阴离子表面活性剂蠕虫状胶束的流变性质及三次采油驱油剂的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文前两章讨论研究了阴离子表面活性剂蠕虫状胶束的流变性质。
     表面活性剂聚集体的流变性质与体系微观结构及内部基团间的相互作用有直接关系,在表面活性剂的基础理论和实际应用方面都有十分重要的研究价值。本文主要研究了阴离子表面活性剂油酸钠(NaOA)/无机电解质磷酸钠(Na_3PO_4)形成的蠕虫状胶束体系的流变性质,包括表面活性剂浓度、电解质浓度、温度、低分子量醇、正构烷烃、无机盐、油田水质矿化度、聚合物等因素对体系流变性质的影响。从理论上丰富了表面活性剂流变性质的研究,为拓宽阴离子表面活性剂在工业中的应用,特别是在石油开采领域的应用,提供了重要的理论基础。
     从考察阴离子表面活性剂NaOA在无机电解质Na_3PO_4存在时的剪切粘度变化入手,通过冷冻蚀刻透射电镜和流变实验,证实了NaOA/Na_3PO_4体系在合适的表面活性剂和电解质浓度时可以形成蠕虫状胶束。NaOA/Na_3PO_4蠕虫状胶束体系为假塑性流体,没有屈服应力现象,基本符合Cox-Merz规则。较低的剪切速率时,体系剪切粘度变化不明显;剪切速率较高时,胶束网络结构被破坏而使剪切粘度下降。蠕虫状胶束体系的储能模量和损耗模量曲线在一定振荡频率时相交。低频时损耗模量较大,粘性较强;而高频时储能模量较大,弹性较强。体系的动态粘弹性基本符合Maxwell模型。
     进一步考察其它因素对体系流变性质的影响发现:随温度升高,体系剪切粘度下降,粘度越大的体系剪切流动活化能越小。低分子量的醇和正辛烷的加入都会使表面活性剂的堆积因子R_p减小,胶束由蠕虫状向球状转变,剪切粘度下降。结合在三次采油中的实际应用,考察钠盐,镁盐浓度以及油田水质矿化度对蠕虫状胶束体系的影响。结果表明,随溶液矿化度的增大,体系剪切粘度有所下降,但并不显著,说明较高的矿化度对NaOA/Na_3PO_4体系的胶束结构和流变性质影响不大。部分水解聚丙稀酰胺(HPAM)由于本身带负电荷与油酸根离子具有较强的排斥作用,所以HPAM的加入会一定程度上抑制胶束的生长及网络结构的形成,使剪切粘度降低。HPAM浓度较大时,剪切粘度又会明显上升。
     论文第三章针对胜利油田孤岛原油,对三次采油驱油剂的筛选和应用作了较系统全面的研究。通过油水界面张力测定实验和室内模拟驱油实验发现,美国Dow化学公司的系列驱油剂均不能使孤岛油田原油的油水界面张力达到超低,并不适合在孤岛油田的采油应用。改性天然羧酸盐表面活性剂HF-2以及双子羧酸盐表面活性剂C18与复碱形成的驱油体系,不仅能使油水界面张力降至超低,同时具有很好的驱油效果,能较有效地驱出一次水驱后的残余油。以蠕虫状胶束流变性质的研究为理论基础,我们把蠕虫状胶束体系应用于三次采油。此驱油体系中不含有聚合物,既能提高洗油效率,又能提高波及系数。室内模拟驱油实验结果表明,该体系驱油效率基本均超过20%,说明蠕虫状胶束体系用作驱油剂,在三次采油中的确具有很好的应用前景。
In the first two chapters, the rheological properties of wormlike micelles formed by the anionic surfactant were examined in detail.
     The rheological properties of surfactant aggregates are functions of both the structural arrangement of particles and the various interaction forces which operate in the system. It is very worthy to be considered for the theory and application of surfactants. In this dissertation, the rheological properties of wormlike micelles formed by anionic surfactant sodium oleate(NaOA)/sodium phosphate(Na_3PO_4) were investigated, including the effects of the concentration of surfactants and electrolytes, temperature, alcohols with small molecular weight, octane, inorganic salts, the mineralization of oil field water and polymer on the rheological properties. Some interesting and noticeable results will enrich the rheological studies of surfactant aggregates, and their applications in industrial fields, especially in enhanced oil recovery(EOR).
     It is found that the wormlike micelles will be formed in anionic surfactant NaOA/Na_3PO_4 solutions with a proper surfactant and salt concentrations by shear viscosity measurements and freeze-fracture TEM micrographs. The characteristics of a pseudo-plastic fluid and zero yield stress were acquired from the steady-shear experiments. In a lower shear rate range, the viscosity of the samples have no obvious change; if the shear rate is high, the network structures of the wormlike micelles can be broken down, which results in a decrease in viscosity. The curves describing storage and loss moduli intersect for the wormlike micelles as the frequency increasing, indicating that the materials are more viscous than elastic at low frequencies and more elastic than viscous at high frequencies. The wormlike micellar solutions are linear viscoelastic fluids in accord with Maxwell model and Cox-Merz rule.
     The effects of other factors on the rheological properties were investigated generally. Shear viscosity decreases under the condition of increasing temperature, a higher viscosity systems have a smaller shear activation energy. The addition of acohols with small molecular weight or octane can reduce the R_p value and viscosity of the NaOA/Na_3PO_4 system. The mineralization of oil field wate has few effects on the rheological properties of wormlike micelles. HPAM has some interactions with the micellar molecules and is able to restrain the formation of network structures of wormlike micelles.
     In the third chapter, the oil displacement agents for Shengli Oil Field were studied systematically by the oil-water interfacial tension measurements and core flood test in laboratory. The serial oil displacement agents from Dow Chemistry Company can not be applied in Shengli Oil Field. The reshaped surfactants of natural carboxylic salt(HF-2), the gemini surfactants of natural carboxylic salt(C18) and the wormlike micelles systems are considered to be good oil displacement agents for their abilities of enhancing sweep efficiency and absorption oil effect.
引文
[1] James F. Steffe, Rheological methods in food process engineering, Dept. of AgriculturalEngineering Michigan State University, Second edition.
    
    [2]陈宗淇,王光信,徐桂英,胶体与界面化学,高等教育出版社.
    
    [3] Haiqing Yin, Sheng Lei, Shengbao Zhu, Micelle-to-Vesicle Transition Induced by OrganicAdditives in Catanionic Surfactant Systems. Chem. Eur. J., 2006,12: 2825-2835.
    
    [4] B. J. de Gans, S. Wiegand, A Light Scattering Study of the Self-Assembly of DendronRod-Coil Molecules. J. Phys. Chem. B, 2002,106: 9730-9736.
    
    [5] V. K. Aswal, P. S. Goyal, Small-Angle Neutron-Scattering and Viscosity Studies ofCTAB/NaSal Viscoelastic Micellar Solutions. J. Phys. Chem. B, 1998,102: 2469-2473.
    
    [6] Akihisa Shioi, Makoto Harada, Motoharu Obika, Structure and Properties of Fluids Composedof Polyelectrolyte and Ionic Surfactant in the Organic Phase:Poly(allylamine) and SodiumBis(2-ethylhexyl) Sulfosuccinate. Langmuir, 1998, 14: 5790-5794.
    
    [7] Liqiong Wang, Jun Liu, Investigation of the Structure and Dynamics of Surfactant Moleculesin Mesophase Silicates Using Solid-State 13C NMR. Langmuir, 1996, 12: 2663-2669.
    
    [8] Joann H. Mathias, Milton J. Rosen, Reply to Comments on Fluorescence Study of PremicellarAggregation in Cationic Gemini Surfactants. Langmuir, 2002,18: 7761-7767.
    
    [9] Sirkku Hanski, Nikolay Houbenov, Janne Ruokolainen, Hierarchical Ionic Self-Assembly ofRod-Comb Block Copolypeptide-Surfactant Complexes. Biomacromolecules, 2006, 7: 3379-3384.
    
    [10] S. Dev, D. Das, K. Ismail, Specific Conductivity Maxima of Ionic Surfactants in AcetamideMelt. J. Chem. Eng. Data, 2004, 49: 339-340.
    
    [11] R. Beck, Y. Abe, T. Terabayashi, H. Hoffmann, A Novel L3-Phase from a Ca-Salt of anAnionic Surfactant and a Cosurfactant. J. Phys. Chem. B, 2002, 106: 3335-3338.
    
    [12] Walter Richtering, Rheology and shear induced structures in surfactant solutions. Current??Opinion in Colloid and Interface Science, 2001, 6: 446-450.
    
    [13] F. Kern, P. Lemarechal, S. J. Candau, Rheological Properties of Semidilute and ConcentratedAqueous Solutions of Cetyltrimethylammonium Bromide in the Presence of Potassium Bromide.Langmuir, 1992,4431-440.
    
    [14] J. F. A. Soltero, J. E. Puig, Rheology of the Cetyltrimethylammonium Tosilate-Water System.2. Linear Viscoelastic Regime. Langmuir, 1996, 12: 2654-2662.
    
    [15] Eric W. Kaler, Kathleen L. Herrington, A. Kamakkara Murthy, Phase Behavior andStructures of Mixtures of Anionic and Catlonlc Surfactants. J. Phys. Chem., 1992, 96: 6698-6707.
    
    [16] A. Ponton, C. Schott, D. Quemada, Rheological behavior of flexible elongated micelles:temperature effect in an isotropic phase. Colloids and Surfaces A: Physicochemical andEngineering Aspects, 1998, 145: 37-45.
    
    [17] S. J. Candau, R. Oda, Linear viscoelasticity of salt-free wormlike micellar solutions. Colloidsand Surfaces A: Physicochemical and Engineering Aspects, 2001, 183-185: 5-14.
    
    [18] A. Khatory, F. Kern, F. Lequeux, Entangled versus Multiconnected Network of WormlikeMicelles. Langmuir, 1993, 9: 933-939.
    
    [19] Gotz Jerke, Jan Skov Pedersen, Stefan Ulrich Egelhaaf, Flexibility of Charged andUncharged Polymer-like Micelles. Langmuir, 1998, 14: 6013-6024.
    
    [20] A. Bernheim-Groswasser, E. Wachtel, Micellar Growth, Network Formation and Criticalityin Aqueous Solutions of the Nonionic Surfactant C_(12)E_5. Langmuir, 2000, 16: 4131-4140.
    
    [21] Roth. S, Murray. B. S, Dickinson.E, Interfacial Shear Rheology of Aged and Heat-TreatedP-Lactoglobulin Films: Displacement by Nonionic Surfactant. J. Agric. Food Chem., 2000, 48(5):1491-1497.
    
    [22] Surita R. Bhatia, Ahmed Mourchid, Gelation of Micellar Block Polyelectrolytes: Evidence ofGlassy Behavior in an Attractive System. Langmuir, 2002, 18(17): 6469-6472.
    
    [23] Satoshi Okabe, Shinji Sugihara, Sadahito Aoshima, Heat-Induced Self-Assembling ofThermosensitive Block Copolymer. Rheology and Dynamic Light Scattering Study.Macromolecules, 2003, 36: 4099-4106.
    
    [24] A. Wewerka, G. Floudas, T. Pakula, Side-Chain Liquid-Crystalline Homopolymers andCopolymers. Structure and Rheology. Macromolecules, 2001, 34: 8129-8137.
    
    [25]李干佐,郭荣等,微乳液理论及其应用,北京:石油工业出版社,1995.
    
    [26]于同隐等,高聚物的粘弹性,上海:上海科技出版社,1986.
    
    [27] Jiang Yang, Viscoelastic wormlike micelles and their applications. Current Opinion in Colloid and Interface Science, 2002, 7: 276-281.
    
    [28]李钦,陈馥,黏弹性表面活性剂及其在油田中的应用,日用化学工业,2004,34(3):173-175.
    
    [29] M. E. Cates, Nonlinear Viscoelasticity of Wormlike Micelles and Other Reversibly Breakable Polymers. J. Phys. Chem., 1990, 94: 371-375.
    
    [30] F. Kern, R. Zana, S. J. Candau, Rheological Properties of Semidilute and Concentrated Aqueous Solutions of Cetyltrimethylammonium Chloride in the Presence of Sodium Salicylate and Sodium Chloride. Langmuir, 1991, 7: 1344-1351.
    
    [31]张为灿,李干佐,李英,日用化学工业,1999,5:34-41.
    
    [32] MiyoshiE, NishinariK, Non-Newtonian flow behavior of gellan gum aqueous solutions. Colloid and Polymer Science, 1999, 277: 727-734.
    
    [33]王良御,廖松生,液晶化学,北京:科学出版社,1988.
    
    [34] G Montalvo, M.Valiente, E. Rodems. Rheological Properties of the L Phase and theHexagonal, Lamellar and Cubic liquid Crystals of the CTAB/Benzyl Alcohol/water system.Langmuir, 1996, 12: 5202-5209.
    
    [35] M. R. Alcantara, E. G. Jr. Femandes. The Orientation Process of Cholesteric LyotropicLiquid Crystals Submitted to Shear. Colloids and surfaces A, 2001,177: 75-82.
    
    [36] M. C. lfaro, A. F. Grerrero. Dynamic Viscoelasticity and Flow Behavior of a PolyoxyethyleneGlycol Nonylphenyl Ether/Toluene/Water System. Langmuir, 2000, 16(10): 4711-4719.
    
    [37] P. Versluis, J. C. Vande Pas, J. Mellema. Influence of Salt Concentration and SurfactantConcentration on the Microstructure and Rheology of Lamellar Liquid Crystalline Phases.Langmuir, 2001, 17(16): 4825-4835.
    
    [38] Gemma Montalvo, Mercedes Valiente, Elvira Rodenas, Rheological Properties of the L Phaseand the Hexagonal, Lamellar, and Cubic Liquid Crystals of the CTAB/Benzyl Alcohol/WaterSystem. Langmuir, 1996, 12: 5202-5208.
    
    [39] A. B. Corte's, M. Valiente.E. Rodenas, Properties of the L and Lyotropic Phases inCTAB/Glycerol/Water and CTAB/Glyceraldehyde/Water Systems. Langmuir, 1999, 15:6658-6663.
    
    [40] G. T. Dimitrova, Th. F. Tadros, P. F. Luckhamt, Investigations of the Phase Changes ofNonionic Surfactants Using Microscopy, Differential Scanning Alcohol with 7 mol of EthyleneOxide Calorimetry, and Rheology. 1. Synperonic A7, a C_(13)/C_(15) Alcohol with 7 mol of EthyleneOxide. Langmuir, 1996, 11: 1101 -1111.
    
    [41] S. Radimant, C. Toprakcioglu, Rheological Study of Ternary Cubic Phases. Langmuir, 1994,10: 61-67.
    
    [42] J. L. Jones, T. C. B. McLeish, Rheological Response of Surfactant Cubic Phases. Langmuir,1996,11:785-792.
    
    [43] J. L. Jones, T. C. B. McLeish, Concentration Fluctuations in Surfactant Cubic Phases:Theory,Rheology, and Light Scattering. Langmuir, 1999, 15: 7495-7503.
    
    [44]翟利民,李干佐,郑立强,囊泡研究进展,日用化学品科学,1999增刊,21-23.
    
    [45] Johannes Zipfel, Peter Lindner, Marina Tsianou, Shear-Induced Formation of MultilamellarVesicles ("Onions") in Block Copolymers. Langmuir, 1999, 15(8): 2599-2602.
    
    [46] Johan Bergenholtz, Norman J. Wagner, Formation of AOT/Brine Multilamellar Vesicles.Langmuir, 1996, 12: 3122-3126.
    
    [47] P. Panizza, D. Roux, V. Vuillaume, C.-Y. D. Lu, Viscoelasticity of the Onion Phase.Langmuir, 1996, 12: 248-252.
    
    [48] M. Gradzielski, M. Mulller, M. Bergmeier, H. Hoffmann, Structural and MacroscopicCharacterization of a Gel Phase of Densely Packed Monodisperse, Unilamellar Vesicles. J. Phys.Chem. B, 1999, 103: 1416-1424.
    
    [49] H. Hoffmann, C. Thunig, P. Schmiedel, U. Munkert, Surfactant Systems with ChargedMultilamellar Vesicles and Their Rheological Properties. Langmuir, 1994,10: 3972-3981.
    
    [50]张立娟,岳湘安,任国友,粘弹性流体驱替孑L喉残余油的机理分析,油田化学,2004,21(3):274-279.
    
    [1] Jiang Yang, Viscoelastic wormlike micelles and their applications. Current Opinion in Colloid and Interface Science, 2002,7: 276-281.
    
    [2]李钦,陈馥,黏弹性表面活性剂及其在油田中的应用,日用化学工业,2004,34(3):173-175.
    
    [3] Kline, S. R, Polymerization of Rodlike Micelles. Langmuir, 1999, 15: 2726-2732.
    
    [4] Alicia Maestro, Durga P. Acharya, Formation and Disruption of Viscoelastic WormlikeMicellar Networks in the Mixed Surfactant Systems of Sucrose Alkanoate and PolyoxyethyleneAlkyl Ether. J. Phys. Chem. B, 2004, 108: 14009-14016.
    
    [5] Sachiko Yoshimura, Satoko Shirai, Yoshiyuki Einaga, Light-Scattering Characterization of theWormlike Micelles of Hexaoxyethylene Dodecyl C12E6 and Hexaoxyethylene Tetradecyl C14E6??Ethers in Dilute Aqueous Solution. J. Phys. Chem. B, 2004,108: 15477-15487.
    
    [6] A. Bernheim-Groswasser, E. Wachtel, Y. Talmon, Micellar Growth, Network Formation, andCriticality in Aqueous Solutions of the Nonionic Surfactant C_(12)E_5. Langmuir, 2000, 16:4131-4140.
    
    [7] Fredric M. Menger, Andrey V. Peresypkin, A Combinatorially-Derived Structural PhaseDiagram for 42 Zwitterionic Geminis. J. Am. Chem. Soc, 2001, 123: 5614-5615.
    
    [8] R. Oda, P. Panizza, M. Schmutz, F. Lequeux, Direct Evidence of the Shear-Induced Structureof Wormlike Micelles: Gemini Surfactant 12-2-12. Langmuir, 1997, 13: 6407-6412.
    
    [9] Reiko Oda, Ivan Huc, Jean-Claude Homo, Benoit Heinrich, Elongated Aggregates Formed byCationic Gemini Surfactants. Langmuir, 1999,15: 2384-2390.
    
    [10] L. J. Magid, Z. Li, Flexibility of Elongated Sodium Dodecyl Sulfate Micelles in AqueousSodium Chloride: A Small-Angle Neutron Scattering Study. Langmuir, 2000,16: 10028-10036.
    
    [11] Charlie Flood, Ce'cile A. Dreiss, Vania Croce, Terence Cosgrove, Wormlike MicellesMediated by Polyelectrolyte. Langmuir, 2005, 21: 7646-7652.
    
    [12] Haiqing Yin, ShengLei, Shengbao Zhu, Micelle-to-Vesicle Transition Induced by OrganicAdditives in Catanionic Surfactant Systems. Chem. Eur. J., 2006, 12: 2825-2835.
    
    [13] Sirkku Hanski, Nikolay Houbenov, Janne Ruokolainen, Hierarchical Ionic Self-Assembly ofRod-Comb Block Copolypeptide-Surfactant Complexes. Biomacromolecules, 2006, 7: 3379-3384.
    
    [14] V. K. Aswal, P. S. Goyal, Small-Angle Neutron-Scattering and Viscosity Studies ofCTAB/NaSal Viscoelastic Micellar Solutions. J. Phys. Chem. B, 1998, 102: 2469-2473.
    
    [15] Beth A. Schubert, Eric W. Kaler, Norman J. Wagner, The Microstructure and Rheology ofMixed Cationic/Anionic Wormlike Micelles. Langmuir, 2003, 19: 4079-4089.
    
    [16] Jian-Hai Mu, Gan-Zuo Li, Xiao-Lei Jia, Rheological Properties and Microstructures ofAnionic Micellar Solutions in the Presence of Different Inorganic Salts. J. Phys. Chem. B, 2002,106: 11685-11693.
    
    [17] R. Znna. Surfactants Solutions: New Methods of Investigation. Marcel Dekker Znc, NewYork, 1987,209-216.
    
    [18] M. R. Alcantara, J. A. Vanin. Rheological Properties of Lyotropic Liquid Crystal. Colloid andSurface A: Physico chemical Engineering Aspects, 1995, 97: 151-156.
    
    [19] K. C. Tarn, R. D. Jenkins, M. A. Winnik, D. R. Bassett, A Structural Model of??Hydrophobically Modified Urethane-Ethoxylate (HEUR) Associative Polymers in Shear Flows.Macromolecules, 1998, 31: 4149-4159.
    
    [20] L. Karlson, S. Nilsson, Rheology of an aqueous solution of an end-capped poly(ethyleneglycol) polymer at high concentration. Colloid and Polymer.Scl, 1999, 277: 798-804.
    
    [21] T. M. Clausen, P. K. Vinson, J. R. Minter, H. T. Davis, Viscoelastic Micellar Solutions:Microscopy and Rheology. J. Phys. Chem., 1992, 96: 414-484.
    
    [22] L. J. Magid, The Surfactant-Polyelectrolyte Analogy. J. Phys. Chem. B, 1998, 102:4064-4074.
    
    [23] Z. Lin, Branched Worm-like Micelles and Their Networks. Langmuir, 1996, 12: 1729-1737.
    
    [24] Diat. O, D. Roux, F. Nallet, Effect of shear on lyotropic lamellar Phase. J. Phys. II, 3:1427-1452.
    
    [25] J. F. A. Soltero, F. Bautista, J. E. Puig, Rheology of Cetyltrimethylammoniump-Toluenesulfonate-Water System. 3. Nonlinear Viscoelasticity. Langmuir, 1999, 15: 1604-1612.
    
    [26] Bonn. D, Meunier. J, Bi-stability in non-. Newtonian flow: rheology of lyotropic liquidcrystals. Phys. Rev. B, 58: 2115-2118.
    
    [27] Archambault P, Roux D, Effects of shear on the smectic a-phase of thermotropicliquid-crystals. J. Phys. II, 1995, 5: 303-311.
    
    [28] Larson R. G, The Structure and Rheology of Complex Fluids, New York: Oxford UniversityPress, 1999: 163-168.
    
    [29] E. Cappelaere, R. Cressely, R. Makhloufi, Temperature and flow-induced viscosity transitions.for CTAB surfactant solutions. Rheologica Acta, 1994,33: 431-437.
    
    [30] E. Fischer, P.T. Callaghan, Time-periodic flow induced structures and instabilities in aviscoelastic surfactant solution. Europhys. Lett., 2000, 50: 803-809.
    
    [31] Ying Li, Peng Zhang, The array and interfacial activity of sodium dodecyl benzene sulfonateand sodium oleate at the oil/water interface. J. Colloid Inter. Sci., 2005, 290: 275-280.
    
    [32] Schulte J, Enders S, Rheological studies of aqueous alkylpolyglucoside surfactant solutions.Colloid and polymer science, 1999, 277: 827-836.
    
    [33] MiyoshiE, NishinariK, Non-Newtonian flow behavior of gellan gum aqueous solutions.Colloid and Polymer Science, 1999, 277: 727-734.
    
    [1]韩显卿等,提高采收率原理,北京:石油工业出版社,1996,p1-3.
    
    [2]黄昌武,世界三次采油技术发展历史,石油勘探与开发,2007,34(6):754.
    
    [3]刘春林,杨清彦,李斌会等,三元复合驱波及系数和驱油效率的实验研究,大庆石油地质与开发,2007,26(2):108-111.
    
    [4]牟建海,李干佐,三次采油技术的发展现状及展望,化工科技市场,2000,7:17-20.
    
    [5]张益,张宁生,刘华,提高原油采收率研究综述及展望,小型油气藏,2004,2:60-64.
    
    [6]赵田红,郑国华,李少庆等,三次采油用表面活性剂的研究现状与趋势,化学工程师,2005,122(11):32-34.
    
    [7]彭珏,刘廷元,润湿性对碱/表面活性剂/聚合物驱采收率的影响,能源科学进展,2007,3(1):27-29.
    
    [8]李士奎,朱焱等,大庆油田三元复合驱试验效果评价研究,石油学报,2005,26(3):56-59.
    
    [9]李丽,孙先勇,ASP三元复合体系的界面性质研究及性能改进,石油钻采工艺,2005,27(2):28-31.
    
    [10]于盛鸿,么世椿,姜江,三元复合驱的驱油特征研究,河南石油,2005,19(2):33-35.
    
    [11]高小鹏,张伟峰,王炎明等,孤岛油田三元复合驱油井结垢机理分析与治理措施,油气地质与采收率,2003,10(2):65-66.
    
    [12]唐先荣,袁红,陈洪等,华北油田京11断块三元复合驱配方研究,石油勘探与开发,2003,30(2):82-84.
    
    [13]曹绪龙,孙焕泉,姜颜波,孤岛油田西区三元复合驱矿场试验,油田化学,2002,19(4):350-353.
    
    [14]廖谟圣,2005年末全球油气勘采进展及至2010年预测,中国海洋平台,2007,22(1):1-7.
    
    [15]李干佐,牟建海,陈锋等,天然混合羧酸盐在三次采油和稠油降粘中的应用,石油炼制与化工,2002,9:25-28.
    
    [16]李干佐,徐桂英,开发天然羧酸盐在油田中应用,日用化学工业,1998,5:26-30.
    
    [17]冯玉军,孙玉海,陈志等,双子表面活性剂的应用,精细与专用化学品,2006,14(11):12-20.
    
    [18]胡忠前,马喜平,王红等,粘弹性蠕虫状胶束及其应用,高分子通报,2007,8:24-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700