土壤水分胁迫对槟榔幼苗生理生态特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
槟榔(Areca Catechu L.)系棕榈科(Palmae)热带经济、药用作物;在中国,多分布在海南、台湾等地。目前,槟榔产业为海南农业第二大支柱产业。海南槟榔种植技术落后,管理粗放,基础研究力度不够,已明显制约了产量的提高及产业的发展。海南岛属典型热带海洋气候,具有明显的雨季与旱季。因水分时空分布不均匀造成的干旱已严重影响了槟榔的生长及产量,尤其在每年3—5月槟榔的开花期影响更为突出。因此研究土壤水分胁迫下槟榔生长的生理变化规律,对提高槟榔水分管理水平,促进槟榔产业发展具有重要意义。
     本研究以1年生槟榔幼苗为材料,从植物生理生态学角度出发,采用盆栽试验,通过控制土壤相对含水量,首先研究了不同土壤水分胁迫下,槟榔幼苗的形态、抗性生理、光合生理等的变化规律;其次通过数据处理建立土壤水分相对含量与槟榔幼苗的光合生理、水分利用效率等的数学模型;最后结合生理数据与数学模型确定了槟榔苗期适宜生长的土壤相对含水量阈值与最低限值,为槟榔合理的水分管理提供依据。
     本研究创新点及主要结论如下:
     (1)研究了土壤水分胁迫对槟榔幼苗生长及形态的影响。研究表明,土壤水分胁迫下,槟榔幼苗的株高、冠幅、茎粗、根系数目、根表面积和根体积均随水分胁迫程度的加重而减少。且明显影响了槟榔幼苗植株体内水分的分配,各处理下的槟榔幼苗各部分水分分配均呈现叶>茎>根的现象。随着土壤相对含水量升高,根系含水率升高,叶片含水率降低,茎含水率无明显变化。而随水分胁迫程度的加深槟榔幼苗根冠比值呈现先升高后下降趋势。
     (2)研究了土壤水分胁迫对槟榔幼苗抗性生理的变化规律。土壤水分胁迫显著增加了槟榔幼苗叶片中MDA和渗透调节物质的含量。随着胁迫时间延长,各处理下槟榔幼苗叶片中的MDA含量、Pro含量、SS含量与SP含量均不同程度上升,且叶片中Pro含量与槟榔幼苗对土壤水分胁迫的响应时间存在相关性。叶片中的保护酶POD及SOD活性均呈先上升后下降趋势,而CAT活性呈先下降后升高趋势;土壤水分胁迫时间越长,叶中POD与SOD活性随胁迫程度增加而降低的现象越明显。槟榔幼苗的根系活力随土壤水分胁迫程度增加而减小。并认为75%土壤相对含水量是槟榔幼苗根系活力变化的转折点。
     (3)研究了土壤水分胁迫与槟榔幼苗光合生产能力的关系。结果发现:随土壤水分胁迫时间延长和胁迫程度增加,槟榔幼苗叶片总的叶绿素含量降低,且chl、cha、chb、caro、cha/b均以75%土壤相对含水量处理显著高于其它处理。不论土壤水分胁迫时间长短,随土壤水分胁迫程度增加,叶片Pn、Tr、cond均逐渐下降,但幼苗水分利用率(WUE)升高,并随着胁迫时间延长,各处理间槟榔幼苗水分利用率的差异性会削弱。土壤水分胁迫下槟榔幼苗叶片Fv.Fm、qP. Fv/Fm和Fv/Po均下降,Fo增加。表明土壤水分胁迫抑制了槟榔幼苗的PSⅡ原初光能转化效率,降低了光合电子传递能力及PSⅡ的光化学活性。
     (4)对不同土壤水分胁迫下槟榔幼苗净光合速率、蒸腾速率的影响因子进行了相关分析,并拟合不同土壤水分胁迫下的逐步回归方程,建立了土壤水分相对含量与净光合速率、土壤水分相对含量与蒸腾速率和土壤水分相对含量与水分利用效率的数学模型。
     Pn=-0.0018x2+0.2939x-5.5679, R2=0.9981
     Tr=-0.0016x2+0.2652x-6.0083, R2=0.9438
     WUE= 2E-06x4-0.0005x3+0.0404x2-1.4562x+20.54, R2=0.8674
     (5)首次确定了槟榔苗期适宜生长的土壤相对含水量与最低土壤水分限值。通过建立模型并结合生理研究结论发现,槟榔幼苗能够生长的最低土壤水分相对含量为45%,但从光合物质积累和水分利用效率这两个角度考虑,土壤相对含水量75%左右更有利于槟榔幼苗的生长。
Betel nut(Areca Catechu L),a member of the family Palmae, is tropical-economic-medicational crop, which has been the second rank of major industries. Due to outdate technology, extensively manage and deficiency of investigation, Betel nut industry has been restricted to low production. Hainan island is typical tropical ocean climate, with significantly rainy season and dry season.drought have significant effect on its growth and production, particularly during the efflorescence-from March to May every year.Therefor study on regularity of physical growth of betel nut have significant contribution to promote development of Betel nut industry by improving the management of threshold value。
     This study based on plant physiological ecology theory, annual growth betel nut was used as material in pot experiment, analysis its growing mechanism indexs such as seedling morphology、physical resistance and photosythese under different soil water stress fristly. Then establish the relationship model between soil relative moisture content、seedling photosynthesis and water utilization, finally analyzed the physiological datas and the models to find out the optimal and minimum threshold of soil relative moisture content, providing a reasonable basis for its water management. Finally finding the suitable relative soil water content and the minimum threshold limit relative soil water content for the finalization of betel nut seedling's growth, providing a reasonable basis for water management for the betel nut.
     In the dissertation, innovations conclusions were as follows:
     (1) Effect soil water stress on betel nut seedling growth and morphology. The results showed that betel nut seedlings'plant height, crown width, stem diameter, root number, root surface area and root volume decreased with the aggravation of water stress. Soil water stress significant effected water distribution in seedlings'body and it kept the rule as leaf> stem> root. According to soil water content increasing, root moisture content increased, leaf water content decreased,while no significant changes in stem water content. With the deepening of water stress betel nut seedling shoot ratio has increased firstly and then decreased.
     (2) Physiological resistance changes of betel nut seedling under soil water stress. The results indicated that soil moisture stress obviously enhanced the MDA content and osmotic adjustment substances in leaves and with the stress added,the MDA content, Pro content, SS content and SP content in leaves under different treatments were all increased in various degrees. Meanwhile, the Pro content had strong correlated to soil water stress time. The protective enzymes such as POD and SOD activity increased firstly and then decreased, while the CAT activity was in opposite changes under the soil water stress. Generally the POD and SOD activity in leaves would reduce as the extent of soil water stress increase. Betel nut seedlings'root activity would turn down when soil water stress increased. And the 75% relative soil water content was the turning point of its'root activity.
     (3) The relationship between soil water stress and photosynthetic capacity of betel nut seedling. It elaborated that with the water stress'time prolonged and stress level increased, chlorophyll content of betel nut decreased, the content of chl、cha、chb、caro、cha/b belong to betel nut seedling all dealing with 75% relative soil water content were distantly higher than others treatments. No matter how long the betel nut under the water stress, as soon as the soil water stress degree increased, betel nut seedling's Pn, Tr, cond all decreased, while seedlings'water efficiency increased. And in the prolonged stress period, the difference among different treatment would be weaken. betel nut seedlings'Fv, Fm, qP, Fv/Fm and Fv/Fo decreased under soil water stress, while Fo increased. It proved that water stress has inhibited the original PSⅡphotochemical efficiency, reduced photosynthetic electron transport capacity and the PSⅡphotochemical activity.
     (4) Analysis the correlation impacting factors of net photosynthetic rate and transpiration rate under different soil water stress, and fit stepwise regression equations under different soil water stress, establish the mathematics relationship models of the soil moisture content and net photosynthetic rate, and transpiration rate,and water use efficiency individually. The models as follow:
     Pn=-0.0018x2+0.2939x-5.5679, R2= 0.9981
     Tr=-0.0016x2+0.2652x-6.0083, R2= 0.9438
     WUE= 2E-06x4-0.0005x3+0.0404x2-1.4562x+20.54, R2= 0.8674
     (5)The research quantize the most suitable relative soil water content and the lowest soil moisture limits for betel nut seedling's growth for the first time. Through establishing the model and integrateing with physiological characters, it found that 45% relative soil moisture content was the lowest soil water condition for its growth. However considered the dry matter accumulation and water use efficiency, approximately 75% relative soil water content was more beneficial to betel nut seedling's growth.
引文
1.阿布力米提·买买提明,张俊佩,裴东.不同类型核桃的光合和蒸腾性能对土壤水分胁迫响应的研究.河北农业大学学报,2004,27(4):26-30
    2. 陈建勋,王晓峰.植物生理学实验指导(第2版).广东:华南理工大学.2006
    3. 陈洪国.桂花幼苗对不同程度水分胁迫的生理响应.华中农业大学学报,2006,25(2):190-193
    4. 陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用.浙江农业学报,2006,18(1):51—55
    5. 陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报,1995,3(4):79-86
    6. 陈思婷,孙程旭,曹红星,等.干旱胁迫对槟榔幼苗生理生化特性的影响.江西农业学报.2009,21(10):70-72
    7. 陈良秋.我国槟榔栽培与产业发展现状.现代农业科技.2007(22):60-64
    8. 陈忠,苏维埃,汤章城.豌豆热激蛋白npc60对酶的高温保护功能及其机理.科学通报,1999,44(20):2171-2175
    9.程嘉翎,段建丽,王娜,等.聚乙二醇模拟水分胁迫对桑树种子萌发和生理的影响,安徽农业科学,2006.24:6420-6422
    10.常永义,吴红,牛军强.干旱胁迫对葡萄叶片生理指标的影响.中外葡萄与葡萄酒.2005(2):11-14
    11.曹莹,黄瑞冬,曹志强.铅胁迫对玉米生理生化特性的影响.玉米科学,2005(3):61-65
    12.董学军.九种沙生灌木水分关系参数的实验测定及生态意义.植物学报,1998.40(7):657-664
    13.冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用.经济林研究,2002,20(4):14—18
    14.冯美利,刘立云.海南槟榔生产状况调查和建议.耕作与栽培.2006(5):54-55
    15.高志红,陈晓远.聚乙二醇造成的水分胁迫对水稻根系生长的影响.华北农学院,2009,24(2):128-133
    16.何和明,梁学琛,符气浩.槟榔生物学和生态特性的研究.海南大学学报自然科学版,1995,13(3):216-220
    17.何振革.海南省槟榔产业发展存在问题及对策.安徽农学通报.2007,13(13):109-110
    18.胡学华.水分胁迫下李树叶绿素荧光动力学特性研究.中国生态农业学报.
    2007,15(1):75—77
    19.景茂,曹福亮,汪贵斌,等.土壤水分含量对银杏光合特性的影响.南京林业大学学报,2005,29(4):83—86
    20.柯世省.水分胁迫对夏蜡梅气孔行为的影响.河北师范大学学报(自然科学版),2007,31(6):797-801
    21.李晓燕,李连国,刘志华,等.葡萄叶片组织结构与抗旱性关系的研究.内蒙农牧学院学报,1994,15(3):30-32
    22.李晓清,胡学煜,左英强.水分胁迫对希蒙得木幼苗生物量的影响.西南林学院学报,2009,29(5):19-22
    23.李永清.云南野生龙眼的调查研究.园艺学报,1985(12):223-227
    24.李粉茹.水分胁迫对棉花叶片的影响.农业与技术.2005(6):61-63
    25.李坚,陈伟平,黄业松.槟榔苗期施肥及不同荫蔽度的试验.中国药材.1989,12(9):7-8
    26.李鲁华,李世清,翟军海.小麦根系与土壤水分胁迫关系的研究进展.西北植物学报.2001,21(1):1-7
    27.李合生.植物生理生化实验原理和技术(M).北京:高等教育出版社.2000
    28.李合生.现代植物生理学[M].北京:高等教育出版社,2007
    29.李雪梅,何兴元,张利红,等.紫外辐射对菜豆不同叶位叶片光合及保护酶活性的影响.生态学杂志,2006.25(5):517-520
    30.李吉跃.太行山区主要造林树种耐旱特性的研究.北京林业大学博士论文,1991
    31.李明,工根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响.生态学报,2002,22(4):503-507
    32.吕庆,郑荣梁.干旱及活性氧引起小麦膜脂过氧化及脱氧化.中国科学(C辑),1996,26(1):26-30
    33.刘红云,梁宗锁,刘淑明,等.持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响.西北林学院学报,2007.22(3):55-59
    34.罗华建,刘星辉,谢厚钗.干旱胁迫对枇杷叶片活性氧代谢的影响.福建农业大学学报,1999,28(1):33-37
    35.卢从明,张其德.水分胁迫对小麦光系统Ⅱ的影响.植物学报(英文版),1994,36(2):93—98
    36.卢从明,张其德,匡廷云.水分胁迫对光合作用影响的研究进展.植物学通报,1994,11(增刊):9-14
    37.林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和
    农业现代化中的应用.植物学通报,1992,9(1):1-16
    38.梁银丽,康绍忠.不同水分条件下小麦生长特性及氮磷营养的调节作用.干旱地区农业研究,1999,17(4):58-64
    39.马双艳,姜远茂,彭福田,等.干旱胁迫对不同板栗品种渗透调节物质含量及光合的影响.干旱地区农业研究,2003,21(3):114-118
    40.齐华,白向历,孙世贤,等.水分胁迫对玉米叶绿素荧光特性的影响.华北农学报,2009,24(3):102—106
    41.孙涌栋,刘遵春,齐安国,等.黄瓜幼苗根系对水分胁迫的生理反应.西北农业学报,2008,17(6):136-139
    42.孙存华,李扬,贺鸿雁,等.PEG6000渗透胁迫对藜幼苗叶片渗透调节物质的影响.安徽农业科学.2007,35(25):7784-7786
    43.史胜青,袁玉欣,杨敏生,等.水分胁迫对4种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响.林业科学,2004,40(1):168-173
    44.唐晓敏,王全文,马春英.长期水分胁迫下甘草叶片的抗旱生理响应.河北农业大学学报,2008(2):16-20
    45.谭乐和.世界槟榔加工技术发展现状及我国槟榔产业化发展对策.热带农业科学.2005(25):40-43
    46.王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究.华北农学报.1992,7(4):1-8
    47.王孝威,段艳红,曹慧,等.水分胁迫对短枝型果树光合作用的非气孔限制.西北植物学报,2003,23(9):1609-1613
    48.王汀忠,杨安富,唐树梅.海南槟榔平衡施肥的现状与发展前景.广西热带农业.2007,111(4):30-32
    49.王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物物理学报,1997,13(2):273—278
    50.王克勤,王斌瑞.土壤水分对金矮生苹果关河速率的影响.生态学报.2002.22(2):206-214
    51.王有年,张海英,卜庆雁,等.水分胁迫对李叶片抗氧化代谢的影响.北京农学院学报.2003,18(2):97-100
    52.王传印,姜涛,张娜,张胜男.水分胁迫下柳树的生理生化反应.山东林业科技.2006.5:28-29
    53.魏凤珍,李金才,董琦.孕穗期至抽穗期湿害对耐湿性不同品种冬小麦光合特性的影响.植物生理学通讯,2000,36(2):1695—1699
    54.吴海卿,段爱旺,杨传福,等.冬小麦对不同土壤水分的生理和形态响应.华北
    农学报,2000,15(1):92-96
    55.吴秀英,刘峰,任安芝,等.黑麦草叶内游离脯氨酸含量对于不同类型和强度的水分胁迫的生理生态响应,植物生态学报,1999,23(3)
    56.夏新莉,郑彩霞,尹伟伦.土壤干旱对樟子松针叶膜指过氧化膜脂成分和乙烯释放的影响.林业科学,2000,36(3):8-12
    57.夏阳.水分逆境对果树脯氨酸和叶绿素含量变化的影响.甘肃农业大学学报,1993,(1):26—31
    58.谢会成,朱西存.水分胁迫对栓皮栎幼苗生理特性及生长的影响.山东林业科技,2004(2):6-7
    59.轩春香,牛俊义,张红萍,等.水分胁迫对豌豆根系生长及产量的影响.甘肃农业大学学报.2008,43(5):45-49
    60.许大全,沈允钢.光合作用的限制因素.植物生理与分子生物学科学出版社.1997
    61. Xiong L M, Schumaker K S, Zhu J K. Cell signaling during sold, drought, and salt stress. Plant Cell,2002,14:165-183
    62.杨和鼎主编.杂粮与特种经济作物栽培学.华南热带农业大学出版.2003
    63.叶立华.锌对苦瓜生长发育及生理代谢影响的研究.福建农林大学.2005
    64.余叔文,汤章城.植物生理与分子生物学.北京:高等教育出版社,2003
    65.余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社.1998
    66.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报.1999,16(4):444—448
    67.张光灿,贺康宁,刘霞.黄土高原半干旱区林木生长适宜土壤水分环境的研究.水土保持学报,2001,15(4):1-5
    68.赵雅静,翁伯琦,王义祥,等.植物对干旱胁迫的生理生态响应及其研究进展.福建稻麦科技.2009,27(2):45-50
    69.赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用.河南农业大学学报.2000,34(3):248—251
    70.赵昌琼,芦站根,庞永珍,等.土壤水分胁迫对曼地亚红豆杉光合特性的影响.西南师范大学学报(自然科学版),2003,28(1):127-129
    71.赵国祥,岳建伟.槟榔的研究开发状况及市场发展前景.中国热带农业.2006(6):17-19
    72.周宜君,冯金朝,马文文,等.植物抗逆分子机制研究进展.中央民族大学学报(自然科学版),2006,15(2):69-76
    73. Asish Kumar Parida,Vipin S Dagaonkar,Manoj S Phalak.Alterations in photosynthetic pigments,protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechno,2007,37(1):41-48.
    74. Benjamin, Amos L. Community screening for diabetes in the National Capital District,Papua New Guinea:Is betelnut chewing a risk factor for diabetes Papua New Guinea Medical Journal,2001,44(3-4):101-107
    75. Biehler K,Fock H.Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons indrought-stressed wheat.Plant Physiology.1996,112:265-272
    76. Boveris A.Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. In pacher L(ed).Oxygen Radicals in Biological system.Orlando,Academic Press,1984,429
    77. Ederli L,Reale L,Ferranti F,et al. Responses Induced by High ConcentRation ofCadmium inPhragmites australisRoots[J].Physiologia Plantarum,2004,121(1): 66-74
    78. Foyer CH, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplaste,peroxisomes and mitochondria.Physiologia Plantarum.2003.199,355-364
    79. Hsiao.T C.Plant responses to water stress.Plant Physiol.1973,24:519-570
    80. Hendrick R L, K S Pregitzer.TemPoral and depth-related patterns of fine root dynamics in northern hardwood forests. Eeology,1996,84(5):167-176
    81. Horton P,Ruban AV,Walters RGRegulation of light harvesting in green plants.Annual Review of Plant Physiology and Plant Molecular Biology,1996. 47:655-684
    82. Joslin J D,M H Wolfe,P J Hanson. Effects of altered water regimes on forest roots stems.New Phytologist,2000,147(5):117-129
    83. Levitt.Responses of Plants to Environmental Srtesses.New York:academic,1972:697
    84. Lu CM,Zhang JH. Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Aust J Plant Physiol, 1998,25:883-892
    85. Mckevlin MR,Hook D D,Rozelle A A.Adaption of Plants to Flooding and soil waterlogging.In Messina MG and Conner W Heds.Southern Forested Wellands Ecology and Management Lew is publishs.1998.173-204
    86. Myers BJ.water stress and seedings growth on eucalypt species from contrasting habitats.Tree P soil.1989,5:207-218
    87. Neill SJ, Desikan R, Clarke A,et al. Hydrogen peroxide and nitric oxide as signalling molecules in plants, Expermental Botany.2002,53:1237-1247
    88. Ohtsuka T, Ito H, Tanaka A. Conversion of Chlorophyll b to Chlorophyll a and the Assembly of Chlorophyll with Apoproteins by Isolated Chloroplasts. PlantPhysiology,1997,113(1):137-147.
    89. Ort DR. When there is too much light. Plant Physiology.2001,125:29-32
    90. Prakash K R,Rao V S. The altered activities of carbonic-anhydrase, phosphoenol pyruvate-carboxylase and ribulose-bisphosphate carboxylase due to water-stress and after its relief.Environ.Biol.1996,17:39-42
    91. Powles S B.Osmond C B. Inhibition of the capacity and efficiency of photosynthesis in bean leaflets illumimatedina CO2 free atmosphere at low oxygen:a possible role for photorespiration. Plant Physiol.1978,5:619-629
    92. Raja K. Palanisamy V. Selvaraju P. Effect of pre-sowing seed treatments on germination and seedling vigour in arecanut (Areca catechu L.). Phytological Research,2002,15(2):183-186
    93. Shiang-Yue Lu, Liang-Shin Hwang, Ho-Chiao Fu.Studies on hydrological characteristics of an areca palm plantations.Forest Science,1999,14(2):211-221
    94. SMUCKER A J M,AIKEN R M.Dynamic root response to water deficits.Soil Science,1992,154(4):281-289
    95. Subbarao GA,Chauhan YS,Johansen C,et al. Patterns of osmotic adjustment in pigeon-pea-its importance as a mechanism of drought resistance. Agronomy.2000,12(34):239-249
    96. Vavilin D,VermaasW.Chlorophyllb can serve as themajorpigment in functional photosystem Ⅱ complexes of cyanobacteria.Proceedings of the National.Science,2001,98(24):14168-14173
    97. Wingler A,Quick WP,Bungard RA,et al. The role of photorespiration during drought stress:an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant, Cell and Environment.1999,22:361-373
    98. Winter K, Schramm M J. Analysis of stomatal and nonstomatal components in the environmental control of CO2 exchanges in leaves of Welwitschia mirabilis.Plant Physiology,1986,82:173-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700