铁钴氧化物和碳酸盐锂电负极材料的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨负极由于容量和密度偏低已难以满足新一代锂电池对高能量密度和便携性的要求,亟需有能量和体积密度更高的材料出现。铁、钴金属氧化物(C0304,Fe3O4, CoFe2O4)由于其高电化学活性和低成本显示出极大的研究和应用价值,是非常有潜力的锂电负极替代材料。此外,作为新型转换型负极,铁、钴碳酸盐(COCO3、FeCO3)的储锂性能存在很大的发展空间,储锂机制也需要进一步研究和证实。
     本论文旨在通过一步简单水热或溶剂热法制备Co3O4, Fe3O4, FeCO3, CoCO3及前三者的rGO复合物,研究不同类型的rGO复合对氧化物和碳酸盐电化学性能的影响;通过化学氧化法对水热所得C0304和COCO3进行后续PPy包覆,研究PPy包覆对其储锂机制和电化学性能的影响。通过简单固相法制备新型C0304、Fe304基碳复合材料及CoFe2O4基N掺杂碳复合材料,研究碳或氮掺杂碳包覆对其储锂机制和电化学性能的影响,开展的主要工作如下:1、一步低温快速溶剂热制得平均粒径为5,13,12nm的Co3O4颗粒CO1, CO2和C03,其中C02的分散性最好。CO1和C02比C03更迅速的循环衰减表明:对纯转换型负极而言,单分散性颗粒和小粒径不是优势形貌,应力缓冲能力才是关键。对C02进行后续PPy包覆,由于PPy层过厚,复合物的电化学活性明显下降,但容量呈现上升趋势,表明PPy复合对改善Co304颗粒的循环稳定性仍有积极意义;基于相同溶剂热体系,分别引入GO和rGO制得Co3O4/rGO复合物CO/rGO1和CO/rG02。由于C0304与rGO的复合状态不理想,两复合样品的循环和倍率容量均表现出明显的衰减,62次0.1~0.2C循环后容量不足500mAhg-1,末次2C充电约280mAhg-1。尽管如此,两者的循环可逆性仍远优于裸露的C0304颗粒;以葡萄糖为碳源,NaC1为模板,Co(NO3)2-6H2O为钴源,通过两步热处理方法制得片层结构的石墨化碳笼包裹的CO3O4/COO/CO复合负极(GCCC),其中碳含量为25.1wt%。 GCCC表现出优异的循环稳定性和倍率储锂能力:其在0.2C的循环容量逐渐超过0.1C,62周低倍率循环后容量为983.2mAhg-1。;70周0.2-1C循环没有明显衰减,末次1,2,3,4,5C分别充电690.2,583.1,512.7,456.3,412.41mAhg-1;倍率降至0.1C后,容量可恢复至1123.5mAh g-1。
     2、一步低温快速水热制得Fe304纳米颗粒,并分别引入GO和rGO制得复合物FO/rGO1和FO/rGO2。两复合样品的循环稳定性明显优于纯Fe304,其中FO/rGO2的相纯度高,复合形态好,FO/rGO1由于抗坏血酸加入过量含有Fe3O4和FeCO3两种活性物质,复合形态和rGO片的分散度较差。相应的,FO/rGO2表现出更高的电化学活性,其末次1,2,3,4,5C分别容量为759.9,612.3,472.5,364.5和361.1mAhg-1,经历182次0.1-5C多倍率循环后,0.1C和0.2C容量分别可恢复至1406.6和1363.9mAhg-1,为原同倍率容量的133.7%和138.2%;通过将Fe(NO3)3·9H2O,葡萄糖,NaCl的均匀混合物两步热处理的方法制得石墨烯/Fe3O4/Fe/石墨化碳复合物(GN-FFG),其中石墨化碳笼分布在石墨烯基体中,Fe304包裹在碳笼中或直接分布在基体中,碳含量为31.3wt.%。在Fe304和碳基材料的协同作用下,GN-FFG表现出高度循环可逆性,优异的倍率储锂能力,以及不断增强的电化学活性:其在3,4和5C循环30周后容量分别569.2,523.3和480.6mAhg-1,经历249周0.1-5C循环后,0.2C容量可恢复至1179.9mAhg1,为首次0.1C的132.9%。
     3、以吡咯为碳源,通过简单压力辅助热解方法成功实现了CoFe204纳米晶表面的N掺C包覆。所得N掺杂C/CoFe2O4复合物在0.1C循环80周容量为646.2mAhg1,0.2~1.6C各倍率下循环稳定,倍率恢复到0.1C时容量为662.8mAhg-1,表现出远优于纯CoFe204的可逆储锂能力。结合CV和电压容量曲线详细分析了N掺杂碳包覆前后首次放电机制的变化,包括转换反应前CoFe204更大的锂插入容量,不同的SEI膜载体和形成电位,可能的更多样化的电容性界面储锂,以及N掺C本身的储锂和随之而来的更大的首次不可逆容量。SEM,直流电导率和EIS测试证实了N掺杂碳层对电极稳定性和储锂动力学的良性影响。
     4、通过简单水热法制得CoCO3海胆微球(CC),并进一步对其进行PPy修饰。与CC相比,所得CoCO3-PPy复合物(CC-PPy)表现出显著增强的循环稳定性,优异的倍率性能和超强容量恢复能力:在0.1,1,2,3,4和5C下循环100周后可逆容量分别为1070.7,811.2,737.6,518.7,504.5和559mAh g-1,500次1-5C循环后容量可恢复至1787mAhg-1。为支持所得实验数据,在前人工作基础上提出了更全面的COC03负极储锂机制,其中包含两步转换反应,每摩尔COC03的理论储锂量为7mol。一级反应对应着CoCO3还原为金属Co和Li2CO3的形成,二级反应对应着Li2CO3进一步还原为LixC2(x=0,1,2)和Li20的生成。基于电压容量曲线和CV曲线比较了CC和CC-PPy的锂化和去锂化过程;基于Nyquist图分析了CC-PPy更好的电化学表现背后的动力学因素;CC-PPy电极在不同放电/充电态下的非原位红外光谱有力证实了CoCO3→Li2CO3→Li2O可逆转变过程。5、一步低温快速水热法制得FeCO3微纳米花球(FCMS),并在相同体系中分别基于GO和rGO分散液制得FeCO3/rGO复合物FC/rGO1和FC/rGO2,其中的FeCO3分别以纳米线和纳米颗粒的形式分布在rGO基体中。电压容量曲线和CV表明,与CoCO3一样,FeCO3基负极的转换反应不局限于FeCO3→Li2CO3转变,而是有Li2CO3→LixC2(x=0,1,2)二级反应发生。不同于C0304和Fe304纳米颗粒,FeCO3微纳米花球有不错的循环和倍率表现,0.1~43.2C循环62周容量达到609.4mAhg-1,1C和2C容量分别为452.2和320.6mAh g-1,这与其结构中存在可缓冲充放电过程中体积变化的空间有关。两个rGO复合样品在低倍率下均表现出比FeCO3花球更好的电化学活性和循环稳定性,但FC/rGO2在较高倍率下逐渐失去其容量优势,FC/rGO1则始终保持高活性,在0.1~0.2C循环60次后容量为842mAhg-1,1.5,3,4,5C容量分别为540.9,423.4,328.9,213.9mAhg-1;0.1-5C循环253周后,末次0.2C可充电1166mAhg-1,表现出良好的循环,倍率和容量恢复能力。
Due to its low capacity and density, graphite as the anode material can hardly meet the requirement of high energy density and portability for the new generation of Li ion batteries which calls out for the materials with higher energy and volume density. Oxides of iron and cobalt, being highly electrochemical reactive and inexpensive, which are of great scientific and application interest, are considered potential candidates for the present anode material. In addition, as newly emerged conversion anodes, iron and cobalt carbonates have much improvement could be made on the lithium storage properties, the lithium storage mechanism need be further proven by research as well.
     The aim of this thesis is listed as follows:prepare CO3O4, Fe3O4, FeCO3, COCO3and the composite of one of first three and grapheme by simple one-step hydro-thermo or solu-thermo route; study the electrochemical performance of oxides and carbonates decorated with grapheme of different kinds; coat CO3O4and COCO3prepared by hydrothermo route with poly-pyrrole via chemical oxidation method and study the influence of poly-pyrrole coating on lithium storage and electrochemical properties; prepare CO3O4/C, FesCVC and CoFe2O4/nitrogen doped carbon composites by simple solid state reaction and study the influence of carbon and N doped carbon coating on the lithium storage mechanism and electrochemical performance. Detailed works carried out are presented as follows:
     1. CO3O4were synthesized by low temperature rapid one-step solu-thermo route with diameter of5,13,12nm, namely CO1, CO2, CO3, CO2having the best dispersity. Capacity of CO1and CO2decreased faster than CO3as cycling, indicating it not being an advantage to achieve mono-dispersed and fine particles in morphology and buffering stress in cycling being the key factor. As with CO2coated with poly-pyrrole, electrochemical performance is evidently hindered because of the PPy coating being too thick. However, an increase in capacity is observed, indicating PPy decorating plays a positive role on the cycling stability of CO3O4. Based on the same solu-thermo system, introducing GO and rGO in preparing process resulted two grapheme decorated composite namely, CO/rGO1and CO/rGO2. Owing to the poor composite status, both sample presented capacity decay at cycling and rate tests, achieving a capacity less than500mAh g'1after cycling62times at0.1to0.2C, with last charging capacity of~280mAh g-1at2C. Nevertheless, both sample showed an increased reversibility than bare CO3O4. Flake structured graphitized carbon encapsulated CO3O4/COO/CO composite (GCCC) with carbon content of25.1wt.%was prepared by two-step thermo treatment using glucose as carbon source, Co(NO3)2·6H2O as cobalt source and NaCl as template. GCCC exhibited superior cycling stability and rate lithium storage ability, cycling capacity at0.2C having surpassed that of0.1C as the cycle proceeds,983.2mAh g-1achieved at low rate after62cycles, without decay at0.2to2C cycling for70cycles. The last charge capacities at1,2,3,4and5C were690.2,583.1,512.7,456.3and412.4mAh g-1. Capacity recovered1123.5mAh g-1when rate decreased to0.1C.
     2. Fe3O4nano particles were synthesized by low temperature rapid one-step hydrothermo route, introducing GO and rGO in preparing process resulted two grapheme decorated composite namely, FO/rGO1and FO/rGO2. Both composite samples exhibited increased cycling stability than bare Fe3O4. FO/rGO2had a high phase purity and good composite status; owing to the excessive ascorbic acid used, FO/rGO1had two phases Fe3O4and FeCO3with poor composite status and dispersity of rGO. Correspondingly, FO/rGO2exhibited higher electrochemical reactivity, the last capacities at1,2,3,4,5C being759.9,612.3,472.5,364.5and361.1mAh g-1. Cycled at0.1-5C for182cycles, capacity recovered1406.6and1363.9mAh g-1at0.1and0.2C, being133.7%and138.2%of initial capacity at same rate. graphene/Fe3O4/Fe/graphitized carbon composite with carbon content of31.3wt.%(GN-FFG) was prepared by two-step thermo treating Fe(NO3)3·9H2O, glucose and NaCl mixture, whose graphitized carbon cages were dispersed in grapheme substrates, Fe3O4encapsulated in carbon cages or directly embedded in substrates. Combination effects of Fe3O4and carbon materials made GN-FFG present high cycle reversibility, superior rate lithium storage ability and ever increasing electrochemical reactivity. The cycling capacity at3,4and5C for30cycles were569.2,523.3and480.6mAh g-1, respectively. After cycling at0.1-5C for249cycles, capacity retrieved1179.9mAh g-1, which was132.9%of initial capacity at0.1C.
     3. Nitrogen doped carbon coating of CoFe2O4was realized by simple pressure assisted pyrolysis route using pyrrole as carbon source. The as prepared N doped C/CoFe2O4composite delivered a capacity of646.2mAh g-1after80cycles at0.1C and can cycle stably at0.2-1.6C, retrieving662.8mAh g-1when returned to0.1C which shows far better lithium storage ability than bare CoFe2O4. Combining CV and galvano discharge/charge curves, the discharge mechanism change in first discharge of nitrogen doped carbon coated and without coating samples was analyzed in detail, encompassing large amount of lithium intercalation before conversion reaction of CoFe2O4, different SEI building and formation potential, possible diverse capacitive surface lithium storage, capacity brought by nitrogen doped carbon and the resulting enlarged irreversible capacity in first cycle. SEM, DC conductivity and EIS confirmed the positive effects of nitrogen doped carbon coating on the cycling stability and lithium storage kinetics.
     4. Urchin micro sphere COCO3(CC) was prepared by simple hydrothermo route, and further decorated by poly-pyrrole. Compared with CC, the as prepared CoCO3-PPy (CC-PPy) exhibited much enhanced cycling stability, superior rate performance and capacity retrieving ability. The capacities after100cycles at0.1,1,2,3,4and5C were1070.7,811.2,737.6,518.7,504.5and559mAh g-1, respectively, retrieving1787mAh g-1after500cycles at1~5C. Based on the studies reported previously, a more comprehensive lithium storage mechanism was proposed with respect to the experimental data above which comprised two step conversion reaction,7mol lithium being stored per mol COCO3. First step conversion was consistent with the reduction of COCO3to Co and the formation of Li2CO3. Second step conversion was consistent with the reduction of Li2CO3to LixC2(x=0,1,2) and the formation of Li2O. Based on EIS Nyquist plot, kinetic origin of the enhancement of CC-PPy was analyzed. The ex-situ FTIR spectroscopy at different state of charge/discharge gave sufficient evidence of reversible COCO3→Li2CO3→Li2O reaction.
     5. Micro-sized nano flower sphere FeCO3was synthesized by low temperature rapid one-step hydrothermo route, introducing GO and rGO in preparing process resulted two grapheme decorated composite namely, FC/rGO1and FC/rGO2, in which FeCO3was disperse in form of nano wires and nano particles in rGO substrates. Resemble with CoCO3, the conversion reaction of FeCO3anode was not restricted to FeCO3→Li2CO3as indicated by galvano profiles and CV curves, but a secondary reaction took place Li2CO3→LixC2(x=0,1,2), as well. Unlike Co3O4and Fe3O4nano particles, micro-sized nano flower sphere FeCO3exhibited fairly good cycling and rate performance, capacity being609.4mAh g-1after62cycles at0.1~0.2C,452.2and320.6mAh g-1for1C and2C, respectively. It was because of the spacious buffering space for the volume change in cycling process. FC/rGO1and FC/rGO2 presented better electrochemical reactivity and cycling stability than micro-sized nano flower sphere FeCO3. However, FC/rGO2lost advantage over FeCO3at fairly high rates. FC/rGO1kept high reactivity at all rates, delivering a capacity of842mAh g-1after60cycles at0.1~0.2C,540.9,423.4,328.9and213.9mAh g-1at1.5,3,4and5C, respectively. After cycling for253cycles at0.1-5C, last charge capacity at0.2C was1166mAh g-1, exhibiting good retrieving ability, cycling and rate performance.
引文
[1]Mizushima K., Jones P.C., Wiseman P.J., Goodenough J.B. LixCoO2 (0    [2]Mohri M., Yanagisawa N., Tajima Y., Tanaka H., Mitate T., Nakajima S., Yoshida M., Yoshimoto Y, Suzuki T., Wada H. Rechargable Lithium Battery Based on Pyrolytic Carbon as a Negative Electrode[J]. J. Power Sources,1989,26:545-551.
    [3]Tarascon J.-M., Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nat.,2001,414:359-367.
    [4]Gummow R.J., de Kock A., Thackeray M.M. Improved Capacity Retention in Rechargeable 4 V Lithium/lithium-manganese Oxide (spinel) Cells[J]. Solid State Ionics 1994,69:59-67.
    [5]Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries[J] J. Electrochem. Soc.,1997,144(4):1188-1194.
    [6]Ohzuku T., Makimura Y Layered Lithium Insertion Material of LiNi1/2Mn1/2O2:A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries[J]. Chem. Lett., 2001,30(8):744-745.
    [7]Reddy M.V., Subba Rao G.V., Chowdari B.V.R. Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries[J]. Chem. Rev.,2013,113:5364-5457.
    [8]Yang Z.G, Choi D., Kerisit S., Rosso K.M., Wang D.H., Zhang J., Graff G, Liu J. Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides:A review[J]. J. Power Sources,2009,192(2):588-598.
    [9]Lunell S., Stashans A., Ojamae L., Lindstrom H., Hagfeldt A. Li and Na Diffusion in TiO2 from Quantum Chemical Theory versus Electrochemical Experiment[J]. J. Am. Chem. Soc.,1997,119(31):7374-7380.
    [10]Hu Y.S., Kienle L., Guo Y.G., Maier J. High Lithium Electroactivity of Nanometer-Sized Rutile TiO2[J]. Adv. Mater.,2006,18(11):1421-1426.
    [11]Reddy M.A., Kishore M.S., Pralong V, Caignaert V., Varadaraju U.V., Raveau B. Room Temperature Synthesis and Li Insertion into Nanocrystalline Rutile TiO2[J]. Electrochem. Commun.,2006,8(8):1299-1303.
    [12]Armstrong A.R., Armstrong G., Canales J., Bruce P.G., TiO2-B Nanowires as Negative Electrodes for Rechargeable Lithium Batteries[J]. J. Power Sources 2005, 146(1-2):501-506.
    [13]Beuvier T., Richard-Plouet M., Mancini-Le Granvalet M., Brousse T., Crosnier O., Brohan L. TiO2(B) Nanoribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance[J]. Inorg. Chem.,2010,49(18):8457-8464.
    [14]Zhu N., Liu W., Xue M.Q., Xie Z.A., Zhao D., Zhang M.N., Chen J.T., Cao T.B. Graphene as a Conductive Additive to Enhance the High-rate Capabilities of Electrospun Li4Ti5O12 for Lithium-ion Batteries [J]. Electrochim. Acta,2010,55(20): 5813-5818.
    [15]Kim H.-K., Bak S.-M., Kim K.-B. Li4Ti5O12/reduced Graphite Oxide Nano-hybrid Material for High Rate Lithium-ion Batteries[J]. Electrochem. Commun., 2010,12(12):1768-1771.
    [16]Zhang W.-J. A Review of the Electrochemical Performance of Alloy Anodes for Lithium-ion Batteries[J]. J. Power Sources,2011,196:13-24.
    [17]Hyesun Kim and Jaephil Cho Superior Lithium Electroactive Mesoporous Si@Carbon Core Shell Nanowires for Lithium Battery Anode Material[J]. Nano Lett., 2008,8(11):3688-3691.
    [18]Mi-Hee Park, Min Gyu Kim, Jaebum Joo, Kitae Kim, Jeyoung Kim, Soonho Ahn, Yi Cui, Jaephil Cho Silicon Nanotube Battery Anodes[J]. Nano Lett.,2009,9(11): 3844-3847.
    [19]Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J-M. Nano-sized Transition-metal Oxides as Negative-electrode Materials for Lithium-ion Batteries[J]. Nat.,2000,407:496-499.
    [20]Cabana J., Monconduit L., Larcher D., Palacin M.R. Beyond Intercalation-Based Li-Ion Batteries:The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions[J]. Adv. Mater.,2010,22:E170-E192.
    [21]Dupont L., Laruelle S., Grugeon S., Dickinson C., Zhou W., Tarascon J.-M. Mesoporous Cr2O3 as Negative Electrode in Lithium Batteries:TEM Study of the Texture Effect on the Polymeric Layer Formation[J]. J. Power Sources,2008,175: 502-509.
    [22]Xia H., Lai M., Lu L. Nanoflaky MnO2/carbon Nanotube Nanocomposites as Anode Materials for Lithium-ion Batteries[J]. J. Mater. Chem.,2010,20:6896-6902.
    [23]Lai H., Li J., Chen Z., Huang Z. Carbon Nanohorns As a High-Performance Carrier for MnO2 Anode in Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2012,4:2325-2328.
    [24]Zhou J., Song H., Chen X., Zhi L., Yang S., Huo J., Yang W. Carbon-Encapsulated Metal Oxide Hollow Nanoparticles and Metal Oxide Hollow Nanoparticles:A General Synthesis Strategy and Its Application to Lithium-Ion Batteries[J]. Chem. Mater.,2009,21:2935-2940.
    [25]Reddy M.V., Yu T., Sow C.-H., Shen Z.X., Lim C.T., Subba Rao GV., Chowdari B.V.R. a-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries[J]. Adv. Funct. Mater.,2007,17:2792-2799.
    [26]Cao H., Liang R., Qian D., Shao J., Qu M. L-Serine-Assisted Synthesis of Superparamagnetic Fe3O4 Nanocubes for Lithuium Ion Batteries[J]. J. Phys. Chem. C, 2011,115:24688-24695.
    [27]Ji L., Tan Z., Kuykendall T.R., Aloni S., Xun S., Lin E., Battaglia V., Zhang Y. Fe3O4 Nanoparticle-integrated Graphene Sheets for High-performance Half and Full Lithium Ion Cells[J]. Phys. Chem. Chem. Phys.,2011,13:7170-7177.
    [28]Du N., Zhang H., Chen B., Wu J., Ma X., Liu Z., Zhang Y, Yang D., Huang X., Tu J. Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates:A Highly Efficient Material For Li-Battery Applications[J]. Adv. Mater.,2007,19:4505-4509.
    [29]Jung Y.S., Lee S., Ahn D., Dillon A.C., Lee S.-H. Electrochemical Reactivity of Ball-milled MoO3-y as Anode Materials for Lithium-ion Batteries[J]. J. Power Sources,2009,188:286-291.
    [30]Hassan M.F., Guo Z.P., Chen Z., Liu H.K. Carbon-coated MoO3 Nanobelts as Anode Materials for Lithium-ion Batteries[J]. J. Power Sources,2010,195: 2372-2376.
    [31]Balaya P., Li H., Kienle L., Maier J. Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity [J]. Adv. Funct. Mater., 2003,13(8):621-625.
    [32]Park J.C., Kim J., Kwon H., Song H. Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials[J]. Adv. Mater.,2009,21:803-807.
    [33]Wang S.Q., Zhang J.Y., Chen C.H. Dandelion-like Hollow Microspheres of CuO as Anode Material for Lithium-ion Batteries[J]. Scr. Mater.,2007,57:337-340.
    [34]Grugeon S., Laruelle S., Dupont L., Tarascon J.-M. An Update on the Reactivity of Nanoparticles Co-based Compounds towards Li[J]. Solid State Sci.,2003,5: 895-904.
    [35]Laruelle S., Grugeon S., Poizot P., Dolle M., Dupont L., Tarascon J.-M. On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential[J]. J. Electrochem. Soc.,2002,149:A627-A634.
    [36]Jamnik J., Maier J. Nanocrystallinity Effects in Lithium Battery Materials Aspects of Nano-ionics. Part IV[J]. Phys. Chem. Chem. Phys.,2003,5:5215-5220.
    [37]Gachot G, Grugeon S., Armand M., Pilard S., Guenot P., Tarascon J.-M., Laruelle S. Deciphering the Multi-step Degradation Mechanisms of Carbonate-based Electrolyte in Li Batteries[J]. J. Power Sources,2008,178:409-421.
    [38]Laruelle S., Pilard S., Guenot P., Grugeon S., Tarascon J.-M. Identification of Li-Based Electrolyte Degradation Products Through DEI and ESI High-Resolution Mass Spectrometry[J]. J. Electrochem. Soc.,2004,151(8):A1202-A1209.
    [39]Dedryvere R., Laruelle S., Grugeon S., Gireaud L., Tarascon J.-M., Gonbeau D. XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode[J]. J. Electrochem. Soc., 2005,152(4):A689-A696.
    [40]Debart A., Dupont L., Poizot P., Leriche J.B., Tarascon J.-M. A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium[J]. J. Electrochem. Soc.,2001,148(11):A1266-A1274.
    [41]Aurbach D. Review of Selected Electrode-solution Interactions which Determine the Performance of Li and Li Ion Batteries[J]. J. Power Sources,2000,89:206-218.
    [42]Laruelle S., Grugeon S., Poizot P., Dolle M., Dupont L., Tarascon J.-M. On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential[J]. J. Electrochem. Soc.,2002,149(5):A627-A634.
    [43]Hu J., Li H., Huang X.J., Chen L.Q. Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries[J]. Solid State Ionics,2006,177(26-32): 2791-2799.
    [44]Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J.-M. From the Vanadates to 3d-metal Oxides Negative Electrodes [J]. Ionics,2000,6(5-6):321-330.
    [45]Larcher D., Bonnin D., Cortes R., Rivals I., Personnaz L., Tarascon J.-M. Combined XRD, EXAFS, and Mossbauer Studies of the Reduction by Lithium of a-Fe2O3 with Various Particle Sizes[J]. J. Electrochem. Soc.,2003,150(12): A1643-A1650.
    [46]Gmitter A., Badway F., Rangan S., Bartynski R.A., Halajko A., Pereira N., Amatucci G.G. Formation, Dynamics, and Implication of Solid Electrolyte Interphase in High Voltage Reversible Conversion Fluoride Nanocomposites[J]. J. Mater. Chem., 2010,20:4149-4161.
    [47]Bekaert E., Balaya P., Murugavel S., Maier J., Menetrier M.6Li MAS NMR Investigation of Electrochemical Lithiation of RuO2:Evidence for an Interfacial Storage Mechanism[J]. Chem. Mater.,2009,21(5):856-861.
    [48]Kim Y., Goodenough J.B. Lithium Insertion into Transition-Metal Monosulfides: Tuning the Position of the Metal 4s Band[J]. J. Phys. Chem. C,2008,112(38): 15060-15064.
    [49]Badway F., Pereira N., Cosandey F., Amatucci GG. Carbon-Metal Fluoride Nanocomposites:Structure and Electrochemistry of FeF3:C[J]. J. Electrochem. Soc., 2003,150(9):A1209-A1218.
    [50]Badway F., Cosandey F., Pereira N., Amatucci G.G. Carbon Metal Fluoride Nanocomposites:High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries[J]. J. Electrochem. Soc.,2003, 150(10):A1318-A1327.
    [51]Gibson J.G, Sudworth J.L., Specific Energies of Galvanic Reactions and Related Thermodynamic Data[B]. Chapman and Hall Ltd., London 1973.
    [52]Li H., Balaya P., Maier J. Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides[J]. J. Electrochem. Soc.,2004,151(11): A1878-A1885.
    [53]Etienne A. Electrochemical Method to Measure the Copper Ionic Diffusivity in a Copper Sulfide Scale[J]. J. Electrochem. Soc.,1970,117(7):870-874.
    [54]Hwang H., Kim H., Cho J. MoS2 Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials [J]. Nano Lett., 2011,11:4826-4830.
    [55]Liu H., Su D., Zhou R., Sun B., Wang G, Qiao S.Z. Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage[J]. Adv. Energy Mater.,2012,2:970-975.
    [56]Liu H., Su D., Wang G, Qiao S.Z. An Ordered Mesoporous WS2 Anode Material with Superior Electrochemical Performance for Lithium Ion Batteries[J]. J. Mater. Chem.,2012,22:17437-17440.
    [57]Xu X., Rout C.S., Yang J., Cao R., Oh P., Shin H.S., Cho J. Freeze-dried WS2 Composites with Low Content of Graphene as High-rate Lithium Storage Materials[J]. J. Mater. Chem. A,2013,1:14548-14554.
    [58]Huang G, Chen T., Wang Z., Chang K., Chen W. Synthesis and Electrochemical Performances of Cobalt Sulfides/graphene Nanocomposite as Anode Material of Li-ion Battery[J]. J. Power Sources,2013,235:122-128.
    [59]Gu Y., Xu Y, Wang Y. Graphene-Wrapped CoS Nanoparticles for High-Capacity Lithium-Ion Storage[J]. ACS Appl. Mater. Interfaces,2013,5:801-806.
    [60]Wu B., Song H., Zhou J., Chen X. Iron Sulfide-embedded Carbon Microsphere Anode Material with High-rate Performance for Lithium-ion Batteries[J]. Chem. Commun.,2011,47:8653-8655.
    [61]Hu J., Li H., Huang X. Cr2O3-Based Anode Materials for Li-Ion Batteries[J]. Electrochem. Solid-State Lett.,2005,8(1):A66-A69.
    [62]Hu J., Li H., Huang X., Chen L. Improve the Electrochemical Performances of Cr2O3 Anode for Lithium Ion Batteries[J]. Solid State Ionics,2006,177:2791-2799.
    [63]Grugeon S., Laruelle S., Dupont L., Chevallier F., Taberna P. L., Simon P., Gireaud L., Lascaud S., Vidal E., Yrieix B., Tarascon J.-M. Combining Electrochemistry and Metallurgy for New Electrode Designs in Li-Ion Batteries[J]. Chem. Mater.,2005,17(20):5041-5047.
    [64]Dupont L., Grugeon S., Laruelle S., Tarascon J.-M. Structure, Texture and Reactivity versus Lithium of Chromium-based Oxides Films as Revealed by TEM Investigations[J]. J. Power Sources,2007,164:839-848.
    [65]Jiang L.Y., Xin, S., Wu X.L., Li H., Guo Y.G., Wan L.J. Non-sacrificial template synthesis of Cr2O3-C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries [J]. J. Mater. Chem.,2010,20:7565-7569.
    [66]Cai Y., Liu S., Yin X., Hao Q., Zhang M., Wang T. Facile Preparation of Porous One-dimensional Mn2O3 Nanostructures and Their Application as Anode Materials for Lithium-ion Batteries[J]. Phys. E,2010,43:70-75.
    [67]Qiu Y, Xu G-L., Yan K., Sun H., Xiao J., Yang S., Sun S.-G., Jin L., Deng H. Morphology-conserved Transformation:Synthesis of Hierarchical Mesoporous Nanostructures of Mn2O3 and the Nanostructural Effects on Li-ion Insertion/deinsertion Properties[J]. J. Mater. Chem.,2011,21:6346-6353.
    [68]Wang H., Cui L.-F., Yang Y, Casalongue H.S., Robinson J.T., Liang Y, Cui Y, Dai H. Mn3O4 Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries[J]. J. Am. Chem. Soc.,2010,132:13978-13980.
    [69]Kim H., Kim S.-W., Hong J., Park Y.-U., Kang K. Electrochemical and Ex-situ Analysis on Manganese Oxide/graphene Hybrid Anode for Lithium Rechargeable Batteries[J]. J. Mater. Res.,2011,26(20):2665-2671.
    [70]Morales J., Sanchez L., Martin F., Berry F., Ren X. Synthesis and Characterization of Nanometric Iron and Iron-Titanium Oxides by Mechanical Milling:Electrochemical Properties as Anodic Materials in Lithium Cells[J]. J. Electrochem. Soc.,2005,152(9):A1748-A1754.
    [71]Su Q., Xie D., Zhang J., Du G., Xu B. In Situ Transmission Electron Microscopy Observation of the Conversion Mechanism of Fe2O3/Graphene Anode during Lithiation-Delithiation Processes[J]. ACS Nano,2013,7(10):9115-9121.
    [72]Larcher D., Sudant G., Leriche J.-B., Chabre Y., Tarascon J.-M. The Electrochemical Reduction of Co3O4 in a Lithium Cell[J]. J. Electrochem. Soc.,2002, 149(3):A234-A241.
    [73]Shaju K.M., Jiao F., Debart A., Bruce P.G. Mesoporous and Nanowire Co3O4 as Negative Electrodes for Rechargeable Lithium Batteries[J]. Phys. Chem. Chem. Phys., 2007,9:1837-1842.
    [74]Li Y., Tan B., Wu Y. Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability[J]. Nano Lett.,2008,8(1):265-270.
    [75]Needham S.A., Wang G.X., Konstantinov K., Tournayre Y., Lao Z., Liub H.K. Electrochemical Performance of Co3O4-C Composite Anode Materials [J]. Electrochem. Solid-State Lett.,2006,9(7):A315-A319.
    [76]Jayaprakash N., Jones W.D., Moganty S.S., Archer L.A. Composite Lithium Battery Anodes Based on Carbon@Co3O4 Nanostructures:Synthesis and Characterization[J]. J. Power Sources,2012,200:53-58.
    [77]Chen J., Xia X.-h., Tu J.-p., Xiong Q.-q., Yu Y.-X., Wang Xiu-li, Gu C.-d. Co3O4-C Core-shell Nanowire Array as an Advanced Anode Material for Lithium Ion Batteries[J]. J. Mater. Chem.,2012,22:15056-15061.
    [78]Wang Y, Zhang H.J., Lu L., Stubbs L.P., Wong C.C., Lin J. Designed Functional Systems from Peapod-like Co@Carbon to Co3O4@Carbon Nanocomposites[J]. ACS Nano,2010,4(8):4753-4761.
    [79]Qi Y, Zhang H., Du N., Zhai C., Yang D. Synthesis of Co3O4@SnO2@C Core-shell Nanorods with Superior Reversible Lithium-ion Storage[J]. RSC Adv., 2012,2:9511-9516.
    [80]Wu Z.-S., Ren W., Wen L., Gao L., Zhao J., Chen Z., Zhou G., Li F., Cheng H.-M. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance[J]. ACS Nano,2010,4(6): 3187-3194.
    [81]Yang S., Feng X., Ivanovici S., Mullen K. Fabrication of Graphene-Encapsulated Oxide Nanoparticles:Towards High-Performance Anode Materials for Lithium Storage[J]. Angew. Chem. Int. Ed.,2010,49:8408-8411.
    [82]Chen S.Q., Wang Y. Microwave-assisted Synthesis of a Co3O4-graphene Sheet-on-sheet Nanocomposite as a Superior Anode Material for Li-ion Batteries[J]. J. Mater. Chem.,2010,20:9735-9739.
    [83]Kim H., Seo D.-H., Kim S.-W., Kim J., Kang K. Highly Reversible Co3O4graphene Hybrid Anode for Lithium Rechargeable Batteries[J]. Carbon,2011, 49:326-332.
    [84]Li B., Cao H., Shao J., Li G, Qu M., Yin G. Co304@graphene Composites as Anode Materials for High-Performance Lithium Ion Batteries[J]. morg. Chem.,2011, 50:1628-1632.
    [85]Yao Y, Yang Z., Sun H., Wang S. Hydrothermal Synthesis of Co3O4-Graphene for Heterogeneous Activation of Peroxymonosulfate for Decomposition of Phenol[J]. Ind. Eng. Chem. Res.,2012,51:14958-14965.
    [86]Wang Y, Xia H., Lu L., Lin J. Excellent Performance in Lithium-Ion Battery Anodes:Rational Synthesis of Co(CO3)0.5(OH)0.11H20 Nanobelt Array and Its Conversion into Mesoporous and Single-Crystal Co3O4[J]. ACS Nano,2010,4(3): 1425-1432.
    [87]Xue X.-Y, Yuan S., Xing L.-L., Chen Z.-H., He B., Chen Y.-J. Porous Co3O4 Nanoneedle Arrays Growing Directly on Copper Foils and Their Ultrafast Charging/discharging as Lithium-ion Battery Anodes[J]. Chem. Commun.,2011,47: 4718-4720.
    [88]Mei W., Huang J., Zhu L., Ye Z., Mai Y, Tu J. Synthesis of Porous Rhombus-shaped Co3O4 Nanorod Arrays Grown Directly on a Nickel Substrate with High Electrochemical Performance[J]. J. Mater. Chem.,2012,22:9315-9321.
    [89]Wu H., Xu M., Wang Y, Zheng G Branched Co3O4/Fe2O3 Nanowires as High Capacity Lithium-ion Battery Anodes[J]. Nano Res.,2013,6(3):167-173.
    [90]Cheng H., Lu Z.G., Deng J.Q., Chung C.Y., Zhang K., Li Y.Y A Facile Method to Improve the High Rate Capability of Co3O4 Nanowire Array Electrodes [J]. Nano Res., 2010,3(12):895-901.
    [91]Li H., Fei G.T., Cui P., Jin Y., Feng X.-y., Chen C.-h. Urchin-like Co3O4 Nanostructure and Their Electrochemical Behavior in Rechargeable Lithium Ion Battery[J]. Chin. J. Chem. Phys.,2011,24(3):343-347.
    [92]Zhang C., Chen J., Zeng Y., Rui X., Zhu J., Zhang W., Xu C., Lim T.M., Hng H.H., Yan Q. A Facile Approach toward Transition Metal Oxide Hierarchical Structures and Their Lithium Storage Properties[J]. Nanoscale,2012,4:3718-3724.
    [93]Rui X., Tan H., Sim D., Liu W., Xu C., Hng H.H., Yazami R., Lim T.M., Yan Q. Template-free Synthesis of Urchin-like Co3O4 Hollow Spheres with Good Lithium Storage Properties[J]. J. Power Sources,2013,222:97-102.
    [94]Xiong S., Chen J.S., Lou X.W., Zeng H.C. Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-Like Co(C03)0.5(OH)O.11H20 and Their Lithium-Storage Properties [J]. Adv. Funct. Mater.,2012,22:861-871.
    [95]Ma J., Manthiram A. Precursor-directed Formation of Hollow Co3O4 Nanospheres Exhibiting Superior Lithium Storage Properties[J]. RSC Adv.,2012,2: 3187-3189.
    [96]Liu Y, Zhang X., Wu Y. Hydrothermal Synthesis of Co3O4 with Different Morphologies and the Improvement of Lithium Storage Properties[J]. Mater. Chem. Phys.,2011,128:475-482.
    [97]Wang X., Yu L., Wu X.-L., Yuan F., Guo Y.-G, Ma Y, Yao J. Synthesis of Single-Crystalline Co3O4 Octahedral Cages with Tunable Surface Aperture and Their Lithium Storage Properties[J]. J. Phys. Chem. C,2009,113:15553-15558.
    [98]Liu J., Xia H., Lu L., Xue D. Anisotropic Co3O4 Porous Nanocapsules toward High-capacity Li-ion Batteries[J]. J. Mater. Chem.,2010,20:1506-1510.
    [99]Yan N., Hu L., Li Y, Wang Y, Zhong H., Hu X., Kong X., Chen Q. Co3O4 Nanocages for High-Performance Anode Material in Lithium-Ion Batteries[J]. J. Phys. Chem. C,2012,116:7227-7235.
    [100]Shaju K.M., Jiao F., Debart A., Bruce P.G Mesoporous and Nanowire Co3O4 as Negative Electrodes for Rechargeable Lithium Batteries[J]. Phys. Chem. Chem. Phys., 2007,9:1837-1842.
    [101]Wang C., Wang D., Wang Q., Wang L. Fabrication of Three-dimensional Porous Structured Co3O4 and Its Application in Lithium-ion Batteries[J]. Electrochim. Acta, 2010,55:6420-6425.
    [102]Li W.-Y., Xu L.-N., Chen J. C03O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors[J]. Adv. Funct. Mater.,2005,15(5):851-857.
    [103]Du N., Zhang H., Chen B., Wu J., Ma X., Liu Z., Zhang Y., Yang D., Huang X., Tu J. Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates:A Highly Efficient Material For Li-Battery Applications [J]. Adv. Mater.,2007,19:4505-4509.
    [104]Lou X.W., Deng D., Lee J.Y., Feng J., Archer L.A. Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes[J]. Adv. Mater.,2008,20:258-262.
    [105]Zhan F., Geng B., Guo Y. Porous Co3O4 Nanosheets with Extraordinarily High Discharge Capacity for Lithium Batteries[J]. Chem. Eur. J.,2009,15:6169-6174.
    [106]Wang Y, Zhang H.J., Wei J., Wong C.C., Lin J., Borgn A. Crystal-match guided formation of single-crystal tricobalt tetraoxygen nanomesh as superior anode for electrochemical energy storage[J]. Energy Environ. Sci.,2011,4:1845-1854.
    [107]Wang F., Lu C., Qin Y, Liang C., Zhao M., Yang S., Sun Z., Song X. Solid State Coalescence Growth and Electrochemical Performance of Plate-like Co3O4 Mesocrystals as Anode Materials for Lithium-ion Batteries [J]. J. Power Sources,2013, 235:67-73.
    [108]Huang H., Zhu W., Tao X., Xia Y, Yu Z., Fang J., Gan Y, Zhang W. Nanocrystal-Constructed Mesoporous Single-Crystalline Co3O4 Nanobelts with Superior Rate Capability for Advanced Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces,2012,4:5974-5980.
    [109]Li H., Fei GT., Fang M., Cui P., Guo X., Yan P., Zhang L.D. Synthesis of Urchin-like Co3O4 Hierarchical Micro/nanostructures and Their Photocatalytic Activity[J]. Appl. Surf. Sci.,2011,257:6527-6530.
    [110]Guo B., Li C., Yuan Z.-Y. Nanostructured Co3O4 Materials:Synthesis, Characterization, and Electrochemical Behaviors as Anode Reactants in Rechargeable Lithium Ion Batteries [J]. J. Phys. Chem. C,2010,114:12805-12817.
    [111]Thackeray M.M. Spinel Electrodes for Lithium Batteries[J] J. Am. Ceram. Soc., 1999,82(12):3347-3354.
    [112]Yang Z., Shen J., Archer L.A. An in situ Method of Creating Metal Oxide-carbon Composites and their Application as Anode Materials for Lithium-ion Batteries[J]. J. Mater. Chem.,2011,21:11092-11097.
    [113]Hariharan S., Saravanan K., Ramar V., Balaya P. A Rationally Designed Dual Role Anode Material for Lithium-ion and Sodium-ion Batteries:Case Study of Eco-friendly Fe3O4[J]. Phys. Chem. Chem. Phys.,2013,15:2945-2953.
    [114]Taberna P.L., Mitra S., Poizot P., Simon P., Tarascon J.-M. High Rate Capabilities Fe3O4-based Cu Nano-architectured Electrodes for Lithium-ion Battery Applications[J]. Nat. Mater.,2006,5:567-573.
    [115]Duana H., Gnanaraj J., Liang J. Synthesis and Rate Performance of Fe3O4-based Cu Nanostructured Electrodes for Li Ion Batteries[J]. J. Power Sources,2011,196: 4779-4784.
    [116]Saadat S., Zhu J., Sim D.H., Hng H.H., Yazami R., Yan Q. Coaxial Fe3O4/CuO Hybrid Nanowires as Ultra Fast Charge/discharge Lithium-ion Battery Anodes[J] J. Mater. Chem. A,2013,1:8672-8678.
    [117]Song Y., Qin S., Zhang Y., Gao W., Liu J. Large-Scale Porous Hematite Nanorod Arrays:Direct Growth on Titanium Foil and Reversible Lithium Storage [J]. J. Phys. Chem. C,2010,114:21158-21164.
    [118]陈洁,黄可龙,刘素琴.球形纳米Fe304的制备及超级电容性能研究[J].无机化学学报,2008,24(4):621-626.
    [119]Xiao Z., Xia Y, Ren Z., Liu Z., Xu G., Chao C., Li X., Shen G., Han G. Facile Synthesis of Single-crystalline Mesoporous α-Fe2O3 and Fe3O4 Nanorods as Anode Materials for Lithium-ion Batteries[J]. J. Mater. Chem.,2012,22:20566-20573.
    [120]Wang S., Zhang J., Chen C. Fe3O4 Submicron Spheroids as Anode Materials for Lithium-ion Batteries with Stable and High Electrochemical Performance[J]. J. Power Sources,2010,195:5379-5381.
    [121]Duan L., Huang Y., Jia D., Wang X., Guo Z. Fe3O4 Fuzzy Spheroids as Anode Materials for Lithium-ion Batteries[J]. Mater. Lett.,2012,71:151-153.
    [122]Xiong Q.Q., Tu J.P., Lu Y, Chen J., Yu Y.X., Qiao Y.Q., Wang X.L., Gu C.D. Synthesis of Hierarchical Hollow-Structured Single-Crystalline Magnetite (Fe3O4) Microspheres:The Highly Powerful Storage versus Lithium as an Anode for Lithium Ion Batteries[J]. J. Phys. Chem. C,2012,116:6495-6502.
    [123]Behera S.K. Facile Synthesis and Electrochemical Properties of Fe3O4 Nanoparticles for Li Ion Battery Anode[J]. J. Power Sources,2011,196:8669-8674.
    [124]Yuan S.M., Li J.X., Yang L.T., Su L.W., Liu L., Zhou Z. Preparation and Lithium Storage Performances of Mesoporous Fe3O4@C Microcapsules[J]. ACS Appl. Mater. Interfaces,2011,3:705-709.
    [125]Wu P., Du N., Zhang H., Yu J., Yang D. Carbon Nanocapsules as Nanoreactors for Controllable Synthesis of Encapsulated Iron and Iron Oxides:Magnetic Properties and Reversible Lithium Storage[J]. J. Phys. Chem. C,2011,115:3612-3620.
    [126]Wang J., Li L., Wong C.L., Sun L., Shen Z., Madhavi S. Controlled Synthesis of a-FeOOH Nanorods and their Transformation to Mesoporous a-Fe2O3, Fe3O4@C Nanorods as Anodes for Lithium Ion Batteries[J]. RSC Adv.,2013,3:15316-15326.
    [127]Xiong Q.Q., Lu Y, Wang X.L., Gu C.D., Qiao Y.Q., Tu J.P. Improved Electrochemical Performance of Porous Fe3O4/carbon Core/shell Nanorods as an Anode for Lithium-ion Batteries[J]. J. Alloys Comp.,2012,536:219-225.
    [128]Zhu T., Chen J.S., Lou X.W.(D.) Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe3O4@Carbon Nanorods for Application in Lithium Ion Batteries[J]. J. Phys. Chem. C,2011,115:9814-9820.
    [129]Hao Q., Lei D., Yin X., Zhang M., Liu S., Li Q., Chen L., Wang T.3-D Mesoporous Nano/micro-structured Fe3O4/C as a Superior Anode Material for Lithium-ion Batteries[J]. J. Solid State Electrochem.,2011,15:2563-2569.
    [130]Zhang Q., Shi Z., Deng Y, Zheng J., Liu G., Chen G Hollow Fe3O4/C Spheres as Superior Lithium Storage Materials[J]. J. Power Sources,2012,197:305-309.
    [131]Chen Y, Xia H., Lu L., Xue J. Synthesis of Porous Hollow Fe3O4 Beads and their Applications in Lithium Ion Batteries[J]. J. Mater. Chem.,2012,22:5006-5012.
    [132]Geng H., Zhou Q., Zheng J., Gu H. Preparation of Porous and Hollow Spheres as Efficient Anode Materials for High-Performance Li-Ion Battery[J]. RSC Adv.,2014,4:6430-6434.
    [133]Shen L., Song H., Cui H., Wen X., Wei X., Wang C. Fe3O4-carbon Nanocomposites via a Simple Synthesis as Anode Materials for Rechargeable Lithium Ion Batteries[J]. Cryst. Eng. Commun.,2013,15:9849-9854.
    [134]Ma Y., Zhang C., Ji G, Lee J.Y. Nitrogen-doped Carbon-encapsulation of Fe3O4 for Increased Reversibility in Li+Storage by the Conversion Reaction[J]. J. Mater. Chem.,2012,22:7845-7850.
    [135]Liu J., Zhou Y, Liu F., Liu C., Wang J., Pan Y, Xue D. One-pot Synthesis of Mesoporous Interconnected Carbon-encapsulated Fe3O4 Nanospheres as Superior Anodes for Li-ion Batteries[J]. RSC Adv.,2012,2:2262-2265.
    [136]Chen J.S., Zhang Y, Lou X.W.(D.) One-Pot Synthesis of Uniform Fe3O4 Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities[J]. ACS Appl. Mater. Interfaces,2011,3:3276-3279.
    [137]Yuan S., Zhou Z., Li G Structural Evolution from Mesoporous a-Fe2O3 to Fe3O4@C and y-Fe2O3 Nanospheres and their Lithium Storage Performances [J]. Cryst. Eng. Commun.,2011,13:4709-4713.
    [138]Zhao N., Wu S., He C., Wang Z., Shi C., Liu E., Li J. One-pot Synthesis of Uniform Fe3O4 Nanocrystals Encapsulated in Interconnected Carbon Nanospheres for Superior Lithium Storage Capability[J]. Carbon,2013,57:130-138.
    [139]Xia H., Wan Y, Yuan G, Fu Y, Wang X. Fe3O4/carbon Coreeshell Nanotubes as Promising Anode Materials for Lithium-ion Batteries[J]. J. Power Sources 2013,241: 486-493.
    [140]Zhu Y.G, Xie J., Cao GS., Zhu T.J., Zhao X.B. Facile Synthesis of C-Fe3O4-C Core-shell Nanotubes by a Self-templating Route and the Application as a High-performance Anode for Li-ion Batteries[J]. RSC Adv.,2013,3:6787-6793.
    [141]Wang L., Liang J., Zhu Y, Mei T., Zhang X., Yang Q., Qian Y Synthesis of Fe3O4@C Core-shell Nanorings and their Enhanced Electrochemical Performance for Lithium-ion Batteries[J]. Nanoscale,2013,5:3627-3631.
    [142]Muraliganth T., Murugan A.V., Manthiram A. Facile Synthesis of Carbon-decorated Single-crystalline Fe3O4 Nanowires and their Application as High Performance Anode in Lithium Ion Batteries[J]. Chem. Commun.,2009,7360-7362.
    [143]Wang L., Yu Y, Chen P.C., Zhang D.W., Chen C.H. Electrospinning Synthesis of C/Fe3O4 Composite Nanofibers and their Application for High Performance Lithium-ion Batteries[J]. J. Power Sources,2008,183:717-723.
    [144]Wu S., Wang Z., He C., Zhao N., Shi C., Liu E., Li J. Synthesis of Uniform and Superparamagnetic Fe3O4 Nanocrystals Embedded in a Porous Carbon Matrix for a Superior Lithium Ion Battery Anode[J]. J.Mater. Chem. A,2013,1:11011-11018.
    [145]He C., Wu S., Zhao N., Shi C., Liu E., Li J. Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material[J]. ACS Nano, 2013,7(5):4459-4469.
    [146]Zhang W.-M., Wu X.-L., Hu J.-S., Guo Y.-G, Wan L.-J. Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries[J]. Adv. Funct. Mater.,2008,18:3941-3946.
    [147]Lei C., Han F., Li D., Li W.-C., Sun Q., Zhang X.-Q., Lu A.-H. Dopamine as the Coating Agent and Carbon Precursor for the Fabrication of N-doped Carbon Coated Fe3O4 Composites as Superior Lithium Ion Anodes[J]. Nanoscale,2013,5: 1168-1175. [148] Jin S., Deng H., Long D., Liu X., Zhan L., Liang X., Qiao W., Ling L. Facile Synthesis of Hierarchically Structured Fe3O4/carbon Micro-flowers and their Application to Lithium-ion Battery Anodes[J]. J. Power Sources,2011,196: 3887-3893.
    [149]Hwang J.-K., Lim H.-S., Sun Y.-K., Suh K.-D. Monodispersed Hollow Carbon/Fe3O4 Composite Microspheres for High Performance Anode Materials in Lithium-ion Batteries[J]. J. Power Sources 2013,244:538-543.
    [150]Jung B.-Y., Lim H.-S., Sun Y.-K., Suh K.-D. Synthesis of Fe3O4/C Composite Microspheres for a High Performance Lithium-ion Battery Anode[J]. J. Power Sources,2013,244:177-182.
    [151]Lee S.H., Yu S.-H., Lee J.E., Jin A., Lee D.J., Lee N., Jo H., Shin K., Ahn T.-Y, Kim Y.-W., Choe H., Sung Y.-E., Hyeon T. Self-Assembled Fe3O4 Nanoparticle Clusters as High-Performance Anodes for Lithium Ion Batteries via Geometric Confinement[J]. Nano Lett.,2013,13:4249-4256.
    [152]Zhao X., Xia D., Zheng K. Fe3O4/Fe/Carbon Composite and Its Application as Anode Material for Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces,2012,4: 1350-1356.
    [153]Dong Y, Hu M., Ma R., Cheng H., Yang S., Li YY, Zapien J.A. Evaporation-induced Synthesis of Carbon-supported Fe3O4 Nanocomposites as Anode Material for Lithium-ion Batteries[J]. Cryst. Eng. Comm.,2013,15:1324-1331.
    [154]Kang E., Jung Y.S., Cavanagh A.S., Kim G.-H., George S.M., Dillon A.C., Kim J.K., Lee J. Fe3O4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium-Ion Batteries[J]. Adv. Funct. Mater.,2011, 21:2430-2438.
    [155]Zhou J., Song H., Ma L., Chen X. Magnetite/graphene Nanosheet Composites: Interfacial Interaction and its Impact on the Durable High-rate Performance in Lithium-ion Batteries[J]. RSC Adv.,2011,1:782-791.
    [156]Zhuo L., Wu Y, Wang L., Ming J., Yu Y, Zhang X., Zhao F. CO2-expanded Ethanol Chemical Synthesis of a Fe3O4@graphene Composite and its Good Electrochemical Properties as Anode Material for Li-ion Batteries[J]. J. Mater. Chem. A,2013,1:3954-3960.
    [157]Zhou G, Wang D.-W., Li F., Zhang L., Li N., Wu Z.-S., Wen L., Lu G.Q.(M.), Cheng H.-M. Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries[J]. Chem. Mater.,2010,22: 5306-5313.
    [158]Hsieh C.-T., Lin J.-Y, Mo C.-Y. Improved Storage Capacity and Rate Capability of Fe3O4-graphene Anodes for Lithium-ion Batteries[J]. Electrochim. Acta, 2011,58:119-124.
    [159]Zhang M., Lei D., Yin X., Chen L., Li Q., Wang Y, Wang T. Magnetite/graphene Composites:Microwave Irradiation Synthesis and Enhanced Cycling and Rate Performances for Lithium Ion Batteries[J]. J. Mater. Chem.,2010, 20:5538-5543.
    [160]Zhu X., Wu W., Liu Z., Li L., Hu J., Dai H., Ding L., Zhou K., Wang C., Song X. A Reduced Graphene Oxide-nanoporous Magnetic Oxide Iron Hybrid as an Improved Anode Material for Lithium Ion Batteries[J]. Electrochim. Acta,2013,95: 24-28.
    [161]Luo J., Liu J., Zeng Z., Ng C.F., Ma L., Zhang H., Lin J., Shen Z., Fan H.J. Three-Dimensional Graphene Foam Supported Fe3O4 Lithium Battery Anodes with Long Cycle Life and High Rate Capability[J]. Nano Lett.,2013,13(12):6136-6143.
    [162]Chen D., Ji G, Ma Y., Lee J.Y., Lu J. Graphene-Encapsulated Hollow Fe3O4 Nanoparticle Aggregates As a High-Performance Anode Material for Lithium Ion Batteries[J]. ACS Appl. Mater. Interfaces,2011,3:3078-3083.
    [163]Lian P., Zhu X., Xiang H., Li Z., Yang W., Wang H. Enhanced Cycling Performance of Fe3O4-graphene Nanocomposite as an Anode Material for Lithium-ion Batteries[J]. Electrochim. Acta,2010,56:834-840.
    [164]Li X., Huang X., Liu D., Wang X., Song S., Zhou L., Zhang H. Synthesis of 3D Hierarchical Fe3O4/Graphene Composites with High Lithium Storage Capacity and for Controlled Drug Delivery[J]. J. Phys. Chem. C,2011,115:21567-21573.
    [165]Su J., Cao M., Ren L., Hu C. Fe3O4_Graphene Nanocomposites with Improved Lithium Storage and Magnetism Properties [J]. J. Phys. Chem. C,2011,115: 14469-14477.
    [166]Chen Y., Song B., Lu L., Xue J. Ultra-small Fe3O4 Nanoparticle Decorated Graphene Nanosheets with Superior Cyclic Performance and Rate Capability[J]. Nanoscale,2013,5:6797-6803.
    [167]Wang J.-Z., Zhong C., Wexler D., Idris N.H., Wang Z.-X., Chen L.-Q., Liu H.-K. Graphene-Encapsulated Fe3O4 Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries[J]. Chem. Eur. J.,2011,17:661-667.
    [168]Li B., Cao H., Shao J., Qu M. Enhanced Anode Performances of the Fe3O4-Carbon-rGO Three Dimensional Composite in Lithium Ion Batteries[J]. Chem. Commun.,2011,47:10374-10376.
    [169]Dong Y.C., Ma R.G., Hu M.J., Cheng H., Tsang C.K., Yang Q.D., Li Y.Y., Zapien J.A. Scalable Synthesis of Fe3O4 Nanoparticles Anchored on Graphene as a High-performance Anode for Lithium Ion Batteries[J]. J. Solid State Chem.,2013, 201:330-337.
    [170]Fu C, Zhao G, Zhang H., Li S. A Facile Route to Controllable Synthesis of Fe3O4/Graphene Composites and Their Application in Lithium-Ion Batteries[J]. Int. J. Electrochem. Sci.,2014,9:46-60.
    [171]Alcantara R., Jaraba M., Lavela P., Tirado J.L. NiCo204 Spinel:First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries[J]. Chem. Mater.,2002,14:2847-2848.
    [172]Chu Y.-Q., Fu Z.-W., Qin Q.-Z. Cobalt Ferrite Thin Films as Anode Material for Lithium Ion Batteries[J]. Electrochim. Acta,2004,49:4915-^1921.
    [173]Xing Z., Ju Z., Yang J., Xu H., Qian Y. One-step Solid State Reaction to Selectively Fabricate Cubic and Tetragonal CuFe2O4 Anode Material for High Power Lithium Ion Batteries[J]. Electrochim. Acta,2013,102:51-57.
    [174]Kim H., Seo D.-H., Kim H., Park I., Hong J., Park K.-Y, Kang K. Multicomponent Effects on the Crystal Structures and Electrochemical Properties of Spinel-Structured M3O4 (M=Fe, Mn, Co) Anodes in Lithium Rechargeable Batteries[J]. Chem. Mater.,2012,24:720-725.
    [175]Sharma N., Shaju K.M., Subba Rao G.V., Chowdari B.V.R. Iron-tin Oxides with CaFe2O4 Structure as Anodes for Li-ion Batteries [J]. J. Power Sources,2003,124: 204-212.
    [176]Sivakumar N., Gnanakan S.R.P., Karthikeyan K., Amaresh S., Yoon W.S., Park G.J., Lee Y.S. Nanostructured MgFe2O4 as Anode Materials for Lithium-ion Batteries[J]. J. Alloys Comp.,2011,509:7038-7041.
    [177]Sharma Y, Sharma N., Subba Rao G.V., Chowdari B.V.R. Studies on Spinel Cobaltites, FeCo2O4 and MgCo2O4 as Anodes for Li-ion Batteries [J]. Solid State Ionics,2008,179:587-597.
    [178]Qiu Y, Yang S., Deng H., Jin L., Li W. A Novel Nanostructured Spinel ZnCo2O4 Electrode Material:Morphology Conserved Transformation from a Hexagonal Shaped Nanodisk Precursor and Application in Lithium Ion Batteries[J]. J. Mater. Chem.,2010,20:4439-4444.
    [179]Ding Y., Yang Y, Shao H. High Capacity ZnFe2O4 Anode Material for Lithium Ion Batteries[J]. Electrochim. Acta,2011,56:9433-9438.
    [180]Sharma Y, Sharma N., Subba Rao GV., Chowdari B.V.R. Li-storage and Cyclability of Urea Combustion Derived ZnFe2O4 as Anode for Li-ion Batteries [J]. Electrochim. Acta,2008,53:2380-2385.
    [181]Guo X., Lu X., Fang X., Mao Y, Wang Z., Chen L., Xu X., Yang H., Liu Y Lithium Storage in Hollow Spherical ZnFe2O4 as Anode Materials for Lithium Ion Batteries[J]. Electrochem. Commun.,2010,12:847-850.
    [182]Sharma Y, Sharma N., Subba Rao GV., Chowdari B.V.R. Li-storage and Cycling Properties of Spinel, CdFe2O4, as an Anode for Lithium Ion Batteries[J]. Bull. Mater. Sci.,2009,32(3):295-304.
    [183]Alcantara R., Jaraba M., Lavela P., Tirado J.L., Jumas J.C., Olivier-Fourcade J. Changes in Oxidation State and Magnetic Order of Iron Atoms during the Electrochemical Reaction of Lithium with NiFe2O4[J]. Electrochem. Commun.,2003, 5:16-21.
    [184]Teh P.F., Sharma Y, Pramana S.S., Srinivasan M. Nanoweb Anodes Composed of One-dimensional, High Aspect Ratio, Size Tunable Electrospun ZnFe2O4 Nanofibers for Lithium Ion Batteries[J]. J. Mater. Chem.,2011,21:14999-15008.
    [185]Teh P.F., Pramana S.S., Sharma Y, Ko Y.W., Madhavi S. Electrospun Zni-xMnxFe2O4 Nanofibers As Anodes for Lithium-Ion Batteries and the Impact of Mixed Transition Metallic Oxides on Battery Performance[J]. ACS Appl. Mater. Interfaces,2013,5:5461-5467.
    [186]Deng Y, Zhang Q., Tang S., Zhang L., Deng S., Shi Z., Chen G One-pot Synthesis of ZnFe2O4/C Hollow Spheres as Superior Anode Materials for Lithium Ion Batteries[J]. Chem. Commun.,2011,47:6828-6830.
    [187]Sharma Y, Sharma N., Subba Rao G.V, Chowdari B.V.R. Nanophase ZnCo2O4 as a High Performance Anode Material for Li-Ion Batteries [J]. Adv. Funct. Mater., 2007,17:2855-2861.
    [188]Sharma Y, Sharma N., Subba Rao G.V., Chowdari B.V.R. Lithium Recycling Behaviour of Nano-phase-CuCo2O4 as Anode for Lithium-ion Batteries[J]. J. Power Sources,2007,173:495-501.
    [189]Du N., Xu Y, Zhang H., Yu J., Zhai C., Yang D. Porous ZnCo2O4 Nanowires Synthesis via Sacrificial Templates:High-Performance Anode Materials of Li-Ion Batteries[J]. Inorg. Chem.,2011,50:3320-3324.
    [190]Xiao L., Yang Y, Yin J., Li Q., Zhang L. Low Temperature Synthesis of Flower-like ZnMn2O4 Superstructures with Enhanced Electrochemical Lithium Storage[J]. J. Power Sources,2009,194:1089-1093.
    [191]Courtel F.M., Duncan H., Abu-Lebdeh Y, Davidson I.J. High Capacity Anode Materials for Li-ion Batteries Based on Spinel Metal Oxides AMn2O4 (A=Co, Ni, and Zn)[J]. J. Mater. Chem.,2011,21:10206-10218.
    [192]Zhou L., Wu H.B., Zhu T., Lou X.W.(D.) Facile Preparation of ZnMn2O4 Hollow Microspheres as High-capacity Anodes for Lithium-ion Batteries[J]. J. Mater. Chem.,2012,22:827-829.
    [193]Deng Y, Tang S., Zhang Q., Shi Z., Zhang L., Zhan S., Chen G. Controllable Synthesis of Spinel Nano-ZnMn2O4 via a Single Source Precursor Route and its High Capacity Retention as Anode Material for Lithium Ion Batteries[J]. J. Mater. Chem., 2011,21:11987-11995.
    [194]Cabana J., Monconduit L., Larcher D., Palacin M.R. Beyond Intercalation-Based Li-ion Batteries:The Stage of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions[J]. Adv. Mater.,2010,22(35): E170-E192.
    [195]Lavela P., Tirado J.L. CoFe2O4 and NiFe2O4 Synthesized by Sol-gel Procedures for their Use as Anode Materials for Li Ion Batteries[J]. J. Power Sources,2007,172: 379-387.
    [196]Wang Y, Su D., Ung A., Ahn J.-h., Wang G. Hollow CoFe204 Nanospheres as a High Capacity Anode Material for Lithium Ion Batteries[J]. Nanotechnology,2012, 23:055402-055407.
    [197]Jin L., Qiu Y, Deng H., Li W, Li H., Yang S. Hollow CuFe2O4 Spheres Encapsulated in Carbon Shells as an Anode Material for Rechargeable Lithium-ion Batteries[J]. Electrochim. Acta,2011,56:9127-9132.
    [198]Li Y.N., Zhang P., Guo Z., Liu H., Yang J. NiCo2O4/C Nanocomposite as a Highly Reversible Anode Material for Lithium-Ion Batteries[J]. Electrochem. Solid-State Lett.,2008,11(5):A64-A67.
    [199]Guyomard D., Sigala C., La Salle A.L.G, Piffard S.Y. New Amorphous Oxides as High Capacity Negative Electrodes for Lithium Batteries:the LixMVO4 (M=Ni, Co, Cd, Zn; 1    [200]Denis S., Baudrin E., Orsini F., Ouvrard G, Touboul M., Tarascon J.-M. Synthesis and Electrochemical Properties of Numerous Classes of Vanadates[J]. J. Power Sources,1999,81-82:79-84.
    [201]Kim S.S., Ikuta H., Wakihara M. Synthesis and Characterization of MnV2O6 as a High Capacity Anode Material for a Lithium Secondary Battery[J]. Solid State Ionics,2001,139(1-2):57-65.
    [202]Leroux F., Piffard Y, Ouvrard G, Mansot J. L., Guyomard D. New Amorphous Mixed Transition Metal Oxides and Their Li Derivatives:□ Synthesis, Characterization, and Electrochemical Behavior[J]. Chem. Mater.,1999,11(10): 2948-2959.
    [203]Liu R.S., Wang C.Y., Drozd V.A., Hu S.F., Sheu H.S. A Novel Anode Material LiVMoO6 for Rechargeable Lithium-Ion Batteries[J]. Electrochem. Solid-State Lett., 2005,8(12):A650-A653.
    [204]Kim S.S., Ogura S., Ikuta H., Uchimoto Y, Wakihara M. Synthesis of MnMoO4 as High Capacity Anode Material for Li Secondary Battery[J]. Chem. Lett., 2001,30(8):760-761.
    [205]Leroux F., Goward G.R., Power W.P., Nazar L.F. Understanding the Nature of Low-Potential Li Uptake into High Volumetric Capacity Molybdenum Oxides [J]. Electrochem. Solid-State Lett.,1998,1(6):255-258.
    [206]Sharma N., Shaju K.M., Subba Rao G. V., Chowdari B.V.R. Mixed Oxides Ca2Fe2O5 and Ca2Co2O5 as Anode Materials for Li-ion Batteries[J]. Electrochim. Acta, 2004,49(7):1035-1043.
    [207]Kim D.W., Ko YD., Park J.G., Kim B.K. Formation of Lithium-Driven Active/Inactive Nanocomposite Electrodes Based on Ca3Co4O9 Nanoplates[J]. Angew. Chem., Int. Ed.,2007,46(35):6654-6657.
    [208]Ko YD., Kang J.G., Choi K.J., Park J.G, Ahn, J.P., Chung K.Y., Nam K.W., Yoon W.S., Kim D.W. High Rate Capabilities Induced by Multi-phasic Nanodomains in Iron-substituted Calcium Cobaltite Electrodes[J]. J. Mater. Chem.,2009,19: 1829-1835.
    [209]Li J., Dahn H.M., Sanderson R.J., Todd A.D.W., Dahn J.R. Impact of Rare Earth Additions on Transition Metal Oxides as Negative Electrodes for Lithium-Ion Batteries[J]. J. Electrochem. Soc.,2008,155(12):A975-A981.
    [210]Rowsell J.L.C., Gaubicher J., Nazar L.F. A New Class of Materials for Lithium-ion Batteries:Iron(III) Borates[J]. J. Power Sources,2001,97-98:254-257.
    [211]Debart A., Revel B., Dupont L., Montagne L., Leriche J.B., Touboul M., Tarascon J.-M. Study of the Reactivity Mechanism of M3B2O6 (with M=Co, Ni, and Cu) toward Lithium[J]. Chem. Mater.,2003,15(19):3683-3691.
    [212]Aragon M.J., Leon B., Vicente C.P., Tirado J.L. Synthesis and Electrochemical Reaction with Lithium of Mesoporous Iron Oxalate Nanoribbons[J]. Inorg. Chem., 2008,47(22):10366-10371.
    [213]Aragon M.J., Leon B., Vicente C.P., Tirado J.L., Chadwick A.V., Berko A., Beh S.Y. Cobalt Oxalate Nanoribbons as Negative-Electrode Material for Lithium-Ion Batteries[J]. Chem. Mater.,2009,21(9):1834-1840.
    [214]Lou X.M., Wu X.Z., Zhang YX. Goethite nanorods as anode electrode materials for rechargeable Li-ion batteries[J]. Electrochem. Commun.,2009,11(8):1696-1699.
    [215]Reddy M.V., Madhavi S., Subba Rao G.V., Chowdari B.V.R. Metal Oxyfluorides TiOF2 and NbO2F as Anodes for Li-ion Batteries[J]. J. Power Sources, 2006,162(2):1312-1321.
    [216]Chen L., Shen L., Nie P., Zhang X., Li H. Facile Hydrothermal Synthesis of Single Crystalline TiOF2 Nanocubes and their Phase Transitions to TiO2 Hollow Nanocages as Anode Materials for Lithium-ion Battery[J]. Electrochim. Acta,2012, 62:408-415.
    [217]Aragon M.J., Perez-Vicente C., Tirado J.L. Submicronic Particles of Manganese Carbonate Prepared in Reverse Micelles:A New Electrode Material for Lithium-ion Batteries[J]. Electrochem. Commun.,2007,9:1744-1748.
    [218]Aragon M.J., Leon B., Vicente C.P., Tirado J.L. A New Form of Manganese Carbonate for the Negative Electrode of Lithium-ion Batteries[J]. J. Power Sources, 2011,196:2863-2866.
    [219]Mirhashemihaghighi S., Leon B., Vicente C.P., Tirado J.L., Stoyanova R., Yoncheva M., Zhecheva E., Puche R.S., Arroyo E.M., de Paz J.R. Lithium Storage Mechanisms and Effect of Partial Cobalt Substitution in Manganese Carbonate Electrodes[J]. Inorg. Chem.,2012,51:5554-5560.
    [220]Su L., Zhou Z., Qin X., Tang Q., Wu D., Shen P. CoCO3 Submicrocube/graphene Composites with High Lithium Storage Capability[J]. Nano Energy,2013,2(2):276-282.
    [221]Sharma Y., Sharma N., Subba Rao G.V, Chowdari B.V.R. Nano-(Cd1/3Co1/3Zn1/3)CO3:a New and High Capacity Anode Material for Li-ion Batteries[J]. J. Mater. Chem.,2009,19:5047-5054.
    [222]Shao L., Ma R., Wu K., Shui M., Lao M., Wang D., Long N., Ren Y, Shu J. Metal Carbonates as Anode Materials for Lithium Ion Batteries[J]. J. Alloys Comp., 2013,581:602-609.
    [223]Shao L., Wang S., Wu K., Shui M., Ma R., Wang D., Long N., Ren Y, Shu J. Comparison of (BiO)2CO3 to CdCO3 as Anode Materials for Lithium-ion Batteries[J]. Ceram. Int.,2014,40(3):4623-4630.
    [224]Zhang F., Zhang R., Liang G, Feng J., Lu L., Qian Y. Carboxylated Carbon Nanotube Anchored MnCO3 Nanocomposites as Anode Materials for Advanced Lithium-ion Batteries[J]. Mater. Lett.,2013,111:165-168.
    [225]Zhang F., Zhang R., Feng J., Qian Y CdCO3/Carbon Nanotube Nanocomposites as Anode Materials for Advanced Lithium-ion Batteries[J]. Mater. Lett.2014,114: 115-118.
    [226]Zhong Y, Su L., Yang M., Wei J., Zhou Z. Rambutan-Like FeCO3 Hollow Microspheres:Facile Preparation and Superior Lithium Storage Performances[J]. ACS Appl. Mater. Interfaces,2013,5(21):11212-11217.
    [227]Bao C., Song L., Xing W., Yuan B., Wilkie C.A., Huang J., Guo Y., Hu Y Preparation of Graphene by Pressurized Oxidation and Multiplex Reduction and its Polymer Nanocomposites by Masterbatch-based Melt Blending[J]. J. Mater. Chem., 2012,22:6088-6096.
    [228]Kaskhedikar N.A., Maier J. Lithium Storage in Carbon Nanostructures[J]. Adv. Mater.,2009,21:2664-2680.
    [229]Chung F.H. Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. Ⅰ. Matrix-flushing Method for Quantitative Multicomponent Analysis[J]. J. Appl. Cryst.,1974,7(6):519-525.
    [230]Chung F.H. Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. Ⅱ. Adiabatic Principle of X-ray Diffraction Analysis of Mixtures[J]. J. Appl. Cryst.,1974,7(6):526-531.
    [231]Wu L., Xiao Q., Li Z., Lei G., Zhang P.,Wang L. CoFe2O4/C Composite Fbers as Anode Materials for Lithium-ion Batteries with Stable and High Electrochemical Performance[J]. Solid State Ionics,2012,215:24-28.
    [232]Zhang Z., Wang Y., Zhang M., Tan Q., Lv X., Zhong Z., Su F. Mesoporous CoFe2O4 Nanospheres Cross-linked by Carbon Nanotubes as High-performance Anodes for Lithium-ion Batteries[J]. J. Mater. Chem. A,2013,1:7444-7450.
    [233]Xia H., Zhu D., Fu Y., Wang X. CoFe2O4-graphene Nanocomposite as a High-capacity Anode Material for Lithium-ion Batteries[J]. Electrochim. Acta,2012, 83:166-174.
    [234]Zhang M., Jia M., Jin Y., Wen Q., Chen C. Reduced Graphene Oxide/CoFe2O4-Co Nanocomposite as High Performance Anode for Lithium Ion Batteries[J]. J. Alloys Compd.,2013,566:131-136.
    [235]Mao Y., Duan H., Xu B., Zhang L., Hu Y., Zhao C.,Wang Z., Chen L., Yang Y. Lithium Storage in Nitrogen-rich Mesoporous Carbon Materials [J]. Energy Environ. Sci.,2012,5:7950-7955.
    [236]Liu H., Zhang Y., Li R., Sun X., Desilets S., Abou-Rachid H., Jaidann M., Lussier L.-S. Structural and Morphological Control of Aligned Nitrogen-doped Carbon Nanotubes[J]. Carbon,2010,48:1498-1507.
    [238]Wu Z.-S., Ren W, Xu L, Li F, Cheng H.-M. Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries[J]. ACS Nano,2011,5:5463-5471
    [239]Ding Z., Zhao L., Suo L., Jiao Y., Meng S., Hu Y.-S.,Wang Z., Chen L. Towards Understanding the E□ects of Carbon and Nitrogen-doped Carbon Coating on the Electrochemical Performance of Li4Ti5O12 in Lithium Ion Batteries:a Combined Experimental and Theoretical Study[J]. Phys. Chem. Chem. Phys.,2011,13: 15127-15133.
    [240]Robertson J. Diamond-like Amorphous Carbon[J]. Mater. Sci. Eng. R,2002,37: 129-281.
    [241]Han R-D., Bai Y.-J., Liu R., Yao B., Qi Y.-X., Lun N., Zhang J.-X. Template-Free Synthesis of Interconnected Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries[J]. Adv. Energy Mater., 2011,1:798-801.
    [242]Bulusheva L.G., Okotrub A.V., Kurenya A.G., Zhang H.K., Zhang H.J., Chen X.H., Song H.H. Electrochemical Properties of Nitrogen-doped Carbon Nanotube Anode in Li-ion Batteries[J]. Carbon,2011,49:4013-4023.
    [243]Wang G, Shen X., Yao J., Park J. Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries[J]. Carbon,2009,47:2049-2053.
    [244]Larcher D., Masquelier C., Bonnin D., Chabre Y, Masson V., Leriche J.B., Tarascon J.-M. Effect of Particle Size on Lithium Intercalation into a-Fe2O3[J]. J. Electrochem. Soc.,2003,150:A133-A139.
    [245]Xie K, Lu Z., Huang H., Lu W., Lai Y, Lei J., Zhou L., Liu Y Iron Supported C@Fe3O4 Nanotube Array:a New Type of 3D Anode with Low-cost for High Performance Lithium-ion Batteries[J]. J. Mater. Chem.,2012,22:5560-5567.
    [246]Wu F.D., Wang Y Self-assembled Echinus-like Nanostructures of Mesoporous CoO Nanorod@CNT for Lithium-ion Batteries[J]. J. Mater. Chem.,2011,21: 6636-6641.
    [247]Zhu J., Zhu T., Zhou X., Zhang Y, Lou X.W., Chen X., Zhang H., Hng H.H., Yan Q. Facile Synthesis of Metal Oxide/reduced Graphene Oxide Hybrids with High Lithium Storage Capacity and Stable Cyclability[J]. Nanoscale,2011,3:1084-1089.
    [248]Kang E., Jung Y.S., Kim G.H., Chun J.,Wiesner U., Dillon A.C., Kim J.K., Lee J. Highly Improved Rate Capability for a Lithium-Ion Battery Nano-Li4Ti5O12 Negative Electrode via Carbon-Coated Mesoporous Uniform Pores with a Simple Self-Assembly Method[J]. Adv. Funct. Mater.,2011,21:4349-4357.
    [249]Xiang J.Y., Tu J.P., Qiao Y.Q.,Wang X.L., Zhong J., Zhang D., Gu C.D. Electrochemical Impedance Analysis of a Hierarchical CuO Electrode Composed of Self-Assembled Nanoplates[J]. J. Phys. Chem. C,2011,115:2505-2513.
    [250]Kistic R., Rakovic D., Stepanyan S.A., Davidova I.E., Gribov L.A. Vibrational Spectroscopy of Polypyrrole, Theoretical Study[J]. J. Chem. Phys.,1995,102: 3104-3109.
    [251]Jing X., Song S., Wang J., Ge L., Jamil S., Liu Q., Mann T., He Y., Zhang M., Wei H., Liu L. Solvothermal Synthesis of Morphology Controllable CoCO3 and Their Conversion to Co3O4 for Catalytic Application[J]. Powder Technol.,2012,217: 624-628.
    [252]Li C.C., Yin X.M., Wang T.H., Zeng H.C. Morphogenesis of Highly Uniform CoCO3 Submicrometer Crystals and Their Conversion to Mesoporous Co3O4 for Gas-Sensing Applications[J]. Chem. Mater.,2009,21:4984-4992.
    [253]Nassar M.Y. Size-controlled Synthesis of CoCO3 and Co3O4 Nanoparticles by Free-surfactant Hydrothermal Method[J]. Mater. Lett.,2013,94:112-115.
    [254]Nassar M.Y, Ahmed I.S. Hydrothermal Synthesis of Cobalt Carbonates Using Different Counter Ions:An Efficient Precursor to Nano-sized Cobalt Oxide (Co3O4)[J]. Polyhedron,2011,30:2431-2437.
    [255]Idris N.H., Wang J., Chou S., Zhong C., Rahman M.M., Liu H. Effects of Polypyrrole on the Performance of Nickel Oxide Anode Materials for Rechargeable Lithium-ion Batteries[J]. J. Mater. Res.,2011,26(7):860-866.
    [256]Eshkenazi V., Peled E., Burstein L., Golodnitsky D. XPS Analysis of the SEI Formed on Carbonaceous Materials[J]. Solid State Ionics,2004,170:83-91.
    [257]Qiu D., Xu Z., Zheng M., Zhao B., Pan L., Pu L., Shi Y. Graphene Anchored with Mesoporous NiO Nanoplates as Anode Material for Lithium-ion Batteries[J]. J. Solid State Electrochem.,2012,16:1889-1892.
    [258]Wang C., Zhang Q., Wu Q.-H., Ng T.-W., Wong T., Ren J., Shi Z., Lee C.-S., Lee S.-T., Zhang W. Facile Synthesis of Laminate-structured Graphene Sheet-Fe3O4 Nanocomposites with Superior High Reversible Specific Capacity and Cyclic Stability for Lithium-ion Batteries[J]. RSC Adv.,2012,2:10680-10688.
    [259]Ban C., Wu Z., Gillaspie D.T., Chen L., Yan Y., Blackburn J.L., Dillon A.C. Nanostructured Fe.O4/SWNT Electrode:Binder-Free and High-Rate Li-Ion Anode[J]. Adv. Mater.,2010,22(20):E145-E149.
    [260]Oohira S., Kakihana M., Fujii Y., Nagumo T., Okamoto M. Spectroscopic Analysis of Lithium Hydroxide and Carbonate in Solid State Lithium Oxide[J]. J. Nucl. Mater.,1985,133:201-204.
    [261]Lavela P., Ortiz G.F., Tirado J.L., Zhecheva E., Stoyanova R., Ivanova Sv. High-Performance Transition Metal Mixed Oxides in Conversion Electrodes:A Combined Spectroscopic and Electrochemical Study[J]. J. Phys. Chem. C,2007,111, 14238.
    [262]Li J., Li H., Wang Z., Chen L., Huang X. The Study of Surface Films Formed on SnO Anode in Lithium Rechargeable Batteries by FTIR Spectroscopy[J]. J. Power Sources,2002,107:1-4.
    [263]Li L.F., Xie B., Lee H.S., Li H., Yang X.Q., McBreen J., Huang X.J. Studies on the Enhancement of Solid Electrolyte Interphase Formation on Graphitized Anodes in LiX-carbonate Based Electrolytes Using Lewis Acid Additives for Lithium-ion Batteries[J]. J. Power Sources,2009,189:539-542.
    [264]Maccario M., Croguennec L., Desbat B., Couzi M., Le Cras F., Servant L. Raman and FTIR Spectroscopy Investigations of Carbon-Coated LixFePO4 Materials[J]. J. Electrochem. Soc.,2008,155:A879-A886.
    [265]Peng Q.-Y., Cong P.-H., Liu X.-J., Liu T.-X., Huang S., Li T.-S. The Preparation of PVDF/clay Nanocomposites and the Investigation of Their Tribological Properties[J]. Wear,2009,266:713-720.
    [266]O'reilly J.M., Mosher R.A. Functional Groups in Carbon Black by FTIR Spectroscopy[J]. Carbon,1983,21:47-51.
    [267]Shao Y, Yin G., Wang J., Gao Y, Shi P. Black Electrode for Oxygen Reduction In Situ Deposition of Highly Dispersed Pt Nanoparticles on Carbon[J]. J. Electrochem. Soc.,2006,153:A1261-A1265.
    [268]Hariharan S., Ramar V, Joshi S.P., Balaya P. Developing a Light Weight Lithium Ion Battery-An Effective Material and Electrode Design for High Performance Conversion Anodes[J]. RSC Adv.,2013,3:6386-6394.
    [269]Pyun S.I. In-situ Spectroelectrochemical Analysis of the Passivating Surface Film Formed on a Carbon Film Electrode as a Function of the Water Content in 1 M LiPF6-EC/DEC Solution[J]. Fresenius'J. Anal. Chem.,1999,363:38-45.
    [270]Choi N.-S., Profatilova I.A., Kim S.-S., Song E.-H. Thermal Reactions of Lithiated Graphite Anode in LiPF6-based Electrolyte[J]. Thermochim. Acta,2008, 480:10-14.
    [271]Li H., Shi L., Lu W., Huang X., Chen L. Studies on Capacity Loss and Capacity Fading of Nanosized SnSb Alloy Anode for Li-Ion Batteries[J]. J. Electrochem. Soc., 2001,148:A915-A922.
    [272]Yoshida I.V.P., Hase Y. Infrared Active Frequencies for Lithium Hydroxide[J]. Spectrosc. Lett.,1979,12(5):409-414.
    [273]Smyrl N.R., Fuller E.L., Powell G.L. Monitoring the Heterogeneous Reaction of LiH and LiOH with H2O and CO2 by Diffuse Reflectance Infrared Fourier Transform Spectroscopy[J]. Appl. Spectrosc.,1983,37(1):38-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700