. Olya, H.Aleboyeh, Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process, Chem.Eng.J.2008, 137(3), 518- 524.
    [67] H.J.Hsing, P.C.Chiang, E.E.Chang, M.Y.Chen, The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study, J.Hazard.Mater. 2007, 141(1), 8-16.
    [68] P.A. Carneiro, M.E. Osugi, J.J.Sene, M.A. Anderson, M.V.Zanoni, Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes,Electrochim.Acta 2004,49, (22-23)3807-3820.
    [69] L.Fan, Y.W.Zhou, W.S.Yang, G.H.Chen, F.L.Yang, Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model, Dyes Pigments, 2008, 76(2), 440-446.
    [70] S. Raghu, C.W.Lee, S. Chellammal, S. Palanichamy, C. A. Basha,Evaluation of electrochemical oxidation techniques for degradation of dye effluents—A comparative approach J.Hazard.Mater.2009,171(1-3), 748-754.
    [71] M.Rafatullah, O.Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: A review, J.Hazard.Mater. 2010,177(1-3), 70-80.
    [72] N. Daneshvar, A.R. Khataee, M.H. Rasoulifard, M. Pourhassan, Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method, J.Hazard.Mater. 2007,143(1-2), 214-219.
    [73] M.S. Lucas, A.A. Dias, A. Sampaio, C.Amaral, J.A. Peres, Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton's reagent-yeast, Water Res. 2007, 41(5), 1103-1109.
    [74] C.D.Iaconi, R.Ramadori,A.Lopez, The effect of ozone on tannery wastewater biological treatment at demonstrative scale,Bioresour.Technol. 2009,100(23), 6121-6124.
    [75] T.Asselman,G.Garnier, Adsorption of model wood polymers and colloids on bentonites,Colloids Surfaces A, 2000, 168( 2) ,175-182.
    [76]戴树桂,环境化学进展,北京工业出版社,2005,8.
    [77] S.S. Tahir, Naseem Rauf, Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, Chemosphere, 2006, 63, 1842–1848.
    [78] Z.R.Liu, S.Q.Zhou, Adsorption of copper and nickel on Na-bentonite, Process Safety Environ.Protect.2010,88(1),62-66.
    [79] I. Plecas, S. Dimovic, I. Smiciklas, Influence of bentonite and zeolite in cementation of dry radioactive evaporator concentrates, Appl.Clay Sci.2009, 43,9-12.
    [80] Z.J.Guo, J.Xu, K.K.Shi, Y.Q.Tang, W.G.Wu, Eu (III) adsorption/desorption on Na-bentonite: Experimental and modeling studies, Colloids Surfaces A, 2009, 339,126-133.
    [81] J.A.Smith, P.R.Jaffe, Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay , Environ.Sci.Technol. 1991, 25(12),2054-2058.
    [82] J. A. Smith, A. Galan, Sorption of Nonionic Organic Contaminants to Single and Dual Organic Cation Bentonites from Water , Environ.Sci.Technol.1995, 29(3)685-692.
    [83] L.Z Zhu , B.L. Chen ,Sorption Behavior of p-Nitrophenol on the nterface between Anion?Cation Organobentonite and Water ,Environ.Sci.Technol.2000,34,2997-3002.
    [84] L.Z. Zhu, Y.M. Li, J.Y Zhang, Sorption of Organobentonites to Some Organic Pollutants in Water, Environ.Sci. Technol.1997, 31, 1407-1410.
    [85] L.Z Zhu , B.L. Chen, X.Y.Shen, Sorption of phenol p-Nitrophenol, and Aniline to Dual-Cation Organobentonites from Water, Environ.Sci.Technol.2000,34,468-475.
    [86] P. Baskaralingam, M. Pulikesi, D. Elango, V. Ramamurthi, S. Sivanesan,Adsorption of acid dye onto organobentonite,J.Hazard.Mater. 2006, 128, 138–144.
    [87] Q.Li , Q.Y.Yue, Y.Su, B.Y.Gao, L. Fu, Cationic polyelectrolyte bentonite prepared by ultrasonic technique and its use as adsorbent for Reactive Blue K-GL dye, J.Hazard.Mater. 2007, 147(1-2), 370-380.
    [88] A.zcan, C. Demlu , Y. Erdog?an , A. Safa O¨zcan, Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19, J.Hazard.Mater.2007, 140, 173–179.
    [89] U.F. Alkaram, A.A. Mukhlis, A. H. Al-Dujaili ,The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite, J.Hazard.Mater. 2009, 169, 324–332.
    [90] S. Changchaivong, S. Khaodhiar, Adsorption of naphthalene and phenanthrene on dodecylpyridinium modified bentonite, Appl. Clay Sci.2009, 43, 317–321.
    [91] L.Z.Zhu,X.G.Ren ,S.B.Yu, Use of Cetyltrimethylammonium Bromide-Bentonite To Remove Organic Contaminants of Varying Polar Character from Water, Environ. Sci.Technol.1998, 32, 3374-3378.
    [92] Y.Z.Zhang, J.F.Xiang, Y.L.Tang, G.Z.Xu, W.P.Yan ,Aggregation behaviour of two thiacarbocyanine dyes in aqueous solution,Dyes Pigments, 2008,76( 1) , 88-93.
    [93] A. Navarro, F. Sanz, Dye aggregation in solution: study of C.I. direct red I, Dyes Pigments, 1999, 40 (2-3), 131-139.
    [94] J. Georges, Deviations from Beer's law due to dimerization equilibria: theoretical comparison of absorbance, fluorescence and thermal lens measurements, Spectrochim.Acta A,1995,51, 985-994.
    [95] A.K.Ghosh, P.Mukerjee, M.Association, Equilibria in the Self-Association of Methylene Blue and Other dyes, J.Am.chem.Soc. 1970 ,92, 6408-6412.
    [96] L.Antonov, G. Gergov, V. Petrov, M. Kubista, UV–Vis ectroscopic and chemometric study on the aggregation of ionic dyes in water, Talanta, 1999, 49, 99–106.
    [97] Z. Klika P. C, apková, P. Horáková, Composition, structure, and luminescence of montmorillonites saturated with different aggregates of methylene blue ,J.Colloid Interface Sci. 2007,31,114–123.
    [98] F.Wang, J.H.Yang, X.Wu, X.B.Wang, L.S.Feng,Study on the formation and depolymerization of acridine orange dimmer in acridine range–sodium dodecyl benzene sulfonate–protein system ,J.Colloid Interface Sci. 2006,298,757–764.
    [99] R.Luchowski, S. Krawczyk, Stark effect spectroscopy of exciton states in the dimer of acridine orange, Chem.Phys. 2003, 293, 155–166.
    [100] K.Fujita, K.Taniguchi, H.Ohn ,Dynamic analysis of aggregation of methylene blue with polarized optical waveguide spectroscopy ,Talanta , 2005,65 1066–1070.
    [101]J.Brouillette,R.Quirion,The common environmental pollutant dioxin-inducedmemory deficits by altering estrogen pathways and a major route of retinol transport involving transthyretin, NeuroToxicol.2008, 29, 318-327.
    [102] J.H.Lu, G.V. Korshin,A spectroscopic study of the bromination of the endocrine disruptor ethynylestradiol, Chemosphere, 2008, 72, 504–508.
    [103] G.G.Ying, S.Toze, J.Hann, X.Y.Yu,P.J.Dillon, R.S.Kookana, Decay of endocrine-disrupting chemicals in aerobic and anoxic groundwater, Water Res.,2008,42,1133-1142.
    [104] X.R.Xu,S.X.Li,X.Y.Li,J.D.Gu,F.Chen,X.Z.Li,H.B.Li, Degradation of n-butyl benzyl phthalate using TiO2/UV, J.Hazard.Mater. 2009, 164 ,527–532.
    [105] L.Wang, H.W.Sun, Y.H.Wu, Y.Xin, Effect of sorbed nonylphenol on sorption of phenanthrene onto mineral surface, J.Hazard.Mater. 2009,161 ,1461–1465.
    [106] H.L.Song, K. Nakano, T.Taniguchi, M.Nomura, O.Nishimura, Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth, Bioresour.Technol. 2009,100 ,2945–2951.
    [107] Y.Yoona, P. Westerhoffa, S.A. Snyderb, Mario Esparzaa HPLC-fluorescence detection and adsorption of bisphenol A,17b-estradiol, and 17a-ethynyl estradiol onpowdered activated carbon,Water Res.2003,37, 3530–3537.
    [108]R.A.Torres, G.Sarantakos, E.Combet, C.Pétrier, C.Pulgarin,Sequential helio-photo Fenton and sonication processes for the treatment of bisphenol A , J.Photochem. Photobio.Part A, 2008, 199, 197-203.
    [109] W.T.Tsai, M.K.Lee, T.Y.Su, Y.M.Chang,Photodegradation of bisphenol-A in a batch TiO2 suspension reactor, J.Hazard.Mater. 2009, 168, 269-275.
    [110] Y.F.Huang, Y.H.Huang, Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process,J.Hazard.Mater.2009, 162, 1211-1216.
    [111] B.Z.Dong, H.Q.Chu, L.Wang, S.J Xia, N.Y.Gao,The removal of bisphenol A by hollow fiber microfiltration membrane,Desalination, 2010,250,693-697.
    [112] M.Diepens, P.Gijsman,Photo-oxidative degradation of bisphenol A polycarbonate and its possible initiation processes,Polym.Degrad. Stab. 2008,93, 1383-1388.
    [113] G.F.Liu, J.Ma, X.C.Li, Q.D.Qin,Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J.Hazard.Mater. 2009,164, 1275-1280.
    [114] H.Yamanaka, K.Moriyoshi, T.Ohmoto, T.Ohe, K.Sakai,Efficient Microbial Degradation of Bisphenol A in the Presence of Activated Carbon, J.Biosci.Bioeng. 2008,105, 157-160.
    [115] Z.R.Yu, S.Peldszus, P.M.Huck, Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound—Naproxen, carbamazepine and nonylphenol—on activated carbon,Water Res.2008,42, 2873-2882.
    [116] A.M. Redding, F.S. Cannon, S. A. Snyder, B.J. Vanderford, A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons,Water Res.2009, 43, 3849-3861.
    [117] K.J.Choi, S.G.Kim, S.H.Kim,Removal of antibiotics by coagulation and granular activated carbon filtration, J.Hazard.Mater. 2008, 151, 38-43.
    [118] C.Y.Kuo,Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A,Desalination, 2009,249, 976-982.
    [119] K.Yang, B.S.Xing,Adsorption of fulvic acid by carbon nanotubes from water, Environ.Pollut. 2009, 157, 1095-1100.
    [120] G.C.Chen,X.Q.Shan,Y.Q.Zhou, X.E.Shen, H.L.Huang,S.U.Khan,Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes,J.Hazard.Mater. 2009, 169, 912-918.
    [121] W.T.Tsai, K.J.Hsien, H.C.Hsu, Adsorption of organic compounds from aqueous solution onto the synthesized zeolite, J.Hazard.Mater. 2009,166, 635-641.
    [122] J.H.Chen, X.Huang,D.Lee, Bisphenol A removal by a membrane bioreactor , Process Biochem.2008, 43, 451-456.
    [123] F.M.Cao, P.L.Bai, H.C. Li, Y.L.Ma, X.P.Deng, C.S.Zhao, Preparation of polyethersulfone–organophilic montmorillonite hybrid particles for the removal of bisphenol A,J.Hazard.Mater. 2009,162, 791-798.
    [124] J. Feng, Z.H.Zhang, P.Gao, H.Su, Y.LYu, N.Q.Ren, Dsorption behavior of EE2 (17-ethinylestradiol) onto the inactivated sewage sludge: Kinetics, thermodynamics and influence factors, J.Hazard.Mater. 2010,175, 970–976.
    [125] S.S. Tahir, N.Rauf, Removal of Fe(II) from the wastewater of a galvanized pipe manufacturing industry by adsorption onto bentonite clay,J. Environ.Manage.2004 ,73,285-292.
    [126] S.S. Tahir, R. Naseem,Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay,Chemosphere, 2006, 63(11), 1842-1848.
    [127] S. S. Tahir, R. Naseem,Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution, J.Chem.Thermodynam.2003,35(12), 2003-2009.
    [128] S.S. Tahir, R. Naseem,Removal of Cr (III) from tannery wastewater by adsorption onto bentonite clay, Sep.Purif.Technol. 2007, 53,(30),312-321.
    [129] M.Salman, B.El-Eswed, F.Khalili,Adsorption of humic acid on bentonite,Appl. Clay Sci.2007, 38(1-20), 51-56.
    [130] L.L.Lian, L.P. Guo, C.J.Guo,Adsorption of Congo red from aqueous solutions onto Ca-bentonite ,J.Hazard.Mater.2009,161(1) ,126-131.
    [131] H.Omar, H.Arida, Abdelhakium Daifullah,Adsorption of 60Co radionuclides from aqueous solution by raw and modified bentonite,Appl.Clay Sci.2009, 44(1-2),21-26.
    [132] B.L.Chen, W.H. Huang, J.F. Mao, S.F.Lv,Enhanced sorption of naphthalene and nitroaromatic compounds to bentonite by potassium and cetyl-trimethylammonium cations,J.Hazard.Mater. 2008,158(1),116-123.
    [133] M.Fuller, J.A. Smith, S. E. Burns,Sorption of nonionic organic solutes from water to tetraalkylammonium bentonites: Mechanistic considerations and application of the Polanyi–Manes potential theory,J.Colloid Interface Sci.2007, 313(2), 405-413.
    [134] B. Caglar, B. Afsin, A. Tabak, E. Eren ,Characterization of the cation-exchanged bentonites by XRPD, ATR, DTA/TG analyses and BET measurement,Chem.Eng.J.2009,149( 1-3),242-248.
    [135]S.Changchaivong,S.Khaodhiar,Adsorption of naphthalene and phenanthrene on dodecylpyridinium-modified bentonite,Appl.Clay Sci. 2009, 43(3-4), 317-321.
    [136] U.F. Alkaram, A. A. Mukhlis, A.H.Al-Dujaili,The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite,J.Hazard.Mater. 2009,169(1-3) ,324-332.
    [137] Q.Li, Q.Y.Yue, Y.Su, B.Yu.Gao, H.J. Sun , Equilibrium, hermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite,Chem.Eng.J.2010,158(3), 489-497.
    [138] H. Ishii, J. Miura, H.Watanabe, The application of cloud point preconcentration for the determination of Cu in real samples by flam atomic absorption spectrometry, Bunseki Kagaku, 1977, 26, 252.
    [139] H.Watanabe, H. Tanaka, Anon-ionic surfactant as a new solvent for liquid liquidextraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol, Talanta, 1978, 25, 585– 589 .
    [140] Y.Yuan, C.Liu, C.S. Liao, B.V. Chang, Occurrence and microbial degradation of phthalate esters in Taiwan river sediments, Chemosphere, 2002, 49, 1295-1299.
    [141] C.D.Sicilia,S.Rubio, D.Pérez-Bendito, An Acid-Induced Phase Cloud Point Separation Approach Using Anionic Surfactants for the Extraction and Preconcentration of Organic Compounds, Anal.Chem.1999, 71, 4519- 4526.
    [142] R.C.Martínex, E.R.Gonzalo, J.D.Alvarez, J. H.Méndez,Cloud Point Extraction as a Preconcentration Step Prior to Capillary Electrophoresis, Anal. Chem. 1999, 71, 2468-2474.
    [143] C.G. Yuan, G.B. Jiang, B.He et al., Preconcentration and Determination of Tin in Water Samples by Using Cloud Point Extraction and Graphite Furnace Atomic Absorption Spectrometry, Mikrochim.Acta, 2005, 150, 329-334.
    [144] C.D. Stalikas, Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis, Trends Anal.Chem. 2002, 21, 343–354.
    [145] F. Beate, Qualitatively determination of zwitterionic detergents using saltinduced phase separation of Triton X-100, Anal.Biochem. 2000,281,144–150.
    [146] R.C.Martynez, E.R.Gonzalo, B.M.Cordero, J.L. Pavon, C. Garcya-Pinto, E. Fernandez Laespada, Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis, J. Chromatogr.A, 2000, 902, 251-265.
    [147] W.T.Tsai, Human health risk on environmental exposure to bisphenol-A: A review. J. Environ.Sci.Health C, 2006, 24, 225–255.
    [148] Y.Yasuhara, S.Nakasugi,Bisphenol-A in hazardous waste landfill leachates. Chemosphere, 2001, 42, 415–418.
    [149] C.A.Staples, P.B.Dorn, G. M .Klecka, S.T.O’Block, L.R.Harris,A review of the environmental fate, effects, and exposures of bisphenol A, Chemosphere, 1998, 36, 2149–2173.
    [150] G.Levy, I.Lutz, A.Kru¨ger, W. Kloas, Bisphenol A induces feminization in Xenopus laevis tadpoles, Environ.Res. 2004, 94, 102–111.
    [151] M.Susiarjo, T.J.Hassold, E.Freeman, P.A Hunt, Bisphenol A Exposure In Utero Disrupts Early Oogenesis in the Mouse, Plos.Genetics. 2007, 3, 63-70.
    [152] B.Lee, E.Ha, H.Park, B.Kim, J.Seo, M.Chang, M.Ha, Y.Kim, Y.Roh, Y.Hong,.Exposure to bisphenol A in pregnant women and early fetal growth. Epidemiol.2008, 19, 365-368.
    [153] B.P.Quinn, M.M Booth, J.J.Delfino, S.E.Holm, T.S.Gross,Selected resin acid in effluent and receiving waters derived froma bleached and unbleached kraft pulp and paper mill. Environ.Toxicol.Chem. 2003, 22, 214–218.
    [154] K.D.Lin, W.P.Liu, Oxidative Removal of Bisphenol A by Manganese Dioxide: Efficacy, Products, and Pathways, Environ. Sci.Technol. 2009, 43, 3860–3864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700