超音速旋流分离器结构设计与流场特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声速天然气旋流分离器是一项用于天然气处理的新工艺,它将绝热膨胀、低温凝析、旋流分离、减速扩压等处理过程都在一个密闭紧凑的装置内完成,该装置无移动部件,无再生系统,能够有效的降低设备投资投资和运行费用。
     本文在国内外原有研究的基础之上,采用先旋流再膨胀的原理设计出一种新型的超音速旋流分离器,这种分离器其旋流发生部件创新性的采用楔形体加旋流叶片的形式,并把旋流器后移至拉法尔喷管的收缩段,能在不影响膨胀制冷的前提下取得更好的旋流效果,大大提高分离器的效率。
     在旋流分离器设计中旋流叶片的选择是至关重要的一部分。叶片必须既要提供很好气体旋流作用,又不能对喷管的膨胀过程造成太大的影响。经过FLUNT数值模拟,表明叶形选E186、叶片安装角为40~42o、叶片扭曲角为30o、叶片安装位置为94~96mm、叶片数目为12个,楔形体曲率取1:4时,能保证分离器高效正常的工作。另外,喷管亚声速收缩段按照双三次曲线成比例的缩小设计,喉部设计成一段光滑圆弧,扩张段采用圆弧过渡、直线段加富尔士消波法设计,喷管出口流速均匀性较好,具有较小的能量损失,后部的扩压段设计为锥形扩压器。
     文章的最后对新型超音速旋流分离器的流动特性、总压损失、升压比、出口和入口压力范围、流量适应范围等进行了模拟计算,并和国外其他两种设计方法做了比较,模拟表明本文设计的超音速旋流分离器在膨胀和旋流方面都能获得更好的效果。
The supersonic swirling separator is a revolutionary new natural gas processing technology. The separator has thermodynamics similar to a turbo-expander, combining thermal insulation expansion, low temperature condensation, swirling separation and re-compression in a compact tubular device. It has no moving parts, and the need for associated regeneration systems is eliminated. So the new technology can cut capital and operating expenditures effectively.
     In this paper, based on the original study both at home and abroad, a new type of supersonic swirling separater was designed Under the principles of first expansion and then swirling,whose Swirl component use wedge-shaped body and swirling leaves.What's more,the swirler is placed at the condensation section of nozzle,so the separater can obtain better cyclone effects and raise the efficiency greatly.
     The swirler is the key part of the separator.According to the design requirements of swirler,the structure of swirler was a wedge with several swirling vanes.By numerical simulation,its optimum structural parameters was determined as follows: E186 phylliform preferred as swirling vanes, the swirling vanes installed by the angle of 40 to 42 degrees and twisted by 30 degrees,the location for the installation of 94 to 96mm,the number of 12, and the wedge curvature of 1:4.Besides,subsonic convergent section of Laval nozzle is designed according to double cubic curve method, throat is designed as a smooth circular arc, and supersonic divergent section is designed on the basis of arc transition、linear portion and Foelsch method. The stream from this type of nozzle has preferable uniformity of velocity, less energy loss.And the diffusion section is designed according to conical contour.
     At the last part of the article, the new hydrocyclone supersonic flow characteristics, total pressure loss, step-up ratio, the scope of the export and import of pressure, and flow self-adaptive scope is simulated.the simulation compares the other two methods of foreign and shows that the supersonic swirling separater designed in this paper is able to obtain better results about swirling and expansion effectivenesses.
引文
[1]高卫东.新型超声波分离装置[J].国外油田工程,2001,17 (2):34-35.
    [2] Page D, Lander M, Kruiff S. Twister -a revolution in gas separation[C]. Exploration and Production Newsletter, November, 1999.
    [3] Okimoto, F.T., Brouwer, J.M..Twister Supersonic Gas Conditioning–Studies, Applications and results. GPA paper, SanAntonio,2001.3.
    [4] Okimoto F T, Betting M. Twister Supersonic Separator[C].The Laurance Reid Gas Conference, Norman, Oklahoma , February 25-28,2001.
    [5] Brouwer J M, Epsom H D, Twister B V. Twister Supersonic Gas Conditioning for Unmanned Platforms and Subsea Gas Processing[C].SPE Paper,2003.
    [6] Okimoto F T, Brouwer J M. Twister Supersonic Gas Conditioning– Studies[C]. Applications and results, GPA paper, SanAntonio,2003.
    [7] Okimoto F T, Betting M. Twister Supersonic Separator[C].The Laurance Reid Gas Conference, Norman, Oklahoma , February 25-28,2001.
    [8] Okimoto F T, Betting M, Page D M. Twister Supersonic Gas Conditioning[C]. GPA paper, 2001.
    [9] Brouwer J M, Epsom H D, Twister B V. Twister Supersonic Gas Conditioning for Unmanned Platforms and Subsea Gas Processing[C].SPE Paper,2003.
    [10] Pascal van Eck, Hugh D. Epsom Btech FIMechE. Supersonic Gas Conditioning Introduction of the Low Pressure Drop Twister. Gas Processors Association-Europe Annual Meeting paper, 2006,9
    [11]王协琴罗小米.超音速分离器:天然气脱水脱烃的新型高效设备[J].天然气技术,第一卷第五期.
    [12]刘建华,陈一坚,段军等.激光切割超音速喷嘴设计[J].激光技术,2000,24(1):46~50.
    [13]伍荣林,王振羽.风洞设计原理[M],北京航空学院出版社,1985。
    [14]王海涛,席德科.用于气流粉碎机的超音速喷管设计研究[J].西北工业大学学报,2004, 22(2):157~160.
    [15]林超强,苏耀西,洪流.矩形风洞收缩段流场的计算和分析[J].空气动力学学报,1991,9(4)。
    [16] Reuther J, Alonsob J J,. Rimlinger M J, Jameson A. Aerodynamic Shape Optimizationof Supersonic Aircraft Configurations via An Adjoint Formulation on Distributed Memory Parallel Computers. Computers & Fluids,1999.
    [17]刘卫红.轴对称收缩段设计研究[J].空气动力学学报,1998,16(2):250~254。
    [18]陈丽.超声速旋流分离技术研究:[硕士论文],石油大学(华东),山东东营,2006
    [19]茅声凯.设计透平跨音速叶栅时出汽角的确定[J].汽轮机技术1989,31(5)
    [20] ManualLayoutofBasicsectionsR.WHPH25208.1-10
    [21]汽轮机叶片设计和几何成型方法综述[J].汽轮机技术,2001,8(4)
    [22]赵良举,曾丹苓等.汽液两相混合物的加速与激波的热力学分析[J].工程热物理学报,2001年5月第22卷第3期.
    [23] Yakhot V,Orszag S A. Renormalized Group Analysis of Turbulence: I Basic Theory[J]. Journal of Scientific Computing, 1986,1(1):3-5.
    [24]陈庆光,徐忠,张永建. RNG k ?ε在工程湍流数值计算中的应用[J].力学季刊, 2003 23(1):88-95.
    [25]韩占忠,王敬等..FLUENT流体工程仿真计算与应用[M].北京理工大学出版社,2004.
    [26]李勇等.介绍计算流体力学通用软件——FLUENT.水动力学研究与进展[J],Ser. A,Vol. 16,No. 2,June,2001.
    [27]吴达,吴晓辉.进气旋流对推力喷管性能影响的研究[J].北京航空航天大学学报,1992年,第四期.
    [28] Baker Von D.Experimental results with lift engine exhaust nozzles. AIAA,1965,65-574
    [29] Mattingly jack D. An experimental investigation of the mixing of co-annular swirling flows.AIAA,1986,85-0186.
    [30] Riberio M M.Coaxial jiets without swirl.J.of Fluend Mech.1980,96.
    [31]杜勇军.超音速旋流分离器结构设计及流场模拟:[硕士论文],中国石油大学(华东),山东东营,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700