小麦籽粒高分子量谷蛋白亚基(HMW-GS)积累规律及其调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷蛋白小麦籽粒蛋白的重要组成部分,与小麦品质关系密切。其亚基根据分子量大小又可分为高分子量谷蛋白亚基(HMW-GS)和低分子量谷蛋白亚基(LMW-GS)。小麦高分子量谷蛋白亚基与小麦加工品质密切相关。不同小麦品种的麦谷蛋白亚基组成和数目存在较大差异,且受遗传控制并具有品种稳定性,但其含量(表达量)又受环境条件的影响。本文以不同小麦品种为材料,研究RIL群体各家系中小麦高分子量谷蛋白亚基的积累动态,以及其在不同粒位籽粒中的差异,并研究了环境因素对小麦籽粒HMW-GS的影响,以期用不同栽培措施调控小麦HMW-GS积累,为深化小麦籽粒HMW-GS形成机制与栽培措施调控技术研究提供依据。
     研究共涉及4方面试验。
     试验1:主要研究重组自交家系中T6VS·6AL染色体对HMW-GS和GMP含量的影响,及不同地点生态环境下的HMW-GS和GMP含量差异。以含T6VS-6AL染色体的普通小麦-簇毛麦品种92R137和辉县红为亲本,通过单粒传法构建的F8重组自交家系为试材。于2005年分别于南京农业大学农场和郑州河南农业大学农场种植。
     试验2:主要研究了小麦强、弱势粒中HMW-GS和GMP形成和积累动态及其差异。试验于2006-2007年在江苏省农科院进行。选用扬麦158和扬麦11两个品种。以中部6-8小穗的基部第1、2位籽粒为强势粒,对应小穗顶部第1个籽粒为弱势粒。
     试验3:主要研究遮荫对小麦籽粒HMW-GS和GMP形成和积累动态的影响。试验选用两个小麦品种:扬麦158、扬麦11,于2005-2006和2006-2007两年度在江苏省农科院进行。2005-2006年度试验共设3个处理:不遮荫(对照,S0)、中度遮荫(S2)和重度遮荫(S3),2006-2007年度试验增加了一个轻度遮荫处理(S1)。S1、S2和S3的冠层上部光强分别约为自然光强(S0)的90%、82%和75%。拔节期至成熟实施遮荫处理。
     试验4:主要研究高温和干旱处理对于小麦籽粒HMW-GS和GMP积累的影响。试验于2007年在丹麦奥尔胡斯大学进行。在两个生长阶段进行水分亏缺和高温胁迫处理:在二棱末期实施对照(CKA)、干旱(WDA)和高温(HTA)3个处理,在开花期时每个处理又分别进行对照(CKB)、干旱(WDB)和高温(HTB),共计9个处理。
     主要研究结果如下:
     1.不同生态地点下含T6VS·6AL染色体的RIL群体内各家系HMW-GS和GMP的积累Glu-A1、Glu-B1和Glu-D1三对基因在RIL群体中均完全符合1:1分离,HMW-GS组成受遗传控制,属于质量性状。HMW-GS组成类型对其含量具有影响。T6VS·6AL易位系的存在对于HMW-GS和GMP含量的影响不明显,但不同种植地点生态条件对于HMW-GS和GMP的含量具有显著影响。
     2.小麦强、弱势粒中HMW-GS和GMP形成和积累动态及其差异强势粒中HMW-GS起始积累早于弱势粒,积累量始终高于弱势粒;HMW-GS含量在灌浆前中期高于弱势粒,但成熟期时却低于弱势粒,这是由于弱势粒干物质积累不足引起粒重下降造成的HMW-GS含量的相对增加。
     3.遮荫对小麦籽粒HMW-GS和GMP积累动态的影响遮荫使HMW-GS的起始形成时间提早,18%(S2)和25%(S3)重度遮荫处理缩短了亚基的快速积累期,降低灌浆后期积累速度,成熟期单粒总HMW-GS积累量低于对照,但两个品种成熟期籽粒HMW-GS和GMP含量则表现为遮荫(S2、S3)高于对照,且随遮荫程度的增加而增加,表明HMW-GS和GMP含量升高是籽粒干物重减少造成。与之不同,轻度遮荫(10%)延长了籽粒HMW-GS快速积累期,且成熟期亚基的积累量和含量均高于对照。遮荫处理影响小麦籽粒HMW-GS积累,但其效应与遮荫强度有关。
     4.高温和干旱处理对小麦籽粒HMW-GS和GMP积累动态的影响HMW-GS的积累量和含量变化规律相近。高温和干旱处理均促进了亚基的提早出现,促进了前期积累,尤其是二棱末期的高温处理。所有的处理均不同程度得影响了HMW-GS的积累速度与积累期持续时间,并影响最终积累量。两个阶段的干旱处理均增加了HMW-GS的最终积累量;高温的影响因处理时期不同而异,二棱末期高温处理减少HMW-GS积累而开花期促进HMW-GS的积累。二棱末期的干旱处理强化了开花期各处理对于亚基积累的促进,而高温处理则对开花期处理具有缓解作用。
     5.小麦籽粒HMW-GS和GMP含量的相关关系本研究表明,在小麦籽粒灌浆期间,不同基因位点(Glu-A1、Glu-B1及Glu-B1)编码的高分子量谷蛋白亚基、亚基对及总HMW-GS含量均与GMP含量呈显著的正相关关系,HMW-GS的组成与含量都与GMP积累关系密切。GMP积累同样受环境影响。
The amount of glutenin macropolymer (GMP) in wheat flour correlates closely with baking quality, and it can be divided into high molecular weight glutenin subunits (HMW-GS) and low molecular weight (LMW-GS) glutenin subunits. So HMW-GS may play key roles in determining the formation and amount of GMP in wheat grain, and its composition and amount is relative to the wheat quality. Composition and amount of HMW-GS in different wheat varieties were different, which present inheritance stabilization. But the content of HMW-GS is affected by environment. In the present study, a RIL population grown in two locations was used to study the effect of T6VS-6AL and environment conditions on HMW-GS content, and different wheat varieties were grown at different cultivation (shading, high temperature and water deficit stress) to study the regulatory efforts of HMW-GS and GMP, and cultivation practices on content and accumulation of HMW-GS and GMP. Besides, the accumulation pattern of HMW-GS and GMP in superior and inferior grains were also studied. The results should help clarify HMW-GS and GMP accumulation mechanism and provide regulatory approaches for super quality wheat. Total experiments were establish as:
     Experiment 1:The aim of this experiment was to study the effect of wheat-Haynaldia villosa T6VS-6AL and environment conditions of different locations on HMW-GS content. In this experiment, an elite wheat landrace Huixianhong, which had played important role in Chinese wheat breeding, was selected to hybridize with T6VS-6AL translocation line 92R137 and a new F8 RIL population was subsequently constructed from its progenies by single seed descendant (SSD). The populations were grown in two regions, Nanjing, Jiangsu province and Zhengzhou, Henan province.
     Experiment 2:The aim of this experiment was to study the accumulation pattern in superior and inferior grains, and the differences between them. Two wheat cultivars owning the same HMW-GS type (7+8 and 2+12) as Yangmai 11 and Yangmai158 were planted in a field experiment to study the difference in accumulation of HMW-GS in superior and inferior grains.
     Experiment 3:The aim of this experiment was to study the effect of shading on accumulation of HMW-GS and GMP. Field experiment was conducted at the experimental station of Jiangsu Academy of Agricultural Sciences for two years. Two wheat varieties of Yangmai158, Yangmai11 were grown. In the first year, there were treatments as CK (SO), 82% light intensity (S2),75% light intensity (S3) from jointing to maturity. And the second year, a weaker shading treatment with 90% light intensity (S1).
     Experiment 4:The aim of this experiment was to study the effect of high temperature and water deficit on HMW-GS and GMP accumulation. The experiment was conducted in the semifield of Aarhus University, Denmark. Spring wheat (Triticum aestivum L. cv. Vinjett) was planted in a pot experiment. The plants were separately subject to water deficit (WDA), or high temperature (HTA), or control (CKA) conditions at the end of spilelet initiation. At anthesis, the plants of these treatments were separately subjected to water deficit (WDB), or high temperature (HTB), or control (CKB) conditions again. Thus, total nine treatments were set in this experiment, including CKA-CKB, CKA-WDB, CKA-HTB, WDA-CKB, WDA-WDB, WDA-HTB, HTA-CKB, HTA-WDB and HTA-HTB.
     The main results were as follows:
     The HMW-GS and GMP content of the RIL population. The results showed that there were 8 HMW-GS composition types in the RIL population and both subpopulations, and the HMW-GS composition was decided by genotype. There were differences between the contents of the 8 types. There was no significant correlation between HMW-GS content and T6VS-6AL, while the HMW-GS content was significantly effected by the environment of different regions.
     HMW-GS and GMP accumulation in superior and inferior grains. The initial timing of HMW-GS accumulation in the superior grains was earlier with a higher accumulation amount than the inferior ones. The HMW-GS content was lower before 30d after anthesis, while was higher at maturity in inferior grains, compared with the superior grains was, though it was.
     Shading effects on accumulation of HMW-GS and GMP in wheat grain. In the present experiment, shading showed determinate impact on the formation timing of HMW-GS in wheat grain. Shading between jointing and maturity promoted the initial formation timing of HMW-GS. The severe shading treatments (18% and 25%) shortened the rapid accumulation period of HMW-GS and reduced accumulating rate of total HMW-GS during late grain filling period. Thus, the accumulation amount of total HMW-GS at maturity was lower under these treatments. However, contents of HMW-GS and GMP were higher under severe shading than the control. A low-degree shading treatment (10%) prolonged the rapid accumulation period of HMW-GS, and increased the final accumulation amount and content of total HMW-GS. Shading from jointing to maturity obviously affected the accumulation amounts and contents of total HMW-GS in wheat grain. However, this regulatory effect was related to shading intensity.
     Effect of high temperature and water deficit on HMW-GS and GMP accumulation in wheat grain. The results showed Water deficit and high temperature at both stages obviously affected accumulations of HMW-GS and GMP. High temperature and water deficit at end of spikelet initiation predated the HMW-GS accumulation, especially for the high temperature treatment. Accumulation rate and duration were affected by these stress events. HMW-GS accumulation amount at maturity reduced under high temperature at spikelet initiation while increased when the heat happened at anthesis. However, water deficit at both stages increased HMW-GS accumulation. In addition, acclimation of high temperature at the end of spikelet initiation benefited accumulation of HMW-GS when the plants were subjected to water deficit or high temperature again at anthesis, while water deficit at the end of spikelet promoted the effect of treatments at anthesis. GMP accumulation showed then same pattern to HMW-GS under each treatment.
     Relationship between HMW-GS content and GMP content. In the present study, significantly linear relationships were observed between GMP contents and individual encoded by different loci(Glu-A1, Glu-B1, Glu-D1) and total HMW-GS contents.
引文
[1]Weegels P L, Hamer R J, Schofield J D. Functional properties of wheat glutenin [J]. J Cereal Sci,1996,(23):1-18
    [2]Payne P I, Orfield K G, Holt L M. Correlation between the inheritance of certain HMW-GS and
    bread wheat making quality in progenies of six crosses of bread wheat [J] JSci FoodAgri, 1981,32:51-60.
    [3]曹广才,王少中.小麦品质生态.北京:中国科学技术出版社,1994
    [4]郑伟.小麦品质性状及其调优技术研究进展.耕作与栽培,2001,1:10-12
    [5]邓志英,田纪春.小麦贮藏蛋白与小麦品质性状的关系及研究进展.生命科学,2003,15(4):233-237
    [6]毛沛,李宗智,卢少源.小麦遗传资源HMW麦谷蛋白亚基组成及其与面包烘烤品质关系的研究.中国农业科学.1995,28(增):22-27.
    [7]高翔,董健,张改生,雷玲,仝胜利.黄淮麦区小麦品种高分子量谷蛋白亚基及亚基组成与品质性状关系的研究.中国农学通报.2005,25(5):121-123.
    [8]高翔,董健,张改生,雷玲,仝胜利.黄淮麦区小麦品种高分子量谷蛋白亚基及亚基组成与品质性状关系的研究.中国农学通报.2005,25(5):121-123.
    [9]Payne,P I.,L M. Holt, A F Krattiger. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J.Sci. Food Agric.1987,40:51-55
    [10]Lawrence G J. Dough and baking quality o f wheat line deficient in gluten in subunits controlled by the G lu-A1, G lu-B1 and G lu-D1 loci. J. Ce real Sci,1988, (7):109-112.
    [11]Carrillo J M, M Rou sse t, C O Q ua lse t, e t a 1. Use of recombinant inbred line s of wheat for study of associations of high-molecular-weight gluten in subunit alleles to quantitative traits [J]. Theory Appl. Genet,1990,79 (3):321-330
    [12]毛沛,李宗智,卢少源.小麦高分子量各谷白亚基组成及其与面包烘烤品质的关系.河北农业科学.1995,4:8-16
    [13]李硕碧,高翔,单明珠.小麦高分子量谷蛋白亚基与加工品质.北京:中国农业出版社,2001.
    [14]宋建民,刘爱峰,吴祥云,刘建军,赵振东,刘广田.高分子量谷蛋白亚基组成及含量与小麦品质关系的研究.中国农业科学,2003,36(2):128-133
    [15]聂琼,徐如宏,张庆勤,吴春太.小麦杂交后代贮藏蛋白的遗传多样性分析.贵州大学学报,2002,(4):235-240
    [16]宋建民,吴祥云,刘建军,刘爱峰,赵振东.小麦籽粒特性与品质关系研究进展.山东农业科学,2002,(2):49-51
    [17]刘艳华,王洪刚,刘树兵.部分小麦高分子量谷蛋白亚基组成分析.西北植物学报,2002,22(6):1306-1311
    [18]李保云,王岳光,刘凤鸣,孙辉,刘广田.小麦高分子量谷蛋白亚基与小麦品质性状关系的研究.作物学报,2000,26(3):322-326
    [19]Payne P. I., Law C. N., Muddy E. E. Control by homologous group I chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet.
    1980,58:113-120.
    [21]Payne P. I., Nightingale M. A., Krattiger A. F., Holt L. M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agr. 1987,40:51-65.
    [22]傅宾孝,赵友梅,秦礼谦.小麦高分子谷蛋白亚基与面粉品质.郑州粮食学院学报.1989,1:1-12.
    [23]赵友梅,王淑俭.按照品质指标的数值规律评价小麦粉的烘焙品质.作物学报.1990,16(3):208-218.
    [24]赵和,卢少源,李宗智.小麦高分子量麦谷蛋白亚基遗传变异及其与品质和其它农艺性状关系的研究.作物学报.1994,20(1):67-75.
    [25]高翔,李硕碧.小麦高分子量谷蛋白亚基对加工品质影响的效应分析.西北植物学报.2002,22(4):771-779.
    [26]程爱华.改进的HMW-GS评分系统在黑龙江省小麦品种面筋强度分类上的应用.黑龙江农业科学.2003,(4):21-23.
    [27]马传喜,徐风,程国旺.高分子量麦谷蛋白亚基作为面包小麦品种烘烤品质评价指标的研究.安徽农业大学学报.1995,22(2):117-122.
    [28]De Bustos A., Jouve N. Characterisation and analysis of new HMW-glutenin alleles encoded by the Glu-R1 locus of Secale cereale. Theor Appl Genet.2003,107:74-83.
    [29]Gianibelli M C, Lagudah E S, Wrigley C W, MacRitchie F Biochemical and genetic characterization of a monomeric storage protein (T1) with an unusually high molecular weight in Triticum tauschii. Theor Appl Genet.2002,104:497-504.
    [30]Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, Wang D. Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theor Appl Genet.2003,106:1368-1378.
    [31]Radovanovic N, Cloutier S. Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Molecular Breeding.2003,12:51-59.
    [32]Rakszegi M, Bekes F, Lang L, Tamas L, Shewry P R, Bedoa Z. Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J Cereal Sci.2005,42:15-23.
    [33]Xu S S, Khan K, Klindworth D L, Faris J D, Nygard G Chromosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L. var. dicoccoides). Theor Appl Genet.2004,108:1221-1228.
    [34]Yan Y, Hsam S L K., Yu J, Jiang Y, Zeller F J. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica.2003,130:377-385.
    [35]Bailey C H. The constituents of wheat and wheat products. Reinhold Publishign, New York,1994
    [36]程爱华,王乐凯,赵乃新,兰静,戴常军,任红波.高分子量麦谷蛋白亚基评分系统的改进及应用.麦类作物学报,2002,22(1):19-22
    [37]杨学举,荣广哲,卢桂芬.优质小麦重要性状的相关分析.麦类作物学报,2001,21(2):35-37
    [38]高庆荣,于金凤,柳坤.小麦籽粒品质、高分子量谷蛋白亚基组成类型与面筋质量相关性的研究.麦类作物学报,2003,23(2):30-33
    [39]赵海滨,肖志敏,张春利.不同HMW麦谷蛋白亚基类型小麦品种(系)的沉降值及其与面筋质和量的关系.麦类作物,1999,19(1):17-20
    [40]魏良明,王福亭,范濂.普通小麦高分子量谷蛋白亚基与沉淀值的关系.河南农业大学学报,1999,33(1):25-28
    [41]赵友梅,王淑俭.高分子量麦谷蛋白亚基的SDS-PAGE图谱在小麦品质研究中的应用.作物学报,1990,16(3):208-218
    [42]Payne P I. Relationship between HMW glutenin subunit composition and measures of the bread-making quality of wheat varieties grown in spain. J Cereal Sci,1988,7:229-236
    [43]Rogers W J, Payne P I and Harinder. The HMW glutenin subunit and gliadin compositions of german-grown wheat varieties and their relationship with bread-making quality. Plant Breeding,1989,103:89-100
    [44]Lukow O M, Payne P I and Tkachuk R. The HMW glutenin subunit composition of Canadian wheat cultivars and their association with bread-making quality. JSci Food Agric,1989:451-460
    [45]陆燕,马传喜.小麦品种麦谷蛋白亚基的遗传变异分析.安徽农业大学学报,2000,27(2):126-130
    [46]Bronneke V, Zimmermann G, Killermann B. Effect of high molecular weight glutenins and D-zone gliadins on bread-making quality in German wheat cultivars. Cereal Research Communication, 2000,28(1-2):187-194
    [47]Brites C, Carrillo T M. Influence of high molecular weight and low molecular weight glutenin subunits controlled by Glu-1 and Glu-3 loci on durum wheat quality. Cereal Chem,2001,78(1):59-63
    [48]Shahinnia F,Rezaie A M.Allelic variation of high molecular weigh glutenin subunits and their effects on bread-making characteristics of wheat (Triticum aestiuum L.)Agric Sci Tech,2002,16(1):91-100
    [49]徐兆飞,张惠叶,张定一.小麦品质及其改良[M].北京:气象出版社,2000
    [50]茹岩岩,晏月明.小麦谷蛋白亚基基因的PCR鉴定及其在品质改良中的应用.生物工程进展,2001,2:51-54.
    [51]孙辉,李保云,王岳光,等.普通小麦谷蛋白亚基与烘烤品质的关系.中国农业大学学报,2000,5(3):18-24
    [52]李硕碧,单明珠,李必运.陕西省小麦品种资源高分子量谷蛋白亚基组成研究.西北农林科技大学 学报,2002,8:1-5
    [53]毛沛,李宗智,卢少源.小麦高分子量谷蛋白亚基对面包烘烤品质的效应分析.华北农学报,1995,10(增刊):55-59
    [54]李宗智,赵和,卢少源.小麦高分子量麦谷蛋白遗传变异及其与品质和其它农艺性状关系的研究.作物学报,1994,20(1):67-75.
    [55]Dong Yinhua, Khan. Quatitative determination of high molecular weight glutenin subunit of hard red spring wheat by SDS-PAGE. I:Quantitative effects of total amounts on bread making quality characteristics. Cereal Chem,1997,74:781-785.
    [56]Johansson E., Oscarson P., Heeneen W. K., Lundborg, T. Differences in accumulation of storage proteins between wheat cultivars during development. J. Sci. Food Agric.1994,22:358-364.
    [57]柳觐,张怀刚,相微微,赵会君,刘宝龙,胡延萍,王莉.小麦高分子量谷蛋白亚基表达量与面团流变学特性的关系.西北农业学报,2008,17(5):139-145.
    [58]Kolster P., Krechting C. F., Gelder W. M. J. Quantification of individual high molecular weight glutenin subunits of wheat glutenin using SDS-PAGE and scanning densitometry. J cereal Sci.1992, 15:49-61.
    [59]Sutton K. H. Qualitative and quantitative variation among high molecular weight subunits of glutenin detected by reverse-phase high-performance liquid chromatography. J Cereal Sci.1991,14: 25-34.
    [60]Huang D. Y., Khan K. Quantitative determination of high-molecular-weight glutenin subunit of hard red spring wheat by SDS-PAGE:Quantitative effects of total amounts on bread making quality characteristics. Cereal Chem.1997,76:781-785.
    [61]Kolster P., Eeuwijk F. A., Van Gelder W. M. J. Additive and epistatic effecfs of allelic variation at the high-molecular-weight glutenin subunit loci in determining the bread-making quality of breeding lines of wheat. Euphytica.1991,55:277-285.
    [62]Shewry P R, Halford N G, Tatham A S. High molecular weight subunits of wheat glutenin. J Cereal Sci,1992,15:105-120.
    [63]Weegels P L, Hamer R J, Schofield J D. Functional properties of wheat glutenin. J Cereal Sci,1996,23:1-18.
    [64]Wieser H, Kieffer R. Correlationship of amount of gluten protein types to the technological properties of wheat flours determined on a micro-scale. J Cereal Sci,2001,34:19-27
    [65]朱金宝,刘广田,张树榛等.小麦籽粒高低分子量谷蛋白亚基及其与品质关系的研究.中国农业科学,1996,29(1):34-39
    [66]Zhu J B, Khan K. Characterization of monomeric and glutenin polymeric proteins of hard red spring
    wheats during grain development by multistacking SDS-PAGE and capillary zone electrophoresis. Cereal Chem,1999,76:261-269
    [67]Zhu J B, Khan K, Huang S. Allellic variation at Glu-D1 locus for high molecular weight (HMW) glutenin subunits:quantification by multistacking SDS-PAGE of wheat grown under nitrogen fertilization. Cereal chem,1999,76:915-919
    [68]Cressey P J, Campbell W P, Wrigley C W. Statistical correlation between quality attributes and grain-protein composition for advanced lines of crossbred wheat. Cereal Chem,1987,64 (4): 299-301
    [69]赵和,李宗智,卢少源.小麦籽粒高分子量谷蛋白亚基研究进展.国外农学:麦类作物,1993,4:43-45
    [70]Gupta R B, Stefania M, Domenico L, et al. Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. Journal of Experimental Botany,1996,47(302):1377-1385
    [71]杜金哲,胡尚连,李文雄,刘锦红.不同品质类型春小麦HMW-GS形成时间和积累强度及与品质的关系.作物学报,2003,29(1):111-118
    [72]Singh N K, Donovan G R, Batey I L. Use of sonication and sizeexclusion high-performance liquid chromatography in the study of wheat flour proteins. Dissolution of total proteins in the absence reducing agents. Cereal Chem,1990,67:150-161
    [73]Wieser, H. Chemistry of gluten proteins. Food Microbiology,2007,24(2):115-119
    [74]赵惠贤,段惠,梁亮,郭蔼光.不同品质类型小麦谷蛋白聚合体含量及亚基组成的初步研究.西北植物学报,2003,23(5):755-758
    [75]Gupta R B, Khan K, MacRitchie, F. Biochemical basis of flour properties in bread wheats:Effects of variation in the quantity and size distribution of polymeric protein. J Cereal Sci.,1993,18:23-41
    [76]Popineau Y, Cornec M, L efebvre J, et al. Influence of highM r glutenin subunits on glutenin polymers and rheological properties of near2isogenic lines of wheat Sicco. Cereal Sci,1994,19: 231-241
    [77]孙辉,姚大年,李宝云,等.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,1998,(12):13-16
    [78]Don C, Lookhart G, Naeem H., MacRitchie, F, Hamer, R J. Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction. Journal of Cereal Science,2005,42(1): 69-80.
    [79]Don C, Mann G, Bekes F, Hamer R J. HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. Journal of Cereal Science,2006,44(2):127-136.
    [80]Skylas, D. J., S. J. Cordwell, P. G Hains, M. R. Larsen, D. J. Basseal, B. J. Walsh, C. Blumenthal, W. Rathmell, L. Copeland, and C. W. Wrigley. Heat shock of wheat suring grain filling:proteins associated with heat-tolerance. Journal of Cereal Science,2002,35 (2):175-188.
    [81]Z Deng, J T, L Zhao, Y Zhang, C. Sun. High temperature-induced changes in high molecular weight glutenin subunits of Chinese winter wheat and its influences on the texture of Chinese noodles. Journal of Agronomy and Crop Science,2008,194 (4):262-269
    [82]Hurkman, W. J., W. H. Vensel, C. K. Tanaka, L. Whitehand, and S. B. Altenbach. Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. Journal of Cereal Science,2009,49 (1):12-23.
    [83]Altenbach, S. B., F. M. DuPont, K. M. Kothari, R. Chan, E. L. Johnson, and D. Lieu. Temperature, water andfertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science,2003,37 (1):9-20.
    [84]Altenbach, S. B., K. M. Kothari, and D. Lieu. Environmental conditions during wheat grain fevelopment alter temporal regulation of major gluten protein genes. Cereal Chem,2002,79 (2):279-285
    [85]Hurkman, W. J., K. F. McCue, S. B. Altenbach, A. Korn, C. K. Tanaka, K. M. Kothari, E. L. Johnson, D. B. Bechtel, J. D. Wilson, O. D. Anderson, and F. M. DuPont. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science,2003,164 (5):873-881.
    [86]Dupont, F. M., W. J. Hurkman, W. H. Vensel, C. Tanaka, K. M. Kothari, O. K. Chung, and S. B. Altenbach. Protein accumulation and composition in wheat grains:Effects of mineral nutrients and high temperature. European Journal of Agronomy,2006,25 (2):96-107
    [87]李九星,崔梅,高瑞玲.小麦籽粒蛋白质积累动态的研究.河南农业大学学报.1991,25(4):366-371.
    [88]Wollenweber, B., and J. R. Porter. Need for multidisciplinary research towards a second green revolution. Current Opinion in Plant Biology,2005,8 (3):337-341
    [89]刘玲,沙奕卓,白月明.中国主要农业气象灾害区域分布与减灾对策.自然灾害学报.200312(2):92-97.
    [90]范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响.植物生态学报,2004,28(5):680-685
    [91]兰涛,姜东,谢祝捷,戴廷波,荆奇,曹卫星.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18(1):193-196
    [92]王月福,陈建华,曲健磊,李维峰,周胜来.土壤水分对小麦籽粒品质和产量的影响.莱阳农学院学报,2002,19,(1):7-9
    [93]王立秋,靳占忠,曹敬山,王占宇.水肥因子对小麦籽粒及面包烘烤品质的影响.中国农业科学,1997,1997,30(3):67-73.
    [94]St. Burgos, P. S., J. E. Schmid. Agronomic and physiological study of cold and flooding tolerance of spelt and wheat. Journal of Agronomy and Crop Science,2001,187 (3):195-202.
    [95]N. K. Gupta, S. G, Arvind Kumar. Effect of Water Stress on Physiological Attributes and their Relationship with Growth and Yield of Wheat Cultivars at Different Stages. Journal of Agronomy and Crop Science,2001,186 (1):55-62.
    [96]A. Troccoli, P. C., G. Ronga, A. Gallo, N. Fonzo. Agronomical Performance among farro species and durum wheat in a drought-flat land environment of southern Italy. Journal of Agronomy and Crop Science,1997,178 (4):211-217
    [97]Triboi, E., A. Abad, A. Michelena, J. Lloveras, J. L. Ollier, and C. Daniel. Environmental effects on the quality of two wheat genotypes,1:quantitative and qualitative variation of storage proteins. European Journal of Agronomy,2000,13:47-64
    [98]Xie, Z., D. Jiang, W. Cao, T. Dai, and Q. Jing. Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Plant Growth Regulation,2003,41 (2):117-127.
    [99]A Ozturk, F A Effect of Water Stress at Various Growth Stages on Some Quality Characteristics of Winter Wheat. Journal of Agronomy and Crop Science,2004,190 (2):93-99.
    [100]Guttieri, M. J., J. C. Stark, K. O'Brien, and E. Souza. Relative Sensitivity of Spring Wheat Grain Yield and Quality Parameters to Moisture Deficit. Crop Science,2001,41(2):327-335
    [101]李永庚,于振文,梁晓芳,赵俊晔,邱希宾.小麦产量和品质对灌浆期不同阶段低光照强度的响应.植物生态学报,2005,29(5):807-813
    [102]孙彦坤,王丽娟,严红.籽粒灌浆过程中气候因子对不同类型春小麦产量和蛋白质含量的影响之三:光照的影响.中国农业气象,2003,24(3):5-6
    [1]陈佩度,周波,齐莉莉,刘大钧.用分子原位杂交(GISH)鉴定小麦-簇毛麦双倍体、附加系和易位系.遗传学报,1995,22(5):380-386
    [2]马渐新,周荣华,贾继增,董玉琛.小麦背景中6V染色体的遗传稳定性及其在配子中的传递,遗传学报,1999,4(26):384-390
    [3]Li, G.P, Chen, P.D, Zhang, S.Z, Wang, X.E, He, Z.H, Zhang, Y, Zhao, H, Huang, H.Y, Zhou, X.C. Effects of the 6VS.6AL translocation on agronomic traits and dough properties of wheat. Euphytica, 2007,155:305-313
    [4]Payne, P.I, Jackson, E.A, Holt, L.M, Law, C.N. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosome 1A and 1B in wheat. Theor Appl Genet, 1984,67(2-3):235-243
    [5]Shewry, P.R., Parmar D.J.C. Pappin. Characterization and genetic control of the prolamins of Haynaldia-villosa relationship to cultivated species of the Triticeae (rye, wheat, and barley). Biochemical Genetics,1986,25(34):309-325
    [6]Graveland A, Bosveld P, Lichtendonk W J, Moonen J H E. Extraction and fractionation of wheat flour proteins. Journal of the Science of Food and Agriculture 1982,33:1117-1128.
    [7]Weegels P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and Re-polymerisation of Wheat Glutenin During Dough Processing. I. Relationships between Glutenin Macropolymer Content and Quality Parameters. Journal of Cereal Science,1996,23 (2): 103-111
    [8]刘香利,郭蔼光,赵惠贤.陕西省部分小麦栽培品种高分子量麦谷蛋白亚基组成及其与品质关系.分子植物育种,2007,5(6):827-832
    [9]马小乐,尚勋武,辛培尧,师桂英,路建龙,方永丰.春小麦品种高分子量谷蛋白亚基与品质的关系.麦类作物学报,2006,26(1):66-70
    [10]Luo C, Griffin W B, Branlard G, McNei D L. Comparison of low and high molecular-weight wheat glutenin allele effects on flour quality. Theoretical and Applied Genetics,2001,102:1088-1098
    [11]Herbert Wieser, Gerhard Zimmermann. Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. European Food Research and Technology,2000,210: 324-330
    [12]柳觐,张怀刚,相微微,赵会君,刘宝龙,胡延萍,王莉.小麦高分子量谷蛋白亚基表达量与面团流变学特性的关系.西北农业学报,2008,17(5):139-145
    [13]Yue H W, Jiang D, Dai T B, Qin X D, Jing Q, Cao W X. Effect of nitrogen application rate on content of glutenin macropolymer and high molecular weight glutenin subunits in grains of two winter wheat cultivars. Journal of Cereal Science,2007,45(3):248-256.
    [14]Zhu J B, Khan K. Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments. Cereal Chemistry,2002,79:783-786.
    [15]梁太波,尹燕枰,蔡瑞国,闫素辉,,耿庆辉,李勇,王振林.不同土壤条件下山农12小麦籽粒HMW-GS积累及GMP粒度分布特征.作物学报,2008,34(12):2160-2167
    [16]Payne P I, K G Corfield, L M Holt, et al. Co rrelations between the inheritance o f certain high-molecular-weight subunits of gluten in and b read-making quality in progenies of six crosses of bread wheat [J]. Journal of the Science of Food and Agriculture,1981,32:51-60.
    [17]Payne P I, M A Nightingale, A F Krattiger, et al. The relationship between HMW gluten in subunit composit ion and the b read-making quality o f British-grown wheat varieties. Journal of the Science of Food and Agriculture,1987,40:51-65.
    [18]LukowO M, Payne P I., T kachuk R. The HMW gluten in subunit composition o f Canadian wheat cultivars and their association with bread-making quality [J]. Journal of the Science of Food and Agriculture,1989:451-460
    [19]孙辉,姚大年,李宝云,刘广田,张树榛.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,1998,13(6):13-16
    [20]李硕碧,高翔,单明珠,李必运.小麦高分子量谷蛋白亚基与加工品质.北京:中国农业出版社,2001
    [21]Cao, A.Z, Wang, X.E, Chen, Y.P, Zou, X.W, Chen, P.D. A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS,6BS,6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breeding,2006,125(3):201-205
    [22]李学军.小麦HMW-GS近等基因系的创建及亚基组合品质效应研究.陕西:西北农林科技大学博士论文,2004
    [23]李保云,刘桂芳,王岳光等.小麦高分子量谷蛋白亚基的遗传规律研究田,中国农业大学学报,2000,5(1):58-62
    [24]Lucrecia Alvarez M, Gomez M, Maria Carrillo J, Vallejos R H. Analysis of dough functionality of flours from transgenic wheat. Molecular Breeding,2001,8(1):103-108
    [25]Darlington H, Fido R, Tatham A S, Jones H, Salmon S E, Shewry P R. Milling and baking properties of field grown wheat expressing HMW subunit transgenes. Journal of Cereal Science, 2003,38 (3):301-306
    [26]Rakszegi M, F. B, Lang L, Tamas L, Shewry P R, Bedo Z. Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. Journal of Cereal Science,2005, 42 (1):15-23
    [27]赵友梅,王淑俭.按照品质指标的数值规律评价小麦粉的烘焙品质.作物学报.1990,16(3):208-218.
    [28]赵和,卢少源,李宗智.小麦高分子量麦谷蛋白亚基遗传变异及其与品质和其它农艺性状关系的研究.作物学报.1994,20(1):67-75.
    [29]高翔,李硕碧.小麦高分子量谷蛋白亚基对加工品质影响的效应分析.西北植物学报.2002,22(4):771-779.
    [30]Pirozi M R, Margiotta B, Lafiandra D, MacRitchie F. Composition of polymeric proteins and bread-making quality of wheat lines with allelic HMW-GS differing in number of cysteines. Journal of Cereal Science,2008,48 (1):117-122
    [31]Don C, Mann G, Bekes F, Hamer R J. HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. Journal of Cereal Science,2006,44 (2):127-136
    [32]D. Jiang H Y, B. Wollenweber, W. Tan, H. Mu, Y. Bo, T. Dai, Q. Jing, W. Cao,. Effects of Post-Anthesis Drought and Waterlogging on Accumulation of High-Molecular-Weight Glutenin Subunits and Glutenin Macropolymers Content in Wheat Grain. Journal of Agronomy and Crop Science,2009,195 (2):89-97
    [33]Sliwinski E L, Kolster P, Prins A, Vliet T v. On the relationship between gluten protein composition of wheat flours and large-deformation properties of their doughs. Journal of Cereal Science,2004,39:247-264
    [1]武翠,邵国军,吕文彦,马莲菊,崔鑫福,曹萍,侯秀英.不同发育时期水稻强、弱势粒灌浆速率的遗传分析.中国农业科学,2007,40(6):1135-1141
    [2]姜东,于振文,李永庚,余松烈.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化.中国农业科学,2002,35(4):378-383
    [3]董明辉,赵步洪,吴翔宙,陈涛,杨建昌.水稻结实期不同粒位籽粒相关内源激素含量和关键酶活性的差异及其与品质的关系,中国农业科学,2008,41(2):370-380
    [4]Xu G-W, Zhang J-H, Lam H-M, Wang Z-Q, Yang J-C. Hormonal changes are related to the poor grain filling in the inferior spikelets of rice cultivated undernon-flooded and mulched condition. Field Crops Research,2007,101:53-61.
    [5]梁太波,尹燕枰,蔡瑞国,闫素辉,李文阳,耿庆辉,王平,邬云海,李勇,王振林.不同土壤条件下山农12小麦籽粒HMW-GS积累及GMP粒度分布特征.作物学报,2008,34(12):2160-2167.
    [6]裴雪霞,王姣爱,党建友,王秀斌,张定一.小麦结实粒数、粒重和品质的小穗位和粒位效应.中国农业科学,2008,41(2):381-390.
    [7]梁太波,尹燕枰,蔡瑞国,闫素辉,李文阳,耿庆辉,王平,王振林.大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较.作物学报,2008,34(1):150-156.
    [8]赵俊晔,于振文.施氮量对小麦强势和弱势籽粒氮素代谢及蛋白质合成的影响.中国农业科学,2005,38(8):1547-1554.
    [9]潘洁,姜东,曹卫星,孙传范.小麦穗籽粒数、单粒重及单粒蛋白质含量的小穗位和粒位效应,2005,31(4):431-437.
    [10]赵全志,吕强,殷春渊,高桐梅,宁慧峰,乔江方,刘辉,陈静蕊.大穗型粳稻籽粒相对充实度的化学调控及其与产量和品质的关系.作物学报,2006,32(10):1485-1490.
    [11]Pirozi M R, B. Margiotta, Lafiandra D, MacRitchie F. Composition of polymeric proteins and bread-making quality of wheat lines with allelic HMW-GS differing in number of cysteines. Journal of Cereal Science,2008,48(1):117-122.
    [12]Ohm, J B, Ross A S, Peterson C J, Ong Y L. Relationships of high molecular weight glutenin subunit composition and molecular weight distribution of wheat flour protein with water absorption and color characteristics of noodle dough. Cereal Chemistry,2008,85 (2):123-131
    [13]Blechl, A, Lin J, Nguyen S, Chan R, Anderson O D, Dupont F M. Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. Journal of Cereal Science,2007,45 (2):172-183
    [14]Wang, Y G, Khan K, Hareland G, Nygard G. Quantitative glutenin composition from gel electrophoresis of glour mill streams and relationship to breadmaking quality. Cereal Chemistry,2006, 83 (3):293
    [15]Zhu J-B, Khan K. Characterization of monomeric and glutenin polymeric proteins of hard red spring wheats during grain development by multistacking SDS-PAGE and capillary zone electrophoresis. Cereal Chemistry,1999,76:261-269
    [16]Weegel P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and re-polymerisation of wheat glutenin during dough processing:I. Relationships between glutenin macropolymer content and quality parameters. Journal of Cereal Science,1996,23:103-111
    [17]孙辉,姚大年,李宝云,刘广田,张树榛.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,1998,13(6):13-16.
    [18]Yue H-W, Jiang D, Dai T-B, Qin X-D, Jing Q, Cao W-X. Effect of nitrogen application rate on content of glutenin macropolymer and high molecular weight glutenin subunits in grains of two winter wheat cultivars. Journal of Cereal Science,2007,45(3):248-256
    [19]李硕碧,高翔,单明珠,李必运.小麦高分子量谷蛋白亚基与加工品质.北京:中国农业出版社,2001
    [20]周琴,姜东,戴廷波,荆奇,曹卫星.谷氨酰胺对扬麦9号强势和弱势籽粒淀粉及蛋白质积累的调控.麦类作物学报,2005,25(1):44-49.
    [21]吴金芝,李友军,郭天财.小麦品种间不同穗粒位籽粒蛋白质及其组分积累规律的研究.河南科技大学学报,2004,24(1):1-9.
    [22]董明辉,桑大志,王朋,王学明,杨建昌.不同施氮水平下水稻穗上不同部位籽粒的蒸煮与营养品质变化.中国水稻科学,2006,20(4):389-395.
    [1]Pirozi M R, B. Margiotta, Lafiandra D, MacRitchie F. Composition of polymeric proteins and bread-making quality of wheat lines with allelic HMW-GS differing in number of cysteines. Journal of Cereal Science,2008,48(1):117-122.
    [2]Ohm, J B, Ross A S, Peterson C J, Ong Y L. Relationships of high molecular weight glutenin subunit composition and molecular weight distribution of wheat flour protein with water absorption and color characteristics of noodle dough. Cereal Chemistry,2008,85 (2):123-131.
    [3]Zhu J B, Khan K. Characterization of monomeric and glutenin polymeric proteins of hard red spring wheats during grain development by multistacking SDS-PAGE and capillary zone electrophoresis. Cereal Chemistry,1999,76:261-269.
    [4]杜金哲,胡尚连,李文雄,刘锦红.不同品质类型春小麦HMW-GS形成时间和积累强度及与品质的关系.作物学报,2003,29(1):111-118.
    [5]Blechl, A, Lin J, Nguyen S, Chan R, Anderson O D, Dupont F M. Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. Journal of Cereal Science,2007,45 (2):172-183
    [6]Wang, Y G, Khan K, Hareland G, Nygard G. Quantitative glutenin composition from gel electrophoresis of flour mill streams and relationship to breadmaking quality. Cereal Chemistry, 2006,83 (3):293.
    [7]邓志英,田纪春,张永祥,王延训.冬小麦高、低分子量麦谷蛋白亚基形成时间和积累强度及其与沉降值的关系.作物学报,2005,31(3):308-315.
    [8]Vawser M, Cornish G B. Over-expression of HMW glutenin subunit Glu-B1 7x in hexaploid wheat varieties (Triticum aestivum). Australian Journal of Agricultural Research 2004,55 (5):577-588.
    [9]Leon E, Marin S, Gimenez M J, Piston F, M Rodriguez-Quijano, Shewry P R, and Barro F. Mixing properties and dough functionality of transgenic lines of a commercial wheat cultivar expressing the lAx1,1Dx5 and 1Dy10 HMW glutenin subunit genes. Journal of Cereal Science,2009,49 (1):148-156.
    [10]DuPont F M, Hurkman W J, Vensel W H, Chan R, Lopez R, Tanaka, C K, Altenbach S B. Differential accumulation of sulfur-rich and sulfur-poor wheat flour proteins is affected by temperature and mineral nutrition during grain development. Journal of Cereal Science,2006,44, 101-112.
    [11]Yue H W, Jiang D, Dai T B, Qin X D, Jing Q, Cao W X. Effect of nitrogen application rate on content of glutenin macropolymer and high molecular weight glutenin subunits in grains of two winter wheat cultivars. Journal of Cereal Science,2007,45(3):248-256.
    [12]Zhu J B, Khan K. Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments. Cereal Chemistry,2002,79:783-786.
    [13]岳鸿伟,谭维娜,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水对小麦籽粒HMW-GS及GMP含量的影响.作物学报,2007,33(11):1845-1849.
    [14]李永庚,于振文,梁晓芳,赵俊晔,邱希宾.小麦产量和品质对灌浆期不同阶段低光照强度的响应.植物生态学报,2005,29(5):807-813.
    [15]王艳君,姜彤,许崇育.长江流域蒸发皿蒸发量及影响因素变化趋势.自然资源学报,2005,20(6):864-870
    [16]Estrada-Campuzano G, Miralles D J, Slafer G A. Yield determination in triticale as affected by radiation in different development phases. European Journal ofAgronomy,2008,28:597-605
    [17]Weegel P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and re-polymerisation of wheat glutenin during dough processing:I. Relationships between glutenin macropolymer content and quality parameters. Journal of Cereal Science,1996,23:103-111
    [18]孙辉,姚大年,李宝云,刘广田,张树榛.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,1998,13(6):13-16
    [19]李硕碧,高翔,单明珠,李必运.小麦高分子量谷蛋白亚基与加工品质.北京:中国农业出版社,2001
    [20]DuPont F M, Chan R, Lopez R. Molar fractions of high-molecular-weight glutenin subunits are stable when wheat is grown under various mineral nutrition and temperature regimens. Journal of Cereal Science,2007,45(2):134-139.
    [21]王东,于振文.不同施氮量下子粒灌浆不同阶段遮光对小麦氮素积累和转移的影响.植物营养与肥料学报,2008,14(4):615-622.
    [22]牟会荣,姜东,戴廷波,荆奇,曹卫星.遮荫对小麦旗叶光合及叶绿素荧光特性的影响.中国农业科学,2008,41(2);599-606
    [23]Caroline V M, Roger C, Anderson, Diane L B. Influence of shading on the growth and leaf photosynthesis of the invasive non-indigenous plant garlic mustard [Alliaria petiolata (M. Bieb) Cavara and Grande] grown under simulated late-winter to mid-spring conditions. Journal of the Torrey Botanical Society,2005,132(1):1-10.
    [24]Don C, Mann G, Bekes F, Hamer R J. HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. Journal of Cereal Science,2006,44(2):127-136.
    [1]Weegels P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and Re-polymerisation of Wheat Glutenin During Dough Processing. I. Relationships between Glutenin Macropolymer Content and Quality Parameters. Journal of Cereal Science,1996,23 (2):103-111.
    [2]Labuschagne M T, Koen E, Dessalegn T. Use of Size-Exclusion High-Performance Liquid Chromatography for Wheat Quality Prediction in Ethiopia. Cereal Chemistry,2004,81 (4):533-537.
    [3]Faergestad E M, Flaete N E S, Magnus E M, Hollung K, Martens H, Uhlen A-K. Relationships between storage protein composition, protein content, growing season and flour quality of bread wheat. Journal of the Science of Food and Agriculture,2004,84 (8):877-886.
    [4]Shewry P R, Halford N G, Tatham A S, Popineau Y, Lafiandra D, Belton P S. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Advances in Food and Nutrition Research:Academic Press,2003.
    [5]Pirozi M R, Margiotta B, Lafiandra D, MacRitchie F. Composition of polymeric proteins and bread-making quality of wheat lines with allelic HMW-GS differing in number of cysteines Journal of Cereal Science,2008,48 (1):117-122.
    [6]Wang Y G, Khan K, Hareland G, Nygard G Quantitative Glutenin Composition from Gel Electrophoresis of Flour Mill Streams and Relationship to Breadmaking Quality. Cereal Chemistry,2006, 83 (3):293.
    [7]Payne P I. Genetics of Wheat Storage Proteins and the Effect of Allelic Variation on Bread-Making Quality. Annual Review of Plant Physiology,1987,38(1):141-153.
    [8]Lemelin E, Branlard G, Salvo L, Lein V, Aussenac T, Dayde J. Breadmaking stability of wheat flours: relation between mixing properties and molecular weight distribution of polymeric glutenins. Journal of Cereal Science,2005,42:317-326.
    [9]Vawser M, Cornish G B. Over-expression of HMW glutenin subunit Glu-B1 7x in hexaploid wheat varieties (Triticum aestivum). Australian Journal of Agricultural Research,2004,55 (5):577-588.
    [10]Zhu J B, Liu G T, Zhang S Z, Sun H. High and low molecular subunits of glutenin and their relationships with wheat quality. Scientia Agrcultural Sinica in Chinese 1996,29:34-39.
    [11]Leon E, Marin S, Gimenez M J, Piston F, Rodriguez-Quijano M, Shewry P R, Barro F. Mixing properties and dough functionality of transgenic lines of a commercial wheat cultivar expressing the 1Ax1,1Dx5 and 1Dy10 HMW glutenin subunit genes. Journal of Cereal Science,2009,49 (1):148-156.
    [12]Darlington H, Fido R, Tatham A S, Jones H, Salmon S E, Shewry P R. Milling and baking properties of field grown wheat expressing HMW subunit transgenes. Journal of Cereal Science,2003, 38 (3):301-306.
    [13]Popineau Y, Deshayes G, Lefebvre J, Fido R, Tatham A S, Shewry P R. Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. Journal of Agricultural and Food Chemistry,2001,49 (1): 395-401.
    [14]Yue H, Jiang D, Dai T, Qin X, Jing Q, Cao W. Effect of nitrogen application rate on content of glutenin macropolymer and high molecular weight glutenin subunits in grains of two winter wheat cultivars. Journal of Cereal Science,2007,45 (3):248-256.
    [15]Z. Deng J T, L. Zhao, Y. Zhang, C. Sun,. High temperature-induced changes in high molecular weight glutenin subunits of Chinese winter wheat and its influences on the texture of Chinese noodles. Journal of Agronomy and Crop Science,2008,194 (4):262-269.
    [16]Altenbach S B, DuPont F M, Kothari K M, Chan R, Johnson E L, Lieu D. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science,2003,37 (1):9-20.
    [17]A. Ozturk F A. Effect of water stress at various growth stages on some quality characteristics of winter wheat. Journal of Agronomy and Crop Science,2004,190 (2):93-99.
    [18]孙辉,姚大年,李宝云,刘广田,张树榛.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系.中国粮油学报,1998 13(6):13-16.
    [19]李硕碧,高翔,单明珠,李必运.小麦高分子量谷蛋白亚基与加工品质.北京:中国农业出版社,2001.
    [20]D. Jiang H Y, B. Wollenweber, W. Tan, H. Mu, Y. Bo, T. Dai, Q. Jing, W. Cao,. Effects of post-anthesis drought and waterlogging on accumulation of high-molecular-weight glutenin subunits and glutenin macropolymers content in eheat grain. Journal of Agronomy and Crop Science,2009,195 (2): 89-97.
    [21]Altenbach S B, Kothari K M, Lieu D. Environmental conditions during wheat grain development alter temporal regulation of major gluten protein genes. Cereal Chemistry,2002,79 (2):279-285.
    [22]Dupont F M, Hurkman W J, Vensel W H, Tanaka C, Kothari K M, Chung O K, Altenbach S B. Protein accumulation and composition in wheat grains:Effects of mineral nutrients and high temperature. European Journal of Agronomy,2006,25 (2):96-107.
    [23]B. Wollenweber J R P, J. Schellberg,. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science,2003, 189 (3):142-150.
    [24]Yang J, Zhang J, Huang Z, Zhu Q, Wang L. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wWheat. Crop Science,2000,40 (6):1645-1655.
    [25]Carceller J-L, Aussenac T. SDS-insoluble glutenin polymer formation in developing grains of hexaploid wheat:the role of the ratio of high to low molecular weight glutenin subunits and drying rate during ripening. Functional Plant Biology,2001,28 (3):193-201.
    [26]Wieser H, Zimmermann G. Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. European Food Research and Technology,2000,210 (5): 324-330.
    [27]Wang J-s, Zhao M-m, Zhao Q-z. Correlation of glutenin macropolymer with viscoelastic properties during dough mixing. Journal of Cereal Science,2007,45 (2):128-133.
    [28]Don C, Mann G, Bekes F, Hamer R J. HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. Journal of Cereal Science,2006,44 (2):127-136.
    [1]陈佩度,周波,齐莉莉,刘大钧.用分子原位杂交(GISH)鉴定小麦-簇毛麦双倍体、附加系和易位系.遗传学报,1995,22(5):380-386
    [2]Li, G.P, Chen, P.D, Zhang, S.Z, Wang, X.E, He, Z.H, Zhang, Y, Zhao, H, Huang, H.Y, Zhou, X.C. Effects of the 6VS.6AL translocation on agronomic traits and dough properties of wheat. Euphytica, 2007,155:305-313
    [3]Payne, P.I, Jackson, E.A, Holt, L.M, Law, C.N. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosome 1A and 1B in wheat. Theor Appl Genet, 1984,67(2-3):235-243
    [4]Shewry, P.R., Parmar D.J.C. Pappin. Characterization and genetic control of the prolamins of Haynaldia-villosa relationship to cultivated species of the Triticeae (rye, wheat, and barley). Biochemical Genetics,1986,25(34):309-325
    [5]Payne P I, M A Nightingale, A F Krattiger, et al. The relationship between HMW gluten in subunit composit ion and the b read-making quality o f British-grown wheat varieties. Journal of the Science of Food and Agriculture,1987,40:51-65.
    [6]高翔,李硕碧.小麦高分子量谷蛋白亚基对加工品质影响的效应分析.西北植物学报.2002,22(4):771-779
    [7]Yue H W, Jiang D, Dai T B, Qin X D, Jing Q, Cao W X. Effect of nitrogen application rate on content of glutenin macropolymer and high molecular weight glutenin subunits in grains of two winter wheat cultivars. Journal of Cereal Science,2007,45(3):248-256.
    [8]Zhu J B, Khan K. Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments. Cereal Chemistry,2002,79:783-786.
    [9]邓志英,田纪春,张永祥,王延训.冬小麦高、低分子量麦谷蛋白亚基形成时间和积累强度及其与沉降值的关系.作物学报,2005,31(3):308-315
    [10]Cressey P J, Campbell W P, Wrigley C W. Statistical correlation between quality attributes and grain-protein composition for advanced lines of crossbred wheat. Cereal Chemistry,1987,64 (4): 299-301
    [11]赵和,李宗智,卢少源.小麦籽粒高分子量谷蛋白亚基研究进展.国外农学:麦类作物,1993,4:43-45
    [12]杜金哲,胡尚连,李文雄,刘锦红.不同品质类型春小麦HMW-GS形成时间和积累强度及与品质的关系.作物学报,2003,29(1):111-118
    [13]裴雪霞,王姣爱,党建友,王秀斌,张定一.小麦结实粒数、粒重和品质的小穗位和粒位效应.中国农业科学,2008,41(2):381-390.
    [14]潘洁,姜东,曹卫星,孙传范.小麦穗籽粒数、单粒重及单粒蛋白质含量的小穗位和粒位效应,2005,31(4):431-437.
    [15]武翠,邵国军,吕文彦,马莲菊,崔鑫福,曹萍,侯秀英.不同发育时期水稻强、弱势粒灌浆速率的遗传分析.中国农业科学,2007,40(6):1135-1141
    [16]Xu G-W, Zhang J-H, Lam H-M, Wang Z-Q, Yang J-C. Hormonal changes are related to the poor grain filling in the inferior spikelets of rice cultivated undernon-flooded and mulched condition. Field Crops Research,2007,101:53-61.
    [17]赵俊晔,于振文.施氮量对小麦强势和弱势籽粒氮素代谢及蛋白质合成的影响.中国农业科学,2005,38(8):1547-1554
    [18]梁太波,尹燕枰,蔡瑞国,闫素辉,李文阳,耿庆辉,王平,王振林.大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较.作物学报,2008,34(1):150-156
    [19]董明辉,桑大志,王朋,王学明,杨建昌.不同施氮水平下水稻穗上不同部位籽粒的蒸煮与营养品质变化.中国水稻科学,2006,20(4):389~395
    [20]DuPont F M, Chan R, Lopez R. Molar fractions of high-molecular-weight glutenin subunits are stable when wheat is grown under various mineral nutrition and temperature regimens. Journal of Cereal Science,2007,45(2):134-139
    [21]王东,于振文.不同施氮量下子粒灌浆不同阶段遮光对小麦氮素积累和转移的影响.植物营养与肥料学报,2008,14(4):615-622
    [22]Caroline V M, Roger C, Anderson, Diane L B. Influence of shading on the growth and leaf photosynthesis of the invasive non-indigenous plant garlic mustard [Alliaria petiolata (M. Bieb) Cavara and Grande] grown under simulated late-winter to mid-spring conditions. Journal of the Torrey Botanical Society,2005,132(1):1-10
    [23]B. Wollenweber J R P, J. Schellberg,. Lack of Interaction between Extreme High-Temperature Events at Vegetative and Reproductive Growth Stages in Wheat. Journal of Agronomy and Crop Science,2003,189 (3):142-150
    [24]Z. Deng J T, L. Zhao, Y. Zhang, C. Sun,. High Temperature-induced Changes in High Molecular Weight Glutenin Subunits of Chinese Winter Wheat and its Influences on the Texture of Chinese Noodles. Journal of Agronomy and Crop Science,2008,194 (4):262-269
    [25]Dupont F M, Hurkman W J, Vensel W H, Tanaka C, Kothari K M, Chung O K, Altenbach S B. Protein accumulation and composition in wheat grains:Effects of mineral nutrients and high temperature. European Journal of Agronomy,2006,25 (2):96-107
    [26]Yang J, Zhang J, Huang Z, Zhu Q, Wang L. Remobilization of Carbon Reserves Is Improved by Controlled Soil-Drying during Grain Filling of Wheat. Crop Sci,2000,40 (6):1645-1655
    [27]Weegels P L, van de Pijpekamp A M, Graveland A, Hamer R J, Schofield J D. Depolymerisation and Re-polymerisation of Wheat Glutenin During Dough Processing. I. Relationships between Glutenin Macropolymer Content and Quality Parameters. Journal of Cereal Science,1996,23 (2): 103-111
    [28]Don C, Mann G, Bekes F, Hamer R J. HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. Journal of Cereal Science,2006,44 (2):127-136
    [29]Sliwinski, E.L., Kolster, P., Prins, A., van Vliet, T.. On the relationship between gluten protein composition of wheat flours and large-deformation properties of their doughs. Journal of Cereal Science,2004,39,247-264.
    [30]Dupont, F.M., Altenbach S.B.,. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science,2003,38,133-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700