新型一维碳纳米材料的热CVD法合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Thermal Chemical Vapor Deposition Synthesis and Properties of New One-dimensional Carbon Nanomaterials
  • 作者:陶新永
  • 论文级别:博士
  • 学科专业名称:材料物理与化学
  • 学位年度:2007
  • 导师:张孝彬
  • 学科代码:080501
  • 学位授予单位:浙江大学
  • 论文提交日期:2007-01-01
摘要
纳米碳管(CNTs)由于其独特的物理化学性质,其应用涉及到了纳米制造、电子材料和器件、生物医学、化学、物理、复合材料、储能材料、电子源等众多领域。CNTs合成方法已有数十种,热CVD法以其高效和低成本而备受关注。催化剂是热CVD法合成CNTs的关键因素。近年来热CVD法制备CNTs技术有了较大的发展,但仍然存在一些问题,例如常规催化剂的催化效率不高,CNTs的产率较低,因此需要开发一些高效率的催化剂。此外,除了传统的Fe、Co、Ni催化剂外,是否可以开发出新型催化剂以便合成结构不同于常规纳米碳材料的新型碳材料,目前国内外有关此方面的研究较少。
     本论文的工作中,我们制备出了Fe、Co、Ni掺杂的MgMoO_4催化剂,Li、Na、K氧化物掺杂的Cu/MgO催化剂和纳米SnO_2催化剂共三大类催化剂,利用这三类催化剂以热CVD法合成出了一系列以CNTs为主的新型碳纳米材料,并研究了它们的催化机理。基于所合成的各种碳纳米材料的结构特点,研究了其性能特征及功能化应用。
     利用溶胶凝胶燃烧法合成了活性组分含量可调的MgMoO_4催化剂,首次发现单相MgMoO_4催化剂可合成高产率多壁纳米碳管(MWNTs)束。在对MgMoO_4催化剂进行适当的Fe、Co、Ni掺杂后发现可以进一步提高催化剂的催化性能。利用掺杂后的MgMoO_4催化剂高温裂解甲烷气体,以氢气作为载气,反应1小时后,制备的MWNTs粗产物质量可超过原始催化剂的50倍;通过简单放大,1克催化剂的单炉产量在半小时内可超过40克,催化效率远超过现有的常规催化剂。利用透射电镜(T EM)分析MWNTs的生长机理,发现MWNTs束的形成中以底部生长机制为主,同时兼有顶部生长。我们还发现反应时间、碳源气氛、载气气氛对产物的形貌和结构均有影响。利用Co掺杂的MgMoO_4催化剂,以甲烷、氢气、氨气分别作为碳源气体、载气、掺杂气体,合成出了产率同样较高的氮掺杂MWNTs。氨气的引入影响了MWNTs的生长机制,因此不再以束状存在。此催化剂的催化效率仍然较高,反应1小时合成的产物质量超过原始催化剂的30倍。结果显示可以通过调节氨气流量使CNTs的氮含量控制在0.6 at.%到3.2 at.%之间。X射线光电子能谱(XPS)证明在氮掺杂MWNTs中有三种结构的氮原子,且以石墨结构氮为主。氮掺杂使CNTs中的缺陷和无序碳增加。
     首次利用碱金属(锂、钠或钾)氧化物掺杂的铜催化剂,以乙炔为碳源,氨气为氮源合成出了一系列新型碳纳米材料,包括纳米铜锥填充的纳米碳角、头部填充有纳米铜锥的CNTs、一端为纳米铜锥另一端为分叉纤维的CNTs、具有多孔分叉结构的纳米碳纤维、多分叉CNTs。碱金属氧化物掺杂含量和反应温度可调控产物的形貌,制备形态不同的碳纳米材料。碱金属掺杂在催化过程中起到了重要作用。我们认为碱金属氧化物的掺杂引起了铜电子结构的变化,从而改变了铜的催化性能。基于分叉纳米碳纤维的多孔结构,将其应用于双电层电容器中,结果证明此纤维是一种优异的电化学储能材料。基于头部填充有纳米铜锥的CNTs的独特结构,我们将其应用到了纳米焊接技术中,发现可以通过控制外电压来实现铜纳米锥的可控熔化和输运。利用铜的熔化和输运特性,我们成功实现了CNTs的自焊接。
     以纳米SnO_2为催化剂高温裂解乙炔气体制备出了单晶锡纳米线填充的CNTs(β-Sn/CNTs),即碳包覆锡纳米线。我们发现催化剂的活性组分为SnO_2而不是SnO或者金属Sn。反应温度对产物的形貌和微结构有明显的影响。将此类纳米碳管包覆的锡纳米线应用于锂离子电池负极中,发现此类新材料的电化学性能要优于纯金属锡电极。TEM观察发现单晶锡在电子束辐照下能够熔化,且熔化后的锡线能够随着电子束密度的变化而伸缩,我们对其熔化和伸缩机理进行了探讨。
Many potential applications have been proposed for carbon nanotubes (CNTs), including nanofabrication, electronical materials and devices, biomedicine, chemistry, physics, composites, energy storage, electron resource and so on, based on their unique physical and chemical properties. Among tens of synthesis methods for CNTs, the thermal chemical vapor deposition (CVD) method attracts more attentions because of its low cost and high efficiency. The catalyst plays a key role in the synthesis procedure. Although the CVD synthesis of CNTs has been developed in recent years, there are many barriers to overcome. The conventional catalyst is not yet sufficiently effective and limited to transition metals such as Fe, Co, Ni and their alloys. Particularly, it is interesting to see the possibility of exploring some new catalysts to synthesize unconventional carbon nanomaterials.
    In the thesis, we successfully prepared three kinds of catalysts, i.e., transition metals (Fe, Co and Ni) doped MgMoO_4, alkali metal (Li, Na and K) oxide doped Cu/MgO catalyst and nanosized SnO_2 catalyst. Using these catalysts, a series of novel carbon nanomaterials, mainly CNTs, can be synthesized via CVD method. Some properties and applications were studied, based on their special structures.
    Single phase MgMoO_4 catalyst was prepared by a sol-gel combustion method. We found that the multi-walled carbon nanotube (MWNT) bundles can be produced using this MgMoO_4 catalyst for the first time. The experiments revealed that the transition metals such as Fe, Co and Ni doped MgMoO_4 catalyst have much higer activity and efficiency than the pure MgMoO_4. After reaction for 1 h, the maximum yield of synthesized MWNTs bundles is over 50 times of the pristine doped MgMoO_4 catalyst. With a simple enlarged process, a single furnace can produce over 40 g CNTs from 1 g doped MgMoO_4 catalyst in 30 min. The efficiency of these transition metals doped MgMoO_4 is higher than the conventional catalyst. The transmission electron microscopy (TEM) results proved that most of the MWNTs grow in the base-growth mechanism. It was also found that the reactive activity of the catalyst depends on the reaction time, carbon source and carrier gas. The nitrogen doped MWNTs can also be produced on the transition metals doped MgMoO_4 catalyst using CH_4, H_2 and NH_3 as carbon source, carrier gas and nitrogen source, respectively. After reacted for 1 h, the maximum yield of
    synthesized nitrogen doped MWNTs is over 30 times of the pristine Co doped MgMoO_4 catalyst. By controlling the flow-rate of NH_3, the nitrogen concentration of 0.6 at.% to 3.2 at.% was obtained. X-ray photoelectron spectroscopy (XPS) revealed that three different structures of the nitrogen atoms were involved in the nitrogen-doped MWCNTs, among which graphite-like structure was dominant in these MWCNTs. More defects and disorders are introduced into MWCNTs due to the nitrogen doping.
    It was found that several categories of novel carbon nanomaterials can be synthesized using alkali metal (Li, Na and K) oxide doped Cu/MgO catalyst via thermal CVD method using C_2H_2 and NH_3 as carbon source and nitrogen source, respectively. By controlling the reaction temperature and the content of alkali metals, various products such as Cu nanocone filled single crystalline carbon nanohorns, carbon nanotubes filled with Cu nanocones at the tips (Cu-CNTs), Cu-CNTs with carbon nanofiber, multi-branched carbon nanotubes and multi-brandched carbon nanofibers with porous structure can be produced. It is proposed that the alkali metal oxide doping changes the electronic structure of the copper catalyst. The carbon nanofiber shows fascinating potential in the electrochemical double-layed capacitors due to its porous structure. Spot welding using Cu-CNTs was investigated experimentally using nanorobotic manipulation inside a TEM. Controlled melting and flowing of copper inside nanotube shells were realized by changing the bias voltage. The self welding of the CNTs was realized based on the melting and flowing property of Cu.
    Carbon nanotubes filled with single crystalline β-Sn nanowires (β-Sn/CNTs) have been synthesized on the nanosized SnO_ catalyst by thermal CVD method using C_2H_2 as carbon source. It was found that the SnO_2 is the active component for the deposition of carbon. The products are affected by the growth temperature. The prepared β-Sn/CNTs were used as the anode of lithium ion battery. Upon the electrochemical testing, the β-Sn/CNTs electrodes show better electrochemical prperties than the pure Sn. Upon TEM observasions, it was also found that the Sn can be molten under the irradiation of electron beam and elongation/contraction alone the CNTs with the density change of electron beam. The mechanism of melting and elongation/contraction of the Sn nanowires were discussed.
引文
[1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    [2] Saito R., Dresselhaus G., Dresselhaus M.S. Physical properties of carbon nanotubes, World Scientific, London, 1998.
    [3] Holt J.K., Park H.G., Wang Y.M. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006, 312: 1034-1037.
    [4] Monthioux M., Kuznetsov V.L. Who should be given the credit for the discovery of carbon nanotubes. Carbon, 2006, 44: 1621-1623.
    [5] Bethune D.S., Kiang C.H., De Vries M.S., Gorman G., Savoy R., Vasquez J., Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363: 605-607.
    [6] Iijima S., Ichihashi T. Single shell carbon nanotubes of one nanometer diameter. Nature, 1993, 363: 603-605.
    [7] Dresselhaus M. S., Dresselhaus G., Saito R. Physics of carbon nanotubes. Carbon, 1995, 33: 883-890.
    [8] Liu M., Cowley J.M. Structures of carbon nanotubes studied by HRTEM and nanodiffraction. Ultramicroscopy, 1994, 53: 333-342.
    [9] Liang W.J., Bockrath M., Bozovic D., Hafner J.H., Yinkham M., Park H.K. Fabry-Perot interference in a nanotube electron waveguide. Nature, 2001, 411: 665-669.
    [10] Frank S., Poncharal P., Wang Z.L., de Heer W.A. Carbon nanotube quantum resistors. Science, 1998, 280:1744-1746.
    [11] Bachtold A., Strunk C., Salvetat J.P. Aharonov-Bohm oscillations in carbon nanotubes. Nature, 1999, 397: 673-675.
    [12] Tans S.J., Verschueren A.R.M., Dekker C. Room temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49-52.
    [13] Collins P.G., Bradley K., Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287:1801-1804.
    [14] Overney G., Zhong W., Tomanek D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Phys. D, 1993, 27: 93-96.
    [15] Cao G.H., Cagin T., Goddard W.A. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology, 1998, 9:184-191.
    [16] Yu M.F., Files B.S., Arepalli S., Ruoff R.S. Tensile loading of ropes of single wall carbon nanotubes and their Mechanical Properties. Phys. Rev. Lett., 2000, 84: 5552-5555.
    [17] Wong E.W., Sheehan P.E., Lieber C.M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277:1971-1975.
    [18] Sun L., Banhart F., Krasheninnikov A.V., Rodriguez-Manzo J.A., Terrones M., Ajayan P.M. Carbon nanotube as high-pressure cylinders and Nanoextrudes. Science, 2006, 312:1199-1202.
    [19] 董树荣.纳米碳管增强铜基复合材料的制备与性能研究[硕士学位论文].杭州:浙江大学材料 系,1998.
    [20] 丁志鹏.纳米碳管/铝基复合材料制备及摩擦性能研究[硕士学位论文].杭州:浙江大学材料系,2005.
    [21] Berber S., Kwon Y.K., Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett., 2000, 84: 4613-4616.
    [22] Kim P., Shi L., Majumdar A., McEuen P.L. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B, 2002, 323: 67-70.
    [23] Hone J., Liaguno M.C., Biercuk M.J., Johnson A.T., Batlogg, B. Benes Z., Fischer J.E. Thermal properties of carbon nanotubes and nanotube-based materials. Appl. Phys. A, 2002, 74: 339-343.
    [24] Yi W., Lu L., Zhang D.L., Pan Z.W., Xie S.S. Linear specific heat of carbon nanotubes. Phys. Rev. B, 1999, 59: R9015-9018.
    [25] Duiardin E., Ebbesen T.W., Hiura H., Tanigaki K. Capillarity and wetting of carbon nanotubes. Science, 1994, 265: 1850-1852.
    [26] 成会明.纳米碳管制备、结构、物性及应用.化学工业出版社,北京,2002.
    [27] Chen Y.K., Chu A., Cook J., Green M.L.H., Harris P.J.F., Heesom R., Humphries M., Sloan J., Tsang S.C., Turner J.F.C. Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. J. Mater. Chem. 1997, 7: 545-549.
    [28] Khlobystov A.N., Britz D.A., Ardavan A., Briggs G.A.D. Observation of ordered phase of fullerenes in carbon nanotubes. Phys. Rev. Lett., 2004, 92: 245507.
    [29] Ugarte D., Stockli T., Bonard J.M., Chatelain A., de Heer W. A., Filling carbon nanotube. Appl. Phys. A, 1998, 67: 101-105.
    [30] Guerret-Plecourt C., Le Bouar Y., Loiseau A., Pascard H. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature, 1994, 372: 761-765.
    [31] Terrones M. Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. Inter. Mater. Rev., 2004, 49:325-377.
    [32] Liu S., Zhu J., Mastai Y., Felner I., Gedanken A. Preparation and characterization of carbon nanotubes filled with colbat. Chem. Mater., 2000, 12:2205-2211.
    [33] Watts P.C.P., Hsu W.K., Randall D.P., Kotzeva V., Chen G.Z. Fe-filled carbon nanotubes: nano-electromagnetic inductors. Chem. Mater., 2002, 14: 4505-4508.
    [34] Leonhardt A., Hampel S., Muller C., Month I., Koseva R., Ritschei M., Elefant D., Biedermann K., Buchner B. Synthesis properties and applicatons of ferromagnetic filled carbon nanotubes, Chem. Vap. Deposition., 2006, 12: 380-387.
    [35] Elias A.L., Rodriguez-Manzo J.A., Mccartney M.R., Golberg D., Zamudio A., Baltazar S.E., Lopez-Urias F., Munoz-Sandoval E., Gu L., Tang C.C., Simth D.J., Bando Y., Terrones H., Terrones M. Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes, Nano. Lett., 2005, 5: 467-472.
    [36] Cheng J.P., Zhang X.B., Liu F., Tu J.P., Ye Y., Ji Y.J., Chen C.P. Synthesis of carbon nanotubes filled with Fe_3C nanowires by CVD with titanate modified palygorskite as catalyst. Carbon, 2003, 41:1965-1970.
    [37] Gao Y., Bando Y. Carbon nanothermometer containing gallium. Nature, 2003, 415:599.
    [38] Zhan J., Bando Y., Hu J., Golberg D., Nakanishi H. Liquid gallium columns sheathed with carbon: bulk synthesis and manipulation. J. Phys. Chem. B, 2005, 109: 11580-11584.
    [39] Gao Y., Bando Y., Golberg D. Melting and expansion behavior of indium in carbon nanotubes. Appl. Phys. Lett.,2002, 81: 4133-4135.
    [40] Hsu W.K., Terrones M., Terrones H., Grobert N., Kirkland A.l., Hare J.P., Prassides K., Townsend P.D., Kroto H.W., Walton D.R.M. Electrochemical formation of novel nanowires and their dynamic effects. Chem. Phys. Lett.,1998, 284: 177-183.
    [41] Hsu W.K., Trasobares S., Terrones H., Terrones M., Grobert N., Zhu Y.Q., Li W.Z., Escudero R., Hare J.P., Kroto H.W., Walton D.R.M. Electrolytic formation of carbon sheathed mixed Sn-Pb nanowires. Chem. Mater., 1999, 11: 1747-1751.
    [42] Tans S.J., Verschueren A.R.M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49-52.
    [43] Zhang Y., Ichihashi T., Landree E., Nihey F., lijima S. Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science, 1999, 285:1719-1722.
    [44] Yao Z., Postma H.W.Ch., Balents L., Dekker C. Carbon nanotube intramolecular junctions. Nature, 1999, 402: 273-276.
    [45] Satishkumar B.C., Thomas P.J., Govindaraj A., Rao C.N.R. Y-junction carbon nanotubes. Appl. Phys Lett., 2000, 77: 2530-2532.
    [46] Rueckes T., Kim K., Joseluich E., Tsang G. Y., Cheung C. L., Leiber C. M. Carbon nanotube based nonvolatile random access memory for molecular computing. Science, 2000, 289: 94-97.
    [47] Baughman R.H., Cui C., Zakhidov A.A. Carbon nanotube actuators. Science, 1999, 284:1340-1344.
    [48] Li W.Z., Xie S.S, Qian L.X., Chang B.H., Zou B.S., Zhou W.Y., Zhao R.A., Wang G. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274:1701-1703.
    [49] 马仁志.纳米碳管压制体的性能及工程应用的研究[博士学位论文].北京:清华大学机械工程系,2000.
    [50] 马仁志,魏秉庆,徐才录,粱吉,吴德海.应用于超级电容器的纳米碳管电极的几个特点.清华大学学报,2000,40:7-10.
    [51] Niu C., Sichel E.K., Hoch R. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phy. Lett.,1997, 70: 1480-1482.
    [52] Frackowiak E., Delpeux S., Jurewicz K., Szostak K., Cazorla-Amoros D., Brguin F. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett., 2002, 361:35-41
    [53] Jiang Q., Qu M.Z., Zhou G.M., Zhang B.L., Yu Z.L. A study of activated carbon nanotubes as electrochemical super capacitors electrode materials. Mater. Lett., 2002, 57: 988-991.
    [54] 王贵欣,瞿美臻,陈利,于作龙.纳米碳管用作超级电容器电极材料.化学通报,2004,185-191.
    [55] Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y., Kim S., Rinzler A., Colbert D., Scuseria G., Tomanek D., Fischer J., Smalley R. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273:483-487.
    [56] Ivanov V., Nagy J.B., Lambin Ph., Lucas A., Zhang X.B., Zhang X.F., Bernaerts D., Tendeloo G. Van, Amelinckx S. and Landuyt J. Van. The study of carbon nanotubules produced by catalyticd method. Chem. Phys. Lett., 1994, 223: 329-335.
    [57] Vander Wal, R.L., Ticich T.M., Curtis V.E. Diffusion flame synthesis of single-walled carbon nanotubes. Chem. Phys. Lett., 2000, 323: 217-223.
    [58] Libera J., Gogotsi Y. Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon, 2001, 39: 1307-1318.
    [59] Zhou D., Anoshkina E.V., Chow L., Chai G. Synthesis of carbon nanotubes by electrochemical deposition at room temperature. Carbon, 2006, 44:1013-1024.
    [60] Huang J.Y., Yasuda H., Mori H. Highly curved carbon nanostructures produced by ball-milling. Chem. Phys. Lett., 1999, 303: 130-134.
    [61] 卢怡,朱珍平,刘振宇.催化剂对爆炸法合成纳米碳管的影响.新型炭材料,2004,19:1-6.
    [62] Lee D.C., Mikulec F.V., Korgel B.A. Carbon nanotube synthesis in supercritical toluene. J. Am. Chem. Soc., 2004, 126:4951-4957.
    [63] Terranova M.L., Sessa V., Rossi M. The world of carbon nanotubes: an overview of CVD growth methodologies. Chem. Vap. Deposition, 2006, 12: 315-325.
    [64] Ci L.J., Li Y.H., Wei B.Q., Xu C.L., Liang J., Wu D.H. Preparation of carbon nanofibers by the floating catalyst method. Carbon, 2000, 38:1933-1937.
    [65] Wang Y., Wei F., Luo G.H., Yu H., Gu G.S. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chem. Phys. Lett., 2002, 364: 568-572.
    [66] José-Yacaman M., Miki-Yoshida M., Rendén L., Santiesteban J.G. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett., 1993, 62: 657-659.
    [67] Kong J., Cassell A.M., Dai H.J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 1998, 292: 567-574.
    [68] Tibbetts G.G. Why are carbon filaments tubular? J. Cryst. Growth 1984, 66:632-638.
    [69] Baker R.T.K. Catalytic growth of carbon filaments. Carbon, 1989, 27:315-323.
    [70] Kanzow H., Ding A. Formation mechanism of single-wall carbon nanotubes on liquid-metal particles. Phys. Rev. B, 1999, 60:11180.
    [71] Cassel A.M., Raymakers A., Kong J., Dai H.J. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B, 1999, 103: 6484-6492.
    [72] Charlier J.C., Iijima S. Growth mechanisms of carbon nanotubes. Topics Appl. Phys., 2001, 80:55-81.
    [73] Dai H.J., Rinzler A.G., Nikolaev P., Thess A., Colbert D.T., Smalley R.E. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett., 1996, 260: 471-475.
    [74] Liu L., Fan S.S. Isotope labeling of carbon nanotubes and formation of ~(12)C-~(13)C nanotube junctions. J. Am. Chem. Soc., 2001, 123:11502-11503.
    [75] Helveg S., Lopez-Cartes C., Sehested J., Hansen P.L., Clausen B.S., Rostrup-Nielsen J.R., Abild-Pedersen F., Norskov J.K. Atomic-scale imaging of carbon nanotube growth. Nature, 2004, 427: 426-429.
    [76] Xu J.M., Zhang X.B., Li Y., Tao X.Y., Chen F., Li T., Bao Y., Geise H.J. Preparation of Mg_(1-x)Fe_xMoO_4 catalyst and its application to grow MWNTs with high efficiency. Diam. Relat. Mater, 2004, 13: 1807.
    [77] Li Y., Zhang X.B., Tao X.Y., Xu J.M., Chen F., Shen L.H., Yang X.F., Liu F., Tendeloo G.Van., Geise H.J. Single phase MgMoO_4 as catalyst for the synthesis of bundled multi-walled carbon nanotubes by CVD. Carbon, 2005, 43: 1325-1328.
    [78] Tao X.Y., Zhang X.B., Cheng J.P. Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a Co_xMg_(1-x)MoO_4 catalyst. Diam. Relat. Mater., In press.
    [79] Li Y., Zhang X.B., Tao X.Y., Xu J.M., Huang W.Z., Luo J.H., Luo Z.Q., Li T., Liu F., Bao Y., Geise H.J. Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon, 2005, 43: 295-301.
    [80] Hernadi K., Fonseca A., Nagy J.B., Bernaerts D., Fudala A., Lucas A.A. Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites, 1996, 17: 416-423.
    [81] Yang Z.X., Xia Y.D., Mokaya R. Aligned N-doped carbon nanotube bundles prepared via CVD using zeolite substrates. Chem. Mater., 2005, 17: 4502-4508.
    [82] Venegoni D., Serp P., Feurer R., Kihn Y., Vahlas C., Kalck P. Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon, 2002, 40: 1799-1807.
    [83] An L., Owens J.M., Mcneil L.E., Liu J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoelusters as catalysts, J. Am. Chem. Soc., 2002, 124: 13688-13689.
    [84] Zhu H.W., Wu D.H., Wei B.Q., Vajtai R., Ajayan P.M. Direct synthesis of long single-walled carbon nanotube strands. Science, 2002, 296: 884-886.
    [85] Zhi L.J., Kolb U., Mullen K. Novel carbon nanostructures prepared by solid-state pyrolysis of iron phthalocyanine. New carbon Materials, 2006, 21: 1-5.
    [86] Andrews R., Jacques D., Rao A.M., Derbyshire F., Qian D., Fan X., Dickey E.C. Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett., 1999, 303: 467-474.
    [87] Su M., Zheng B., Liu J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett., 2000, 322: 321-326.
    [88] 罗君航,张孝彬,李昱,程继鹏,刘芙.超临界干燥法制备催化剂合成单壁纳米碳管及表征.无机材料学报,2005,20:1358-1362.
    [89] Tu Y., Huang Z.P., Wang D.Z., Wen J.G., Ren Z.F. Growth of aligned carbon nanotubes with controlled site density. Appl. Phys. Lett., 2002, 80:4018-4020.
    [90] Jo S.H., Tu Y., Huang Z.P., Camahan D.L., Wang D.Z., Ren Z.F. Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Appl. Phys. Lett., 2003, 82: 3520-3522.
    [91] Iwasaki T., Motoi T., Den T. Multiwalled carbon nanotubes growth in anodic alumina nanoholes. Appl. Phys. Lett., 1999, 75: 2044-2046.
    [92] Tang D.S., Xie S.S., Pan Z.W., Sun L.F., Liu Z.Q., Zou X.P., Li Y.B., Ci L.J., Liu W., Zou B.S., Zhou W.Y. Preparation of monodispersed multi-walled carbon nanotubes in chemical vapor deposition. Chem. Phys. Lett., 2002, 356: 563-566.
    [93] Lee C.J., Park J., Huh Y. Temperature effect on the growth of carbon nanotubes using thermalchemical vapor deposition. Chem. Phys. Lett., 2001, 343: 33-38.
    [94] Lee C.J., Park J. Growth Model for bamboolike structured carbon nanotubes synthesized using thermal chemical vapor deposition. J. Phys. Chem. B, 2001, 105: 2365-2368.
    [95] Choi Y.C., Shin Y.M., Bae D.J., Lim S.C., Lee Y.H., Lee B.S. Patterned growth and field emission properties of vertically aligned carbon nanotubes. Diamond Relat. Mater., 2001, 10: 1457-1464.
    [96] Choi G.S., Cho Y.S., Hong S.Y., Park J.B., Son K.H., Kim D.J. Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor depostion. J. App. Phys., 2002, 91: 3847-3854.
    [97] Sohn J.I., Choi C.J., Lee S., Seong T.Y. Growth behavior of carbon nanotubes on Fe-deposited (001) Si substrates. Appl. Phys. Lett., 2001, 78: 3130-3132.
    [98] Sohn J.I., Nam C., Lee S. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods. Appl. Surf. Sci., 2002, 197-198: 568-573.
    [99] 罗志强,张孝彬,程继鹏,李昱,刘芙,陶新永,印万忠,韩跃新.高等学校化学学报,2004,25:1879-1884.
    [100] Klinke C., Bonard J.M., Kern K. Comparative study of the catalytic growth of patterned carbon nanotube films. Surf. Sci., 2001; 492: 195-201.
    [101] Fonseca A., Hernadi K., Nagy J.B., Bernaerts D., Lucas A.A. Optimization of catalytic production and purification of buckytubes. J. Mol. Catal. A: Chem., 1996; 107:159-168.
    [102] Gothard N., Daraio C., Gaillard J., Zidan R., Jin S., Rao A.M. Controlled growth of Y-junction nanotubes using Ti-doped vapor catalyst. Nano Lett., 2003, 4:213-217.
    [103] Lee C.J., Park J., Kim J.M., Huh Y., Lee J.Y., No K.S. Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst. Chem. Phys. Left., 2000, 327:277-283.
    [104] Dupuis A.C. The catalyst in the CCVD of carbon nanotube - a review. Progr Mater. Sci., 2005, 50: 929-961.
    [105] Kim M.S., Rodriguez N.M., Baker R.T.K. The role of interfacial phenomena in the structure of carbon deposits. J. Catal., 1992, 134: 253-268.
    [106] Nishimura K., Okazaki N., Pan L.Z., Nakayama Y. In situ study of iron catalysts for carbon nanotube growth using x-ray diffraction analysis. Jap. J. Appl. Phys., 2004, 43: L471-L474.
    [107] Cheng J.P., Zhang X.B., Liu F., Tu J.P., Ye Y., Ji Y.J., Chen C.P. Synthesis of carbon nanotubes filled with Fe_3C nanowires by CVD with titanate modified palygorskite as catalyst. Carbon, 2003, 41: 1965-1970.
    [108] Herreyre S., Gadelle P., Moral P., Millet J.M.M. Study by Mossbauer spectroscopy and magnetization measurement of the evolution of iron catalysts used in the disproportionation of CO. J. Phys. Chem. Solids, 1997, 58: 1539-1545.
    [109] Hernadi K., Fonseca A., Nagy J.B., Bernaerts D., Lucas A.A. Fe-catalyzed carbon nanotube formation. Carbon, 1996, 34:1249-1257.
    [110] Tang S., Zhong Z., Xiong Z., Sun L., Liu L., Lin J., Shen Z.X., Tan K.L. Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH_4 over Mo/Co/MgO catalysts. Chem. Phys. Lett., 2001, 350: 19-26.
    [111] Cheung C.L., Kurtz A., Park H., Lieber C.M. Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B, 2002, 106: 2429-2433.
    [112] Duesberg G.S., Graham A.P., Liebau M., Seidel R., Unger E., Kreupl F., Hoenlein W. Growth of isolated carbon nanotubes with lithographically defined diameter and location. Nano Lett., 2003, 3: 257-259.
    [113] Nikolaev P., Bronikowski M., Bradley R., Rohmund F., Colbert D., Smith K. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 1999, 313: 91-97.
    [114] Motojima S., Chen Q. Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition. J. Appl. Phys., 1999, 85: 3919-3921.
    [115] Vinciguerra V., Buonocore F., Panzera G., Occhipinti L. Growth mechanisms in chemical vapour deposited carbon nanotubes. Nanotechnology, 2003, 14: 655-660.
    [116] Kathyayini H., Nagaraju H., Fonseca A., Nagy, J.B. Catalyst activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the snthesis of carbon nanotubes. J. Mol. Catal. A: Chem., 2004, 223: 129-136.
    [117] 程继鹏.天然纳米矿物作为催化剂CVD法合成纳米碳管及纳米碳管吸氢性能的研究[博士学位论文].杭州:浙江大学材料系,2005.
    [118] Nagaraju N., Fonseca A., Konya Z., Nagy J.B. Alumina and silica supported metal catalysts for the production of carbon nanotubes, d. Mol. Catal. A: Chem., 2002, 181: 57-62.
    [119] Li J., Papadopoulos C., Xu J.M., Moskovits M. Highly ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett., 1999, 75: 367-369.
    [120] Chen P., Zhang H.B., Lin G.D., Hong Q., Tsai K.R. Growth of carbon nanotubes by catalytic decomposition of CH_4 or CO on a Ni-MgO catalyst. Carbon, 1997, 35: 1495-1501.
    [121] Soneda Y., Duclaux L., Beguin E Synthesis of high quality multi-walled carbon nanotubes from the decomposition of acetylene on iron-group metal catalysts supported on MgO. Carbon, 2002, 40: 965-969.
    [122] Couteau E., Hernadi K., Seo J.W., Thien-Nga L., Miko Cs., Gaal R., Forro L. CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO_3 catalyst support for large-scale production. Chem. Phys. Lett., 2003, 378; 9-17.
    [123] He N., Yang C., Dai Q., Miao Y., Wang X., Lu Z., Yuan C. Effect of structure and pore size of mesoporous molecular sieve materials on the growth of carbon nanotubes. J. Inclu. Phenom. Macro. Chem., 1999, 35:211-224.
    [124] 曹洁明,常欣,房宝青,郑明波,曹喻霖,张防,张爱民,须沁华.以分子筛为金属催化剂载体制备纳米碳管.催化学报,2005,26:847-850.
    [125] 程继鹏,张孝彬,叶瑛.天然矿物在CVD法合成纳米碳管中的应用.矿物岩石,2006,26:9-12.
    [126] Gournis D., Karakassides M.A., Bakas T. Catalystci synthesis of carbon nanotubes on clay minerals, carbon, 2002, 40: 2641-2646.
    [127] Kawasaki S., Shinoda M., Shimada T., Okino F., Touhara H. Single-walled carbon nanotubes grown on natural minerals. Carbon, 2006, 44:2139-3141.
    [128] Cheng H.M., Li F., Sun X., Brown S.D.M., Pimenta M.A., Marucci A., Dresselhaus G., Dresselhaus M.S. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett., 1998, 289: 602-610.
    [129] Unalan H.E., Chhowalla M. Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology, 2005, 16:2153-2163.
    [130] Hemadi K., Fonseca A., Nagy J.B., Siska A., Kiricsi I. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Appl. Catal.A, 2000, 199: 245-255.
    [131] Yang X.F., Zhang X.B., Ning Y.S., Kong F.Z., Shen L.H., Wang Y.W. Effect of Mo-doping on the sol-gel prepared catalyst for syntheszing multi-walled carbon nanotube bundles. Mater. Sci. Forum., 2003, 426: 2405-2410.
    [132] Suekane O., Nagasaka T., Kiyotaki K., Nosaka T., Nakayama Y. Rapid growth of vertically aligned carbon nanotubes. Jap. J. Appl. Phys., 2004, 43: L1214-L1216.
    [133] Zhu L.B., Xu J.W., Xiu Y.H., Hess D.W., Wong C.P. A rapid growth of aligned carbon nanotube films and high-aspect-ratio arrays. J. Electro. Mater., 2006, 35: 195-199.
    [134] Deck C.P., Vecchio K.S. Growth of well-aligned carbon nanotube structures in successive layers. J. Phys. Chem. B, 2005, 109: 12353-12357.
    [135] Sharon M., Apte P.R., Purandare S.C., Zacharia R. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads. J Nanosci. Nanotech., 2005, 5: 288-295.
    [136] 刘霁欣,任钊,谢有畅.催化剂组成和反应条件对W-Fe-MgO催化分解甲烷制备单壁纳米碳管的影响.催化学报,2004,25:561-570.
    [137] Tapaszto L., Kertesz K., Vertesy Z., Horvath Z.E., Koos A.A., Osvath Z., Sarkozi Z., Darabont A., Biro L.P. Diameter and morphology dependence on experimental conditions of carbon nanotubes arrays grown by spray pyrolysis. Carbon, 2005, 43: 970-977.
    [138] Cao A., Zhang X.F., Xu C.L., Liang J., Wu D.H., Wei B.Q. Aligned carbon nanotube growth under oxidative ambient. J. Mater Res., 2001, 16:3107-3110.
    [139] Hata K., Futaba D.N., Mizuno K., Namai T., Yumura M., Iijima S. Water-assisted highly efficient synthesis of impurity-free single walled carbon nanotubes. Science, 2004, 306: 1362-1364.
    [140] Zhang G.Y., Mann D., Zhang L., Javey A., Li Y.M., Yenilmez E., Wang Q., McVittie J.P., Nishi Y., Gibbons J., Dai H.J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. PNAS, 2005, 102:16141-16145.
    [141] Liang E.J., Ding P., Zhang H.R., Guo X.Y., Du Z.L. Synthesis and correlation study on the morphology and raman spectra of CN_x nanotube by thermal decomposition of ferrocene/ethylenediamine. Diamond Relat. Mater., 2004, 13: 69-73.
    [142] 王志,巴德纯,蔺增,曹培江,刘飞,粱吉.气体配比对硼掺杂纳米碳管生长特性的影响.新型炭材料,2005,20:350-354.
    [143] Wang W.L., Bai X.D., Liu K.H., Xu Z., Golberg D., Bando Y., Wang E.G. Direct synthesis of B-C-N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition. J. Am. Chem. Soc., 2006, 128:6530-6531.
    [144] http://www.cheaptubesinc.com/pricelist.htm
    [145] Ning ZS., Zhang X.B., Wang Y.W., Sun Y.L., Shen L.H., Yang X.F., Tendeloo G.V. Production of multi-wall carbon nanotube bundles on sol-gel prepared catalyst. Chem. Phys. Lett., 2002, 366: 555-560.
    [146] Mekki A., Holland D., Ziq K.H., McConville C.F. XPS and magnetization studies of cobalt sodium silicate glasses, J. Non-Crys. Solids, 1997, 220: 267-279.
    [147] Lee E.K., Jung K.D., Joo O.S., Shul Y.G. Catalytic activity of Mo/MgO catalyst in the wet oxidation of H2S to sulfur at room temperature. Appl. Catal. A, 2004, 268: 83-88.
    [148] Radwan N.R.E., Ghozza A.M., El-Shobaky G.A. Solid-solid interactions in Co3O4-MoO3/MgO system. Thermochimica Acta, 2003, 398:211-221.
    [149] Flahaut E., Govindaraj A., Peigney A. Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem. Phys. Lett., 1999, 300: 236-242.
    [150] Aaddane A., Kacimi M., Ziyad M. Oxidative dehydrogenation of ethane and propane over magnesium-cobalt phosphates CO_xMg_(3-x)(PO_4)_2. Cata. Lett., 2001, 73: 47-53.
    [151] Wang L., Navrotsky A., Stevens R., Woodfield B.F., Boerio-Goates J. Thermodynamics of CoO-MgO solid solutions, J. Chem. Thermodynamics, 2003, 35:1151-1159.
    [152] MullerSommer M., Hock R., Kirfel A. Rietveld refinement study of the cation distribution in (Co, Mg)-olivine solid solution. Phys. Chem. Minerals, 1997, 24: 17-23.
    [153] Hiura H., Ebbesen T.W., Tanigaki K., Takahashi H. Raman studies of carbon nanotubes. Chem. Phys. Lett., 1993, 202: 509-512.
    [154] Kichambare P.D., Chen L.C., Wang C.T., Ma K.J., Wu C.T. and Chen K.H. Laser irradiation of carbon nanotubes. Mater. Chem. Phys., 2001, 72: 218-222.
    [155] Kitiyanan B., Alvarez W. E., Harwell J. H., Resasco D.E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett., 2000, 317:497-503.
    [156] Yao Z., Postma HWCh., Balents L., Dekker C. Carbon nanotube intramolecular junctions. Nature, 1999, 402: 273-276.
    [157] He M.S., Zhou S., Zhang J., Liu Z.F., Robinson C. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism. J. Phys. Chem. B, 2005, 109, 9275-9279.
    [158] Tang C.C., Bando. Y., Golberg D., Xu F.F. Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide. Carbon, 2004, 42: 2625-2633.
    [159] Crespi V.H. Relations between global and local topology in multiple nanotube junctions. Phys. Rev. B, 1998, 58: 12671.
    [160] Choi H.C., Bae S.Y., Jang W.S., Park J., Song H.J., Shin H.J. Release of N_2 from the carbon nanotubes via high-temperature annealing. J. Phys. Chem. B, 2005, 109: 1683-1688.
    [161] Liu J.W., Webster S., Carroll D.L. Temperature and flow rate of NH_3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. J. Phys. Chem. B, 2005, 109: 15769-15774.
    [162] Jang J.W., Lee C.E., Lyu S.C., Lee T.J., Lee C.J. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl. Phys. Lett., 2004, 84: 2877-2879.
    [163] 周晓龙,柴扬,李萍剑,潘光虎,孙晖,申自勇,张琦锋,吴锦累.多壁纳米碳管的掺氮改性及场效应管特性研究.物理化学学报,2005,21:1127-1131.
    [164] 拜晓东,王野,吴建军,粱吉.大面积N掺杂定向纳米碳管阵列的制备和表征.无机化学学报,2005,21:304-308.
    [165] Yang Z.X., Xia Y.N., Mokaya R. Aligned N doped carbon nanotube bundles prepared via CVD using zeolite substrates. Chem. Mater., 2005, 17: 4502-4508.
    [166] Belz T., Bauer A., Find J., Gunter M., Herein D., Mockel H., Pfander N., Sauer H., Schulz G., Schutze J., Timepe O., Wild U., Schlogl R. Structural and chemical characterization of N doped nanocarbons. Carbon, 1998, 36:731-741.
    [167] Choi W.Y., Kang J.W., Hwang H.J. Structure of ultrathin copper nanowires encapsulated in carbon nanotubes. Phys. Rev. B, 2003, 68: 193405.
    [168] Setlur A.A., Lauerhaas J.M., Dai J.Y., Chang R.P.H. A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires. Appl. Phys. Lett., 1996, 69: 345-347.
    [169] Clarke D.B., Bell A.T. An infrared study of methanol synthesis from CO_2 on clean and potassium-Promoted Cu/SiO2. J. Catal., 1995, 154:314-319.
    [170] Sheffer G.R., King T.S. Potassium's promotional effect on unsupported copper catalysts for methanol synthesis. J. Catal., 1989, 115: 376-381.
    [171] 曹平,严菁,李平,马建新.富氢气氛中CO的选择性氧化-碱金属助剂对Pt/γ-Al_2O_3催化剂性能的影响.工业催化,2004,12:41-44.
    [172] Liu Z., Bando Y. Preparation and structure of magnesium oxide coated indium nanowires. Chem. Phys. Lett. 2003, 378: 85-90.
    [173] Homma Y., Kobayashi Y., Ogino T., Takagi D., Ito R., Jung Y. J., Ajayan P. M. Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition J. Phys. Chem. B., 2003, 107, 12161.
    [174] Natta G. Synthesis of Methanol, in Catalysis: Hydrogenation and Dehydrogenation. New York: Rheinhold, 1955.
    [175] Suryanarayanan R., Frey C.A., Sastry S,M.L., Waller B.E., Buhro W.E. Deformation, recovery, and recrystallization behavior of nanocrystalline copper produced from solution-phasesynthesized nanoparticles. J. Mater. Res., 1997, 11: 449-450.
    [176] Rodriguez N.M. A review of catalytically grown carbon nanofibers. J. Mater. Res., 1993, 8: 3233-3249.
    [177] Kim S.U., Lee K.H. Carbon nanofiber composites for the electrodes of electrochemical capacitors. Chem. Phys. Lett., 2004;400:253-7.
    [178] Elzbieta Frackowiak, Francois Beguin. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001, 39: 937-950.
    [179] Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors. J. Power Sources, 2005, 142: 382-388.
    [180] Li C.S., Wang D.Z., Liang T.X., Wang X.F., Wu J.J., Hu X.Q. Oxidation of multiwalled carbon nanotubes by air: benefits for electric double layer capacitors. Powder Technology, 2004, 142: 175-179.
    [181] Yoon S.H., Lim S., Song Y., Ota Y., Qiao W.M., Tanaka A., Mochida I. KOH activation of carbon nanofibers. Carbon, 2004, 42: 1723-1729.
    [182] Cary H. B. Modem Welding Technology Prentice-Hall, ed. 4th, 1998.
    [183] Dong L.X., Arai F., Fukuda T. IEEE/ASME Trans. on Mechatronics 2004, 9: 350.
    [184] Dong L.X., Arai F., Fukuda T. Appl. Phys. Lett. 2002, 81:1919-1922.
    [185] Matsui S.J. Vac. Sci. Technol. B 2000, 18:3181-3184.
    [186] Xu S.Y., Tian M.L., Wang J.G., Xu J., Redwing J.M., Chan Moses H.W. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small, 2005, 1: 1221-1229.
    [187] Dong L.X., Arai F., Fukuda T. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 2003, 42: 295.
    [188] Svensson K., Olin H., Olsson E. Nanopipettes for metal transport. Phys. Rev. Lett., 2004, 93:145901.
    [189] Huang J.Y., Chen S., Jo S.H., Wang Z., Han D.X., Chen G., Dresselhaus M.S., Ren Z.F. Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwail carbon nanotubes. Phys. Rev. Lett., 2005, 94: 236802.
    [190] Schonenberger C., Bachtold A., Strunk C. Interference and Interaction in multi-wall carbon nanotubes. Appl. Phys. A, 1999, 69: 283-295.
    [191] Kral P, Tomanek D.Laser-driven atomic pump. Phys. Rev. Lett., 1999, 82: 5373-5376.
    [192] Pederson M.R., Broughton J.Q. Nanocapillarity in fullerene tubules. Phys. Rev. Lett., 1992,69: 2689-2692.
    [193] Ajayan P.M., Iijima S. Capillarity induced filling of carbon nanotubes. Nature, 1993,361: 333-335.
    [194] 王治宇,赵宗彬,邱介山.纳米碳管填充技术研究.化学进展,2006,18:563-572.
    [195] Lee K.T., Jung Y.S., Oh S.M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc., 2003, 125: 5652-5653.
    [196] Li H., Shi L., Lu W., Huang X., Chen L. Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries. J. Electrochem. Soc., 2001, 148:915-922.
    [197] Noh M., Kwon Y., Lee H., Cho J., Kim Y., Kim M.G. Amorphous carbon-coated tin anode material for lithium secondary battery. Chem. Mater., 2005, 17: 1926-1929.
    [198] Wu Y.Y., Yang P. D. Melting and welding semiconductor nanowires in nanotubes. Adv. Mater., 2001,13: 520-523.
    [199] Yokota T., Murayama M., Howe J.M. In situ transmission electron microscopy investigation of melting in submicron Al-Si alloy particles under electron beam irradiation. Phys. Rev. Lett., 2003, 91: 265504 (1-4).
    [200] Lereah Y., Kofman R., Penisson J.M., Deutscher G., Cheyssac P., David T. Ben., Bourret A. Time resolved electron microscopy studies of the structure of nanoparticles and their melting. Philos. Mag. B, 2001, 81: 11801-11819.
    [201] Nastasi M., Mayer J.W., Hirvonen J.K. Ion-solid interactions fundamentals and applications. Cambrige University Press, 2004.
    [202] 冶金和金属材料,化学工业出版社,2001年.
    [203] Du X.W., Wang B., Zhao N.Q., Furuya K. Structure evolution of silicon nanocrystals under electron irradiation. Scripta Materialia, 2005, 53: 899-903.
    [204] Golberg D., Li Y.B., Mitome M., Bando Y. Real-time observation of liquid indium unusual behavior inside silica nanotubes. Chem. Phys. Lett., 2005, 409: 75-80.
    [205] Yamamoto T., Hirayama T., Fukunaga K., Ikuhara Y. Electron holographic studies of irradiation damage in BaTiO3. Nanotechnology, 2004, 15:1324-1327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700