施肥对小麦根际微生物的效应及其对小麦纹枯病的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纹枯病是江苏省小麦上的重要病害。为了明确稻秸杆、草木灰和钾肥等处理对小麦纹枯病发生的影响,本研究调查了不同施肥处理后小麦纹枯病的发生情况,并通过稀释培养方法比较了不同处理区小麦根际总细菌、荧光假单胞菌、真菌数量以及拮抗菌群体活性,以探讨根际微生物与小麦纹枯病发生的关系。试验结果表明,稻秸杆、草木灰和钾肥处理都可以减轻小麦纹枯病的发生,以秸秆还田处理的效果最好。稻秸杆还田、草木灰和钾肥处理都可以提高小麦根际荧光假单胞菌种群量,钾肥主要在苗期发挥作用,而秸秆的作用可延续至小麦孕穗期。钾肥还可以显著增加小麦根际纹枯菌拮抗细菌指数。分析显示,稻秸杆还田的抑病作用与增加土壤中的有效钾有关,但两者的控病机理又有所不同。施用酸性肥料可使小麦纹枯病的发生显著加重。
     根际细菌在土壤营养元素循环、有机物质的形成和分解、土壤肥力的保持和提高、植物的生长发育和作物病虫害防治等方面均起着重要的作用。为了进一步明确小麦根际细菌群落多样性与施肥措施的关系,应用变性梯度凝胶电泳(PCR-DGGE)的方法,检测不同施肥措施下,苗期、拔节期和孕穗期小麦根际土壤细菌群落结构变化,分析拔节期小麦根际假单胞菌群落结构。结果表明,各处理泳道优势条带数量在10到20条不等,各施肥处理有一定差异,差异主要表现在一些弱带的有无及强弱的变化上。其中尿素处理的根际土壤细菌多样性相对简单,且苗期到拔节期的多样性变化较大,相似性只有48%。钾肥、草木灰和秸秆处理根际细菌多样性相似性较高,高达87%。苗期和孕穗期钾肥处理的小麦根际细菌相似性达85%,以拔节期和孕穗期的秸秆处理的根际细菌相似性为最高,相似性高达98%左右,说明在小麦生长后期秸秆处理根际细菌种群相对稳定。在拔节期钾肥处理的根际假单胞菌群落多样性最高,物种最多,且其与草木灰处理相似性高达93%。结果表明,施用秸秆及钾肥处理可以提高小麦根际细菌的种类多样性和稳定性。草木灰和钾肥处理对小麦根际细菌种群的作用基本一致,而秸秆处理对小麦根际细菌种群的作用与钾肥处理有较高的相似性。
     同时,土壤真菌不仅在土壤肥力有着举足轻重的作用,而且众多研究表明其中的真菌在控制作物病害中发挥着关键作用。为了了解在小麦生长过程中,小麦根际真菌多样性与施肥措施的关系,分别在小麦苗期、拔节期和孕穗期对不同施肥处理的小麦根际土壤进行采样,提取土壤微生物总DNA,进行18SrDNA扩增,应用PCR-DGGE监测小麦根际土壤真菌的动态变化。结果表明,各施肥处理小麦根际土壤真菌优势条带平均在10条左右,根际真菌优势种群数量时间分布差异不大。聚类分析显示,酸性肥料与尿素处理三个时期根际真菌种群相似性较低(40%以下),说明在小麦生长过程中,酸性肥料与尿素处理根际真菌种群变化较大。秸秆、草木灰及钾肥各时期根际真菌种群相似性较高(78%左右),说明秸秆、草木灰和钾肥处理小麦根际真菌种群变化相对较小,保持稳定状态。秸秆与钾肥处理的小麦根际真菌种群相似性低于草木灰与钾肥处理。拔节、孕穗期秸秆与钾肥处理小麦根际真菌的相似性高于苗期。
Wheat sharp eyespot is one of important wheat diseases in Jiangsu province.To confirm the effect of rice straw,rice ash and potassium fertilizer on the wheat sharp eyespot,we investigated the incidence of wheat sharp eyespot after rice straw,rice ash and potassium treatments.The numbers of wheat rhizosphere bacterial,fluorescent Pseudomonas spp.,fungi and the activity of antagonistic bacterial were also examined.Results showed that rice straw,rich ash and potassium reduced the incidence of the disease.The rice straw preformed the best.Rice straw,rice ash and potassium increased the number of wheat rhizosphere fluorescent Pseudomonas spp..The potassium treatment acted mainly in wheat seedling stage.The effect of rice straw treatment could continued to the wheat booting stage.Potassium treatment also heightened the index of antagonistic bacterial.Analytical results showed that,the reducing disease index of rice straw treatment is related to active potassium in soils,but there is other mechanisms in controlling wheat sharp eyespot by rice straw returning.
     Rhizosphere bacterial are playing important roles in the cycle of soil nutrition,the formation and decomposition of organic matter,maintenance and enhancing the soil fertility, growth of plant and controlling the plant diseases and insect pests.To further confrm the relationship between wheat rhizosphere bacterial community and fertilizer inputs,the PCR-DGGE was employed to detect the wheat rhizosphere bacterial communities at wheat seedling,jointing,booting stage.Results showed that the number of dominant bands was ranged from 10 to 20,and the difference of dominant bands performed at existing or not and changing in strength.The communities of Urea treatment were simple,and changed significantly from seedling to jointing stage.The similarity percent of communities between two stages was 48%. The similarity percents of community were higher between potassium,rice ash and rice straw treatments,and they all were up to more than 87%.The highest similarity percent of community was rice straw treatment in jointing and booting stage,the number reached 98%.The results showed that the rhizosphere bacterial communities stabilized at stages of wheat growth.The diversity of rhizosphere Pseudomonas spp.of potassium treatment was the highest at wheat jointing stage.The similarity percent of rhizosphere Pseudomonas spp.between potassium and rich ash was up to 93%.The effect of rice ash and potassium to the wheat rhizosphere bacterial communities are almost same,and the effect of rice straw is similar to potassium treatment on the wheat rhizosphere bactrial communites.
     Soil fungi play important roles not only in soil fertility but also in controlling the crop disease.To understand the relationship between rhizosphere fungi community and fertilization treatment,rhizosphere soil was sampled at wheat seedling,jointing and booting stage,and the soil DNA was extracted and 18S rDNA fragments were amplified.DGGE was employed to inspect the change in wheat rhizosphere fungi community.Results showed that dominant bands were around 10.The similarity percents of rhizosphere fungi community among 3 growth stages were below 40%after treated with Urea.The similarity percents of rhizosphere fungi community among rice straw,rice ash and potassium treatments were around 78%.The results also showed that the wheat rhizosphere fungal communities of them were stable.
引文
1.Bolien G J,Lethal temperatures of soil fungi[C]// Parker C A.Ecology and management of soil-borne plant pathogens.USA:APS St Paul,1985:191-193.
    2.Bossio DA,Scow KM.Impact of carbon and flooding on the metabolic diversity of microbial communities in soils[J].Appl.Environ.Microbiol.1995,61(11):4043-4050.
    3.Bruehl G W.Soil-borne plant pathogens[M].New York:Macmillan Publishing Company,1979.
    4.Cederlund H,Thierfelder T,Stenstr(o|¨)m J.Functional microbial diversity of the railway track bed[J].Science of The Total Environment,2008,397(3):205-214.
    5.Clarkson,J.D.S.and Cook,R.J.Effect of sharp eyespot(Rhizoctonia cerealis) on yield loss in winter wheat [J]. Plant Pathol. 1983, 32: 421-428.
    6. Clulow M, Wale SJ. Resistance of cultivars of wheat, barley and oats to sharp eyespot [J]. Annals of Applied Biology, 1984, 5 (Supplement): 104-105.
    7. Colbach N. Influence of cropping system on wheat sharp eyespot [J]. Crop Protection, 1997,16(5): 415-422.
    8. Cook, R. J, 1993. Making greater use of introduced microorganisms for biological control of plant pathogens [J]. Ann. Rev. Phytopathol., 31: 53-80.
    9. Demba Diallo M, Willems A, Vloemans N, et al. Polymerase chain reaction denaturing gradient gel electrophoresis analysis of the N_2-fixing bacterial diversity in soil under Acaciatortilis raddiana and Balanites aegyptiaca in the dryland part of Senegal [J]. Environ. Microbiol, 2004, 6(4): 400-415.
    10. Diaz, Alfons J. M., Ricardo Amils, and Jose L. Phenotypic properties and microbial diversity of Methanogenicg ranules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater [J]. Appl. Envir. Microbiol., 2006, 72(7): 4942-4949.
    11. Duineveld B M, Kowalchuk G A, Keijzer A, et al. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA [J]. Appl. Environ. Microbiol, 2001, 67(1): 172-178.
    12. Duineveld BM, Rosado A, Elsas J D, et al. Analysis of the dynamics of bacterial communities in the rhizophere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns [J]. Appl. Environ. Microbiol, 1998, 64(12): 4950-4957.
    13. Ferris M J, Muyzer G, and Ward D M. Denaturing gradient gel electrophoresis is profiles is 16S rRNA-defined population inhabiting a hot spring microbial mat community [J]. Appl. Environ. Microbiol, 1996, 62(2): 340-346.
    14. Galand PE, Fritze H, Yrjala K. Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen [J]. Environ. Microbiol, 2003, 5(11): 1133-1143.
    15. Garland J.L., A.L. Mills, Classification and characterization of heterotrophic microbial communities on the basis of community-level sole-carbon-source utilization [J]. Appl. Environ. Microbiol. 1991, 57: 2351-2359.
    16. Garland J.L., Analysis and interpretation of community -level physiological profiles in microbial ecology [J]. FEMS Microbiol. Ecol. 1997,24: 289-300.
    17. Garrenn K H. Control of Sclerutium rofsii through cultural practices [J]. Phytopathology, 1961,51: 120-124.
    18. Gerard C A, Adams J R, and Edward E B. Enviromental on the formation of basidia and basidiospores in Thanatephorus cucumeris [J]. The American Phytopathologycal Society, 1983, 73(2): 152-155.
    19. Glynne M D, Ritchie W M. Sharp eyespot of wheat caused by Rhizoctonia solani [J]. Nature, 1943,152: 161.
    20. Goyal K S, Chander K, Mundra M C, et al. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions [J]. Biol. Fertil. Soils, 1999, 29: 196-200.
    21. Haack S K, et al. Analysis of factors affection the accuracy, reproducibility and interpretation of microbial community carbon source utilization pattern [J]. Apppl. Environ. Microbiol. 1995, 61(4): 1458-1468.
    22. Hollins T W, Scott P R. Sharp eyspot. In: Brown S J, Dyer T A, Green J L, et al. Annual Report of the plant breeding Insitute(1984) [J]. Cambridge: Plant Breeding Institute, 1985: 102.
    23. Ibekwe A M, Kennedy A C, Frohne P S, et al. Microbial diversity along a transsect of agronimic zones [J]. FEMS. Microbiol. Eco., 2002, 39(3): 183-191.
    24. Ishii K, Nakagawa T and Fukui M. Application of denaturing gradient gel electrophoresis to microbial ecology [J]. Micro. Environ. 2000, 15: 59-73.
    25. Janvier C, Villeneuve F, Alabouvette C et al. Soil health through soil disease suppression: which strategy from descriptors to indicators [J]. Soil Biology & Biochemisry, 2007, 39(6): 1-23.
    26. Katan J. Solar heating (solarization) of soil for control of soilborne pests [J]. Annual Reviews, 1981,19:211-236.
    27. Kelly J J, Tate R L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter [J]. J. Environ. Qual., 1998, 27: 609-617.
    28. Kelly J J, Tate R L. Use of Biolog for the analysis of microbial communities from zinc-contaminated soils [J]. J. Envron Qual.,1998, 27: 600-608.
    29. Knight B P, McGraph S P, Chaudri A M. Biomass carbon measurements and substate utilization pattern of microbial populations from soils amended with cadmium, copper, or zinc [J]. Appl. Environ. Microbial, 1997,63(1): 39-43.
    30. Konopka A, Oliver L, Turco Jr. The use of carbon substrate utilization patterns in environmental and ecological microbiology [J]. Microb. Ecol., 1998, 35: 103-115.
    31. Konxo G G, Killham K, Leifert C. Effect of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis [J]. Applied Soil Ecology, 2000,15(2): 227-231.
    32. Kortemaa H, Pennanen T, Smolander A, et al. Distribution of Antagonistic Streptomyces griseoviridis in Rhizosphere and Non-rhizosphere [J]. Sand J. Phytopathology, 1997,145: 137-143.
    33. Martinez-Murcia A J, Acinas S G, Rodriguez-Valera F. Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments [J]. FEMS Microbiol Ecol., 1995,17.
    34. Mazzola M. Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots [J]. Phytopathol. 1999, 89: 920-927.
    35. Mouser P J, Rizzo D M, Roling W F, et al. A multivariate statistical approach to spatial representation of groundwater contamination using hydrochemistry and microbial community profiles [J]. Environ. Sci. Technol, 2005, 39(19): 7551-7559.
    36. Mozzola M, Jigbsib T E, Cook R J. Influence of field burning and soil treatments on the growth of wheat after Kentucky bluegrass, and effect of Rhizoctonia cerealis on bluegrass emergence and growth [J]. Plant Pathology, 1997,46: 708-715.
    37. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology [J]. Antno. Van. Leeuwenhoek., 1998, 73: 127-141.
    38. Muyzer G, Wall E C, Uitterlinden A G. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA [J]. APPl. Environ. Microbial. 1993, 59: 695-700.
    39. Myer R M, Fischer S G, Lerman L S, et al. Nearly all single base substitutions in DNA fragments joined to a GC-clamp call be detected by denaturing gradient gel electrophoresis [J].Nuzleic. Acids. Res., 1985,13: 3131-3145.
    40. Newhall A G. Disinfestation of soil by heat, flooding and fumigation [J]. Bot Rev, 1955,21:189-250.
    41. Osborn A M, Moore E R B, Timmis K N. An evaluation of terminal-restriction fragment length polymorphisms (T-RFLP) analysis for the study of microbial community structure and dynamics [J]. Environ. Microbiol., 2000, 2: 39-50.
    42. Pace, N R. A molecular view of microbial diversity and the biosphere [J]. Science. 1997,276: 734-740.
    43. Pullman G S, Devay J E. Effect of soil flooding and pady rice cuture, on the survival of Verticillium dahide and incidence of Verticillium wilt in cotton [J]. Phytopathology, 1981,71:1285-1289.
    44. Raaijmakers J M, Weller D, Thomashow L S. Frequency of antibiotic-producing Pseudomonas spp. in natural environments [J]. Appl. Eniron. Microbiol., 1997, 63(3): 881-887.
    45. Sabine P, Stefanie K, Frank S, et al. Succession of microbial communities during hot composting as detected by PCR Single Strand Conformation Polymorphism Based genetic profiles of small-subunit rRNA genes [J]. Appl. Environ. Microbiol. 2000, 66(3):930-936.
    46. Salles J F, Souza F A, Elsas J D. Molecular method to assess the diversity of Burholderia species in environmental samples [J]. Appl. Environ. Microbio., 2002, 68(4): 1595-1603.
    47. Sekiguchi H, Watanabe M, Nakahara T, et al. Succession of bacterial community structure along the Changjiang river determined by Denaturing Gradient Gel Electrophoresis and clone library analysis [J]. Appl. Envrion. Microbiol., 2002, 68(10): 5142-5150.
    48. Simek M, Hopkins D W, Kalcik J et al. Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer application [J]. Biol. Fertil. Soils. 1999,29:300-308.
    49. Sugano A, Tsuchimoto H, Cho T C. Succession of Methanogenic archaea in rice straw incorporated into a Japanese rice field: estimation by PCR-DGGE and sequence analyses [J]. Archaea, 2005, 1(6): 391-397.
    50. Thmashow L, Weller D et al. Production of the antibiotic Phenazine-1-Carbosylic acid by fluorescent Pseddomonas Species in the Rhizosphere of Wheat [J]. Appl. Eniron. Microbiol., 1990, 56(4): 908-912.
    51. Vidaver A K. Prospects for control of phytopathogenic bacteria by bacteriophage and bacteriocins [J].Ann. Rev. Phytopahtol, 1976,24: 451-465.
    
    52. Wang M C, Yang C H. Type of fertilizer applied to a paddy-upland rotation affects selected soil quality attributes[J].Geoderma,2003,114:93-108.
    53.Zak C J.et al.Functional diversity of microbial communities:a quantitative approach [J].Soil Biol.Biochem.,1994,26:1101-1108.
    54.蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):100-106.
    55.车玉伶,王慧,胡洪营等.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005,14(1):127-133.
    56.陈荣振,井长勤,冯国华,等.不同施肥方式对小麦纹枯病发生规律的影响[J].安徽农业科学,2003,31(3):275-276.
    57.方正,陈怀谷,陈厚德,王裕中.江苏省小麦纹枯病病原组成及其致病力研究[J].麦类作物学报,2006,26(1):117-120.
    58.胡元森,吴坤,刘娜等.黄瓜不同生育期根际微生物区系变化研究[J].中国农业科学,2004,37(10):1521-1526.
    59.金发会,李世清,卢红玲,李生秀.Biolog和PCR-DGGE技术解析施肥对德惠黑土细菌群落结构和功能的影响[J].生态学报,2008,28(1):220-226.
    60.井长勤,陈荣振,冯国华,等.不同施肥方式对小麦纹枯病发生的影响[J].土壤肥料,2004(4):49-50.
    61.鞠国钢,胡荣利.小麦纹枯病田间消长及综合防治技术[J].植保技术与推广,1998,18(1):13-14.
    62.李洪连,袁红霞,刁晓葛,等.河南小麦主要品种纹枯病抗性评价[J].河南农业大学学报,1998,32(2):107-111.
    63.李敏莲,程建国.关于我国发展生物农药问题的思考[J].陕西农业科学,2003,6:26-28.
    64.李明社,李世东,缪作清,等.生物熏蒸用于植物土传病害治理的研究[J].中国生物防治,2006,22(4):296-302.
    65.李清歌.小麦纹枯病发生与栽培因素关系调查[J].河南农业科学,1993,(10):24-37.
    66.李清铣,夏正俊.江苏几种作物病原丝核菌生物学特性的研究[J].江苏农学院学报,1988,9(3):23-26.
    67.刘爱新,郑是琳,吴询耻等.山东植物病理研究[M].北京:中国农业科技出版社,1995:157-160.
    68.刘红梅,李海燕,苏云.药剂拌种对小麦纹枯病大田防治效果[J].河南农业,2007,(01).
    69.刘述英,杨幼平,张晓平.小麦纹枯病发生规律及综合防治[J].四川农业科技,1997.3:18-19.
    70.吕国忠,陈捷,白金铠等.1997.我国玉米病害发生状况及防治措施[J].植物保护,4:20-21.
    71.倪进治,徐建民,谢正苗.有机肥料施用后潮土中活性有机质组分的动态变化[J].农业环境科学学报,2003,22(4):416-419.
    72.牛本永,周玉琴,朱衣成.小麦纹枯病发病规律及防治技术[J].河南农业科学,2006.4:73-75.
    73.乔宏萍.重寄生放线菌F46和PR的生物学习性及对果、蔬采后病害的控制作用[D].杨凌:西北农林科技大学,2003.
    74.沈菊培,陈振华,陈利军.草甸棕壤水稻土磷酸酶活性及对施肥的响应[J].应用生态学报,2005,16(3):583-585.
    75.沈萍.微生物学[M],高等教育出版社,2000,22.
    76.石明旺,茹振钢,牛立元.不同小麦品种对小麦品种对小麦纹枯病抗性及产量损失测定的研究[J].河南职技师院学报,2000,28(1):15-18.
    77.石明旺,徐明富,茹正刚,等.小麦纹枯病的田间流行动态模糊聚类分析[J].植物病理学报,1997,27(1):23-27.
    78.史吉平,张夫道,林葆.长期定位二施肥对土壤腐殖质理化性质的影响[J].中国农业科学,2002,35(2):174-180.
    79.史建荣,王裕中,杨建宁.小麦纹枯病产量损失研究[J].江苏农业学报,1989,5(3):44-45.
    80.孙爱根.氮肥运筹对小麦纹枯病发生程度的影响[J].耕作与栽培,2001(2):53-54.
    81.檀尊社,游福欣,陈润玲,等.我国小麦纹枯病的研究进展[J].河南科技大学学报,2003,23(1):46-50.
    82.王怀训,王开运,姜兴印,仪美芹.小麦纹枯病的研究进展[J].山东农业大学学报,2001,32(2):267-270.
    83.王建敏,柴春莉.药剂拌种控制小麦种传和土传病害防治效果对比试验[J].河南农业,2007,(03)
    84.王琦,王慧敏,于嘉林,等.甜菜多粘菌拮抗放线菌的筛选及其防治丛根病效果的检测[J].中国农业大学学报,2003,8(3):56-60.
    85.王芊.木霉菌在生物防治上的应用及拮抗机制[J].黑龙江农业科学,2001(1):41-43.
    86.王裕中,吴志凤,史建荣,等.江苏省小麦纹枯病发生规律与病害消长因素分析 [J].植物保护学报,1994,21(2):109-114.
    87.徐成勇,高智谋,陈方新,等.主要栽培因子对小麦纹枯病的定量效应[J].植物保护学报,2001,28(3):229-234.
    88.杨新美.植物生态病理学[M].中国农业科技出版社.2000.北京.238-263.
    89.杨依军,王勇,杨秀荣,等.拮抗木霉菌在生物防治中的作用[J].天津农业科学,2002,6(3):29-33.
    90.姚槐应,黄昌勇.土壤生态学及其实验技术[M].科学出版社,2006.
    91.游春平,肖爱萍,李湘民.稻瘟病菌拮抗微生物的筛选及鉴定[J].江西农业大学学报,2001,23(4):519-521.
    92.于汉寿,吴汉章,张益明,等.壳聚糖拌种对小麦生长及纹枯病发生的影响[J].江苏农业科学,1997,6(3):9-11.
    93.张汉波,段昌群,等.非培养方法在土壤微生物生态学研究中的应用[J].生态学杂志,2003,22(5):131-136.
    1.Bhatti A U,Khan Q,Gurmani A H,Khan M J.Effect of organic manure and chemical amendments on soil properties and crop yield on a salt affected entisol[J].Pedosphere.2005,15(1):46-51
    2.Dutta B K,Isaac I.Effects of inorganic amendents(N,P and K) to soil on the rhizosphere microflora of antirrhinum plant infected with Verticillum dahliaekleb[J].Plant soil,1979,52(4):561-569.
    3.Shanmugam V,Sharma V,Ananthapadmanaban.Genetic relatedness of Trichoderma isolated antagonistic against Fusarium oxysporum f.sp.dianthi inflicting carnation wilt[J].Folia Microbiol.2008,53(2):130-138.
    4.Elad Y,Chet I,Katan J.Trichoderma harzianum:A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani[J].Phytopathology,1980,70:119-121.
    5.Gould W D.New selective media for enumeration and recovery of fluorescent Pseudornonas from various habitats[J].Applied and Environmental Microbiology,1985,49(1):28-32.
    6.Hoper H,Alabovette C.Importance of physical and chemical soil properties in the suppressiveness of soils to plant disease[J].Eur.J.Soil Biol.,1996,32(1):41-58.
    7.Kamilova F,Lamers G,Lugtenberg B.Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores[J].Environ.Microbiol.2008,22(4):146-152.
    8.Insam H,Mitchell C,Dormaar J F,Relationship of soil microbial biomass and activity with fertilization pratice and crop yield of three Ultisols[J].Soil Biol.Biochem,1991,23:459-464.
    9.Felici C,Vettori L,Toffanin A,Nuti M.Development of a strain-specific genomic for monitoring a Bacillus subtilis biocontrol strin in the rhizophere of tomato[J].FEMS Microbiol.Ecol.2008,6(5):245-253.
    10.Smit E,Leeflang P,Gommans S,Van Dan Broek J,Van Mil S,Wernars K.Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods[J].Applied and environmental Microbiology,2001,67(5):2284-2291.
    11.Zhang W,Han D Y,Dick W A,et al.Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis.Phytopathology,1998,88,450-455.
    12.曹启光,陈怀谷,于汉寿,等.稻秸秆覆盖对麦田细菌种群数量及小麦纹枯病发生的影响[J].土壤,2006,38(4):459-464.
    13.刁春友,缪荣蓉,陆云梅.江苏省小麦纹枯病发生区域分布原因探析[J].江苏农业科学,1998(2):38-40.
    14.郭永霞,李彩华,勒学慧.农业措施对大豆根际土壤微生物区系的影响[J].中国农学通报,2006,22(10):234-237.
    15.贾志红,孙敏,杨珍平,等.施肥对作物根际微生物的影响[J].作物学报,2004,30(5):491-495.
    16.劳秀荣,孙伟红,王真,等.秸秆还田与化肥配合施用对土壤肥力的影响[J].土壤学报,2003,40(4):618-623.
    17.林玲,陈怀谷,刘磊,张爱香,王裕中,史建荣.小麦纹枯病拮抗细菌的筛选及生物活性测定[J].江苏农业学报,2003,19(3):187-188.
    18.沙涛,程立忠,王国华,赵之伟.秸秆还田对植烟土壤中微生物结构和数量的影响[J].中国烟草科学,2000,(3):40-42.
    19.孙爱根.氮肥运筹对小麦纹枯病发生程度的影响[J].耕作与栽培,2001(2):53-54.
    20.王裕中.纹枯病及其抗性研究//庄巧生,杜振华主编.中国小麦育种研究进展[C].北京:中国农业出版社,1996,266-274.
    21.张穗,刘卫群,陈汝梅,田志玲,许文霞.不同小麦品种对纹枯病的抗性机理的初步研究[J].中国农学通报,1994,10(6):9-14.
    22.赵勇,李武,周志华,张晓君,潘迎捷,赵立平.秸秆还田后土壤微生物群落结构变化的初步研究[J].农业环境科学学报,2005,24(6):1114-1118.
    23.中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.43-250.
    1.Collins H P,Rasmusen P E,Douglas C L.Crop rotation and residue management effects on soil carbon and microbial dynamics[J].Soil Science Society of America Journal,1992,56:783-788.
    2.Cook R J.Making greater use of introduced microorganisms for biological control of plant pathogens[J].Annu Rev Phytopathol.1993,31:53-80.
    3.Garbeva Paolina,Johannes Antonie,Elsas J D.Assessment of the diversity,and antagonism towards Rhizoctonia soIani AG3,of Pseudomonas species in soil from different agricultural regimes[J].FEMS Microbio.Ecolo.2004,47:51-64.
    4.Gill J S.Sivasithamparam.Smettem.Soil moisture affects disease severity and colonization of wheat roots by Rhizoctonia solani AG-8[J].Soil Biology &Biochemistry.2001,33,1363-1370.
    5.Hu S,van Bruggen A H C.Microbial dynamics associates with multiphasic decomposition of 14C-labled in soil[J].Microbial Ecology,1997,33:134-143.
    6.James R,Smart,et al.Conservartion tillage corn production for a semiarid,subtropicial environment[J].Agronomy Journal.1999,91(1):116-121.
    7.Kennedy A C.Bacterial diversity in agroecosystems.Agriculture[J].Ecosystems and Environment,1999,74:65-76.
    8.Maarit R,Heiskanen I,Wallenius K,Lindstrom K.Extration and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia[J].Journal of Microbiological Methods,2001,45:155-165.
    9.O'Sullivan D J,Gara O F.Traits of fluorcescent Pseudomonas spp.Involved in suppression of plant root pathogen[J].Microbiological Review,1992,56(4):662-676.
    10.Petra Marschnera,Ellen Kandeler,Bemd Marschner.Structure and function of the soil microbial community in a long-term fertilizer experiment[J].Soil Biology &Biochemistry,2003,35(3):453-461.
    11.Shaharoona B,Naveed M,Arshad M,Zahir ZA.Fertilizer-dependent efficiency of Pseudomonads for improving growth,yield,and nutrient use efficiency of wheat (Iriticum asetivum L.)[J].Appl Microbiol Biotechnol.2008,79(1):147-155.
    12.Smit E,Leeflang P,Gommans S,Van Dan Broek J,Van Mil S,Wernars K.Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods[J].Applied and Environmental Microbiology,2001,67(5):2284-2291.
    13.Smith K R Goodman R M.Host variation for interactions with beneficial plant-associated microbes[J].Annual Review of Phytopathology,1999,37:473-491.
    14.Zoetendal E G;Wright A,et al.Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces[J].Appl.Environ.Microbiol.2002,68:3401-3407.
    15.陈秀蓉,南志标.细菌多样性及其在农业生态系统中的作用[J].草业科学,2002,19(9):34-38.
    16.李阜棣.土壤微生物学[M].北京:中国农业出版社.1996:180-190.
    17.袁家富.麦田秸秆覆盖效应及增产作用[J].生态农业研究,1996,4(3):61-65.
    1.Casamayor E O,Schofer H,Baneras L,et al.Identification of spat in temporal difference between microbial assemblages from two neighboring sulfurous lake:Comparison by microscopy and denaturing gradient gel electrophoresis[J].Appl.Envrion.Microbiol.,2000,66(2):199-508.
    2. Gomes NCM, Fagbola O, Costa R, et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics [J]. Appl. Environ. Microbiol., 2003, 69: 3758-3766.
    3. Harry M, Jusseaume N, Gambier B, et al. Use of RAPD markers for the study of microbial community similarity from termite mounds and tropical soils [J]. Soil Biology & Biochemistry, 2001, 33(4): 417-427.
    4. Kierkegaard J A, Sarwar M, Wong P T W, et al. Field studies on the biofumigation of take-all by Brassica break crope [J]. Austrlian Journal of Agricultural Research, 2000, 51(4): 445-456.
    5. Maarit Niemi R, Heiskanen Use, Wallenius Kaisa, Kristina Lindsrom. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacteria consortia [J]. Journal of Microbiological Methods, 2001, 45:155-165.
    6. Miruna O S, Newton C M, et al. A new semi-nested PCR protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities [J]. Journal of Microbiological Methods, 2006, 65: 63-75.
    7. Ogram A. Soil molecular microbial ecology at age 20: methodological challenges for the future [J]. Soil Biology & Biochemistry, 2000,32(11-12): 1499-1504.
    8. Robe P, Nalin R, Capellano C, et al. Extraction of DNA from soil [J]. European Journal of Soil Biology, 2003, (39): 183-190.
    9. Sanguinetti C J, Neto D, Simson A. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels [J]. Bio. Technique, 1994, 17: 915-919.
    10. Smit E, Leeflang P, Gommans S, Van Dan Broek J, Van Mil S, Wernars K. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods [J]. Applied and environmental Microbiology, 2001, 67(5): 2284-2291.
    11. Stephane D, Alain H, Nisha R P, et al. Genetic diversity of carbon-furan-degrading soil bacterial [J]. FEMS Microbiology Ecology, 2000, 34(3): 173-180.
    12. Tebbe C C, Vahjen W. Influence of humic acids and DNA extracted directly from soil in detection and transformation of recombination DNA from bacteria and a yeast [J]. Appl. Environ. Microbiol., 1993, (59): 2657-2665.
    13. Thomas L, Peter F D, Werner L. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure with in an agricultural soil planted with transgenic and non-transgenic potato plants [J]. FEMS Microbiology Ecology,2000,32(3):241-247.
    14.Van Elsas JD,Garbeva P,Salles J.Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil of soil-borne plant pathogens[J].Biodegradation,2002,13:29-40.
    15.高唤文,李问盈,李洪文.中国特色保护性耕作技术[J].农业工程学报,2003,19(3):1-4.
    16.巩杰,黄高宝,陈利顶,等.旱作麦田秸秆覆盖的生态综合效应研究[J].干旱地区农业研究,2003,21(3):69-73.
    17.李洪连,袁红霞,王守正等.根际微生物多样性与棉花品种对黄萎病抗性的关系研究Ⅱ不同抗性品种根际真菌区系分析及其对棉花黄萎病菌的抑制作用[J].植物病理学报,1999,29(3):242-246.
    18.钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性影响研究进展[J].生物多样性,2004,12(4):456-465.
    19.朱海平,姚槐应,张勇勇,等.不同培肥措施对土壤微生态特征的影响[J].土壤通报,2003,34(2):140-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700