重金属镉、铅免疫学检测中样品处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:规范重金属镉、铅残留样品的处理流程,建立适应于重金属镉、铅免疫学快速检测的样品处理与富集方法,并研制成质量可靠稳定的免疫学检测试纸条。
     方法:首先对含有重金属Cd、Pb残留的样品进行采集,包括水样、土壤、植物、农产品类等。针对不同样品,选择不同的条件进行预处理,如水样进行过滤、土壤进行混酸微波消解等,然后选用纳米Ti02对处理液中的重金属Cd、Pb进行分离富集,摸索分离富集的最佳条件。最后应用胶体金试纸条方法进行Cd、Pb的含量检测,摸索免疫检测试纸条的最佳检测条件。
     结果:针对水样中的重金属Cd、Pb残留,已经形成完整的样品处理及免疫学检测流程。结果表明,将采集好的水样用0.45μm滤膜过滤,调节pH至9.0,水样中残留的Cd可被纳米Ti02定量富集,吸附于纳米TiO2上的镉离子可用0.1 mol/L的EDTA·2Na溶液定量脱附。在优化实验条件下,纳米Ti02对Cd的吸附容量为14.7 mg/g,富集倍数可达50倍。制备了比色法判定结果的胶体金试纸条,并建立了纳米Ti02富集-胶体金试纸条联用检测方法。对实测样品的检测耗时约90min,该方法对Cd的定量下限可达5μg/L,适用于环境水样检测的国家标准。同样,水样中的残留的Pb可被纳米Ti02定量富集,然后用DTPA溶液进行洗脱,富集倍数可达50倍。制备了比色法判定结果的胶体金试纸条,对分离富集后的溶液进行Pb含量检测,换算倍数后,得出的检测结果令人满意,符合国家检测标准。
     结论:成功建立了重金属Cd、Pb残留的纳米钛富集-免疫学检测的方法,该方法简便,易于推广,为现在重金属的残留检测提供了新思路新方法,为重金属免疫学检测方法的实际应用奠定了基础。
Objectives:To standardized the sample processing against cadmium and lead, to establish a method of sample handling and Enrichment for the Immunological detection against ion cadm ium and lead, and make stable and reliable Colloidal Gold test papers.
     Methods:First of all,samples must be collected including water, plants,soil and primary pro ducts,and choose different qualification to handle different kinds of samples. Then,it could using Nanometer-size TiO2 to adsorp the ion cadmium and lead,as well as explore the best conditions of Adsorption. Finally, colloidal gold immunochromatographic assay was used for detecting ion cadmium and lead, and the best conditions of Immunological detection was fixed.
     Results:At pH 9.0, Cd was retained on the nanometer-size TiO2, then eluted with 0.1 mol/ L EDTA·2Na quantitatively. The adsorption capacity of nanometer TiO2 was found to be 14.7 mg/g for Cd(II). The maximum preconcentration factor was 50. We made a kind of dipstick wit h colorimetric assay, nano colloidal gold particles were prepared and labeled to an anti-Cd(Ⅱ)-i EDTA (Isothiocyanobenzyi-EDTA) monoclonal antibody. Linked with nanometer TiO2 as soli d adsorbent, the whole detection process could be performed in 90 minutes, and the minimum de tection concentration could be down to 5μg/L. Samely, Pb was retained on the nanometer-size Ti 02, then eluted with 0.5 mol/L DTPA quantitatively. The maximum preconcentration factor also was 50. The method was applied to the determination of Cd (Ⅱ) and Pb(Ⅱ) in environmental wa ter samples and satisfactory results were obtained.
     Conclusion:A new method was developed for the rapid determination of trace Cd(Ⅱ) and Pb(II) using nanometer sized TiO2 as solid adsorbent and detected by Colloidal gold immunoch romatographic method. The sensitivity of the method is high enough to satisfy the safety require ments for non-environmental pollution aquatic products.
引文
[1]贾广宁.重金属污染的危害与防治[J].有色矿冶,2004,20(1):39-42.
    [2]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605.
    [3]唐英章.现代食品安全检测技术[M].北京:科学出版社,273-341.
    [4]王立世,费新平,张水锋,等.毛细管电泳单脉冲伏安测定重金属铜铅锌镉[J].分析测试学报,2005,24(1):64-67.
    [5]Blake D A, Jones R M, Blake II R C. Antibody-based sensors for heavy metal ions [J]. Bio sensors & Bioelectronics,2001,16:799-809.
    [6]SantoyoE, Santoyo-Gutierrez S, Verma SP. Trace analysis of heavy metals in ground water s amples by ion chromatography with post-column reaction and ultraviolet-visible detection [J]. Journal of Chromatography A,2000,884:229-241.
    [7]Sarzanini C. Liquid chromatography:a tool for the analysis of metal species [J]. Journal of Chromatography A,1999,850:213-228.
    [8]Gong Z L, Lu X F, Ma M S, et al. Arsenic speciation analysis [J]. Talanta,2002,58:77-96.
    [9]Maria T Giardi, Michal K, Jiri M. Photosystem II-based biosensors for the detection of poll utants [J]. Biosensors & Bioelectronics,2001(16):1027-1033.
    [10]Soldatkin Alexey P, Volotovsky V, Eiskaya A V, et al. Improvement of urease based biose nsor characteristics using additional layers of charged polymers [J]. Analytica Chimica Act a,2000(403):25-29.
    [11]Blake D A, Blake II R C, Khosraviani M. Immunoassay for metal ions[J]. Analytica Chimic a Acta,1998,376:13-19.
    [12]Blake D A, Pavlov A R, Yu H, et al. Antibodies and antibody-based assays for hexavalent uranium [J]. Analytica Chimica Acta,2001,444:3-11.
    [13]Darwish I A, Blake D A. One-step competitive immunoassay for cadmium ions:developme nt and validation for enviromental water samples [J]. Analytical Chemistry,2001,73:1889-1895.
    [14]Industrial Hygiene Monitoring Using the SIBS Heavy Metal Detector [DB/OL]. http://ww w. psicorp. com/html/Pprod/indsibs.htm
    [15]Blake Robert C,Delehanty J B, Khosraviani M, et al. Allosteric binding properties of mon oclonal antibody and its fab fragment [J].Biochemisrty,2003,42:497-508.
    [16]htm. Hand-held monitor for on-site detection of heavy metals in water using icrofabricated detector chips [DB/OL]. http://www. science. doe. Gov/sbir/awards_abstracts/sbir/cycle16/ phase2/37. DOE Grant No. De-FG03-98ER82569.
    [17]黎源倩,孙长颢,叶蔚云等.食品理化检验[M].北京:人民卫生出版社,179-193.
    [18]朱宇芳,张宗祥.电热板加热消解-氢化物原子荧光法测定鱼虾中的总砷[J].福建分析测试,2009,25(1):54-60.
    [19]鲁丹.炉内消化石墨炉原子吸收法直接测定酱油中铅[J].卫生研究,2008,23(6):103-165.
    [20]张志,莫晓玲.氢化物发生-原子吸收光谱法测定酱油中铅含量[J].中国调味品,2008,20(9):18-20.
    [21]彭义华,吴燕凌.共沉淀富集原子吸收法测定水中5种重金属元素[J].上海环境科学,2004,23(5):221-223.
    [22]苏耀东,黄燕,郝冰冰,等.吡咯烷二硫代氨基甲酸铵-Ni(II)快速共沉淀分离富集和原子吸收光谱法测定痕量铜、铅和镉[J].分析科学学报,2007,12(2):136-138.
    [23]苏耀东,程祥圣,肖红玺.硫酸锰中痕量铅的不加载体离子共沉淀分离富集及原子吸收光谱测定[J].光谱学与光谱分析,2003,45(5):432-435.
    [24]肖红玺,苏耀东,王玉科,等.共沉淀分离富集原子吸收光谱法测定氯化物中痕量镉[J].理化检验化学分册,2003,4(1):18-19.
    [25]戴文灿,孙水裕,刘如意.沉淀浮选法处理矿山井下废水的试验研究[J].重庆环境科学,2003,(5):48-50.
    [26]温欣荣,李全民,卫伟.用硫酸铵-碘化钾-结晶紫体系浮选分离镉[J].分析实验室,2001,22(1):46-48.
    [27]涂常青,罗建中,温欣荣.氯化钠-碘化钾-罗丹明B液-固浮选分离镉(II)的研究[J].分析实验室,2004,23(9):77-79.
    [28]Kapoor A, Virara Ghavant. Heavy metal biosorption sites in Aspergillus niger [J].Bioresour ce Technology,1997,61 (3):221-227.
    [29]刘开宇,朱吉庆.泡沫浮选萃取法分离镉锌[J].中南工业大学学报,2000,31(2):96-100.
    [30]Kazimierz Jurkiewicz. Flotation of zinc and cadmium cations in presence of manganese dio xide[J]. Metallurgical Analysis,2006,36(4):276-279.
    [31]王京平PAN-S浸渍树脂富集方波溶出法测定痕量的铅、镉、铜和锌[J].离子交换与吸附,2004,6(4):96-100.
    [32]陈芳艳,唐玉斌,茅新华.活性炭纤维对水中重金属离子的吸附研究[J].辽宁城乡环境科技,2002,13(2):40-46.
    [33]吕鉴泉,吕桂英,王金鸣.镉试剂2B改性硅胶富集和测定水体中的镉[J].分析科学学报,1999,23(2):49-52.
    [34]施踏青,梁沛,李静,等.纳米二氧化钛分离富集ICP2AES测定镉、钴、锌的研究[J].光谱学与光谱分析,2005,25(3):444-446.
    [35]赵亮,朱霞石,封克,等.纳米二氧化钛分离/富集-石墨原子吸收光谱法测定环境样品中痕量镉[J].分析化学研究简报,2006,34(9):S223-S226.
    [36]李新贵,窦强,黄美荣,等.聚苯胺及其复合物对重金属离子的高效吸附性能[J].化学进展,2008,20(2):227-232.
    [37]吴宏伟,李全民,刘国光.微晶酚酞-乙基紫分离富集镉(II)[J].应用化学,2006,23(6):607-611.
    [38]钱国勇,侯明,董海龙.海带吸附法分离富集水样中痕量铅和镉[J].分析试验室,2007,26(11):45-48.
    [39]钱国勇,侯明,汪菊玲.绿茶对水溶液中Pb-(2+)和Cd-(2+)吸附性能初步研究[J].分析试验室,2008,17(1):72-75.
    [40]Reardan D T, Meares C F, Goodwin D A, et al. Antibodies against metal chelates[J]. Nature, 1985,316:265-268. [41] Khosraviani M, Pavlov A, Flowers G C, et al. Detection of heavy metals by immunoassay: optimization and validation of a rapid, portable assay for ionic cadmium[J]. Environ. Sci. T echnol,1998,32:137-142.
    [42]Darwish I A, Blake D A. Development and validation of a one-step immunoassay for deter mination of cadimium in human serum[J]. Analytical Chemistry,2002,74:52-58.
    [43]Darwish IA, Blake D A. One-step competitive immunoassay for cadmium ions:developme nt and validation for enviromental water samples[J]. Analytical Chemistry,2001,73:1889-1895.
    [44]Velankis, Kellys, Thundatt, et al. Detection of Cd(II) using antibody-modified microcantilev er sensors [J]. Ultramicroscopy,2007,107(12):1123-1128.
    [45]唐勇,向军俭,罗辉武,等.重金属镉离子单克隆抗体的制备[J].食品科学,2005,26(9):350-352.
    [46]王建华,唐勇,向军俭,等.镉离子多克隆抗体ELISA竞争法的初步建立[J].中国生物制品学杂志,2008,21(1):56-59.
    [47]李浩阳,高恩君,闻兰.纳米二氧化钛的制备及对金属离子吸附研究进展[J].当代化工,2006,35(4):84.
    [48]吴旭.纳米二氧化钛富集石墨炉原子吸收光谱法测定环境水样中痕量锑[J].分析科学,2004,20(4):376-377.
    [49]Pei Liang, Lanhao Yang, Bin Hu, et al.ICP-AES Detection of Ultratrace Aluminum(III) and Chromium(Ⅱ I)Ions with a Microcolumn Preconcentration System U sing Dynamically Im mobilized8-Hydroxyquinoline on TiO2[J]. Analytical Sciences,2003,19:1167-1170.
    [50]Zheng H, Chang X, Lian N. Sulfanilamide-modified nanometer-sized TiO2 microcolumn for the enrichment of trace Cr(III) and Pb(II) [J]. Annali di Chimica,2005,95(7-8):601-606.
    [51]张慧嫦,张少恩,吴忠华,等.胶体金免疫层析法快速检测盐酸克伦特罗残留[J].中国国境卫生检疫杂志,2008,31(1):39-42.
    [52]刘烜,郑文杰,贺艳,等.胶体金免疫层析法快速检测组织样品中喹诺酮类药物残留[J].食品研究与开发,2009,30(5):131-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700