水泥基材料单一裂缝表面流体流动规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥基材料在工程应用中广泛存在着各种裂缝,裂缝对结构的耐久性和适用性都会产生明显的影响。裂缝的存在使结构混凝土材料从连续介质变为非连续介质,导致外部侵蚀性物质向混凝土内部的迁移过程发生根本改变。目前对流体通过裂缝表面传输的物理化学规律并不清楚,无法确定裂缝断裂表面特征对渗流规律的影响。本论文对水泥基材料单一裂缝开裂表面的流体流动规律进行研究,分别从以下三个方面进行:
     首先,研究界定断裂表面粗糙性能的参数,主要集中在长度比、分形维和均方差粗糙度等参数。用大尺度激光扫描仪对开裂试件表面进行激光扫描,得到断裂表面粗糙状况的真实三维数据,编制计算程序计算了断裂表面的粗糙度,通过对各粗糙度与实际材料特性的比较分析,选取与材料组成特征相一致的参数作为粗糙面表面形貌界定的基准。
     其次,设计实验方案,用岩石切割机在试件上切出单一刻槽,在Toni试验机上做三点抗弯试验制造单一裂缝,设计渗流试验装置并进行不同配比、不同裂缝宽度和不同渗流液体的试验。在此基础上分析了在单一裂缝存在下,流过粗糙表面的流量与流体性质、压力、裂缝宽度以及表面粗糙度等因素的关系。
     最后,分别用ANSYS和Fluent数值工具模拟计算了Poiseuille平板流模型,作为数值分析与实验结果比较的基准值。进一步,按照扫描得到的粗糙面进行实际模拟计算,分析了数值分析的流量结果及其影响因素。综合试验结果,对单一裂缝下水泥基材料的流动规律进行研究,并讨论了渗流过程呈非稳态的原因。
     研究结果表明,流体经过单裂缝水泥基材料断裂表面的流量与渗透压力梯度、裂缝表面粗糙度指数和裂缝宽度的三次方成正比,与流体粘度成反比,表面分形维和线性长度比可以有效地表征与渗流流量相关的裂缝粗糙度。实验发现,单裂缝间渗流并不是一个稳态的过程,而是具有明显的非稳态特征。导致非稳态的原因是渗流物理规律以及流体与裂缝表面物质发生物理沉淀,冲蚀和水泥二次水化和碳化过程。
Cracks exist extensively in cement-based materials and have important influenceon the durability and serviceability of engineering structures. The existence of crackingturns structural concrete from a continuous medium to a discrete one, which changesradically the penetration mechanism of external aggressive agents. So far, the detailedmechanisms are not clarified for the involved processes of fluid through cracks. Theinfluence of the roughness of fractured surfaces on fluid flow behavior is not clarified.This thesis studies the fluid flow behavior in single crack.
     Firstly, the roughness of fractured surfaces is characterized with length ratio, fractaldimension and Hurst exponent as quantified parameters. The surface topographyis scanned and the above roughness parameters are calculated through computer program.The roughness parameters consistent with material composition are chosen asthe basis for further flow behavior analysis.
     Secondly, the permeation device is conceived for flow study of single crack. Thedisk specimens are indented mechanically and cracked into two parts by three-pointbending. The liquid flow behavior is studied experimentally for different crack openings,different material composition and different liquids. The relationship among theflow rate, crack opening and surface roughness is discussed.
     At last, numerical simulation is performed for fluid flow by ANSYS and FLUENT.Parallel plate flow and flow in rough surfaces are calculated for flow rate underprescribed pressure gradient and the relevant influential factors are analyzed. In thesimulation for rough surfaces, the surface curves are extracted directly from the laserscannedsurface topology. The numerical results of flow rate are compared with theinitial rate of the experimental results and the values are comparable.
     From the experimental and numerical results, it is found that the flow rate acrossrough surface is proportional to pressure gradient, surface roughness as well as thecubic of crack opening. The surface roughness can be best captured by length ra- tio parameter. Moreover, under low pressure the flow behavior is non Darcien withan obvious transient process for flow rate. The involved mechanisms for unsteadyfluid(sealing effect) can be the surface dissolution, surface precipitation as well as thesurface carbonation dissolved portlandite.
引文
[1] Burrows R. The visible and invisible cracking of concrete. American Concrete InsitituteMonograph, 1998, 11:41–46.
    [2] Tsang Y. The Effect of Tortuosity on Fluid Flow Through a Single Fracture. Water ResourcesResearch, 1984, 20(9):1209–1215.
    [3] Stokes R. Fundamentals of Interfacial Engineering. 1997.
    [4] Gerard B, Marchand J. Influence of cracking on the diffuion properties of cement-basedmaterials Part I: Influence of continuous cracks on the steady-state regine. Cement andconcrete research, 2000, 30:37–43.
    [5] Xu E, Bodvarsson G. A reaction-transport model for calcite precipitation and evaluation ofinfiltration fluxes in unsaturated fractured rock. Journal of Contaminant Hydrology, 2003,64(1):113–127.
    [6]薛强,梁冰,刘建军.裂隙岩体中污染物运移过程的数值模拟.环境科学进展, 2003,24:35–38.
    [7]张电吉,白世伟,杨春和.裂隙岩体渗透性分析研究.勘察科学技术, 2003, (1):24–27.
    [8] Pijush K. Fluid Mechanics. 1990.
    [9] Victor L, Wylie E.流体力学(第9版). 2003.
    [10] Snow D. Anisotropic permeability of fractured media. Water Resource Research, 1969,5(6):1273–1289.
    [11] Marchand J, Gerard B. Penetration and Permeability of Concrete. 1997.
    [12] Louis C. A study of groundwater flow in jonited rock and its influence on the stability ofrock masses. Rock Mechanics Research, 1969. 91–98.
    [13] Federico V. Estimates of equivalent aperture for nonnewtonian flow in a rough-walledfracture. International Journal of Rock Mechanics and Mining Sciences and Geomechanics,1997, 134(7):1133–1137.
    [14] Lomise G. Flow in Fractured Rocks. 1951.
    [15] Wash J. Effect of pore pressure and confining on fracture permeability. International Journalof Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981, 18(2):429–435.
    [16]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽.水科学进展, 2002, 13(1):61–68.
    [17]杨米加,陈明雄,贺永年.单裂隙曲折率对流体渗流过程的影响.岩土力学, 2001,22(1):78–82.
    [18]朱益军,杜时贵.岩体结构面渗流研究现状.杭州应用工程技术学院学报, 2000,12(10):60–66.
    [19]李玉柱,苑明顺.流体力学. 1997: 144–145.
    [20] Kermani A. Permeability of stressed concrete. Building Research and Information, 1991,19(16):360–366.
    [21] Tsukamoto M, Worner J. Permeability of cracked fiber-reinforced concrete. Journal ofConcrete and Concrete Structure, 1991, 6(9):123–135.
    [22] Wang K. Permeability study of cracked concrete. Cement and Concrete Research, 1997,27(3):381–393.
    [23] Jooss M, Hans W. Permeability and diffusivity of concrete as function of temperature.Cement and Concrete Research, 2002, 32(3):1497–1504.
    [24] Edvardsen C. Chloride penetration into cracked concrete. 1996: 243–249.
    [25] Clear C. The effects of autogenous healing upon the leakage of water through cracks inconcrete. Cement and Concrete Asscociation, 1985..
    [26] Gerard B, Breysse D. Cracking and permeability of concrete under tension. Materials andStructures, 29(187):141–151.
    [27] Gerard B, Didry D. Modelling the long-term durability of concrete barriers for radioactivewaste disposals. Proceedings of MRS fall meeting 1995.
    [28] Reinhardt M Z X. Cracked and repaired concrete subject to fluid penetration. 1997.
    [29] Gerard B, Reinhardt H. Measured transport in cracked concrete. 1997: 265–301.
    [30] Stroeven P. A stereological approach to roughness of fracture surfaces and tortuosity oftransport paths in concrete. Cement and Concrete Composite, 2000, 22(22):331–341.
    [31] Czarnecki A K J. On the characterization of polymer concrete fracture surface. Cement andConcrete Composites, 2000, 23(4):399–409.
    [32] Sabir B. Wild.S.andAsili.M,1997. On the tortuosity of the fracture surface in concrete.Cement and Concrete Research, 1997, 27(5):785–795.
    [33] Abu-Tair D N. A new method for evaluating the surface roughness of concrete cut for repairor strengthening. International Journal of Heat and Mass Transfer, 2007, 50(5):1865–1878.
    [34] Valdes J R, MianaMJ, Pelegay J L, et al. Numerical investigation of the influence of roughnesson the laminar incompressible fluid flow through annular microchannels. Constructionand Building Materials, 2000, 14(5):171–176.
    [35] Zhang T, Nagy G. Surface Tortuosity and its Application to Analyzing Cracks in Concrete.Concrete,Computer Society, 2004, 2(10):851–854.
    [36] Epstein N. On tortuosity and the tortuosity factor in flow and diffusion through porousmedia. Chemical Engineering Science, 1989, 44(3):777–779.
    [37]谢和平.分形-岩石力学导论.北京:科学出版社, 1996.
    [38]易成,张亮,陈忠辉.一种新的描述粗糙表面形貌尺度分维参数Rd的研究.中国矿业大学学报, 2007, 36(1):75–80.
    [39]朱智伟,莫家庆. Koch曲线的分形维数及计算机模拟.西江大学学报, 2000, 34(2):26–34.
    [40] Zhou H, Xie H. Direct estimation of the fractal dimensions of a fracture of rock. SurfacesReview and Letters, 2003, 10(5):751–762.
    [41]张亚衡,周宏伟,谢和平.粗糙表面分形维数估算的改进立方体覆盖法.岩石力学与工程学报, 2005, 24(17):3192–3196.
    [42] Mandelbrot B. Fractal character of fracture surfaces of metals. Nature, 1984, 308(19):721–722.
    [43]刘小燕,李文伟,梁正平.分形理论在混凝土断裂面研究中的作用.三峡大学学报(自然科学版), 2003, 25(6):495–499.
    [44]张启明,张雷顺.混凝土粘结面粗糙度测试方法研究.河南科学, 2002, 20(4):411–413.
    [45]郭进军,张雷顺,蔺新艳.混凝土表面粗糙度评测新方法.工业建筑, 2003, 33(6):52–54.
    [46] Winslow D. The fractal nature of the surface of cement paste. Cement Concrete Research,1985, 15(5):817–824.
    [47] Issa M, Hammad A. Assessment and evaluation of fractal dimension of concrete fracturesurface digitized images. Cement Concrete Research, 1994, 24(2):352–334.
    [48] Issa M A I M C A. Fractal dimension-a measure of fracture roughness and toughness ofconcrete. Engineering Fracture Mechanics, 2003, 70(1):125–137.
    [49] Saouma C. Fractals, fractures, and size effects in concrete. Journal of Engineering Mechanics,1994, 120(4):835–854.
    [50] Wang S. A fractal study of the fracture surfaces of cement pastes and mortars using astereoscopic SEM method. Cement and Concrete Research, 2001, 31(10):1385–1392.
    [51] Schmittbuhl J. Direct Observation of a Self-Affine Crack Propagation. PHYSICAL REVIEWLETTERS, 1996, 78(20):3888–3891.
    [52] Lopez J. Anomalous scaling of fracture surfaces. PHYSICAL REVIEW E, 1998,57(6):6405–6408.
    [53] Mourot G, Morel S, Bouchaud E, et al. Anomalous scaling of mortar fracture surfaces.PHYSICAL REVIEW E, 2005, 71(016136):1–7.
    [54] Ponson L. Crack propagation in disordered materials. 2006: 23–25.
    [55]罗惕乾,程兆雪.流体力学. 1999: 253–276.
    [56]邵蕴秋. ANSYS8.0有限元分析实例导航. 2005: 348–394.
    [57]王福军.计算流体动力学分析(CFD软件原理与应用).北京:清华大学出版社, 2004.
    [58]韩占忠,王敬. Fluent-流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [59]王勖成,邵敏.有限单元法基本原理和数值方法. 1997: 1–36.
    [60]李黎明. ANSYS有限元分析实用教程. 2005: 1–2.
    [61] Meheust Y, Schmittbuhl J. Scale Effects Related to Flow in Rough Fractures. Pure andApplied Geophysics, 2003, 160(5):1023–1050.
    [62] Drazer G, Koplik J. Permeability of self-affine rough fractures. PHYSICAL REVIEW E,2000, 62(6):8076–8085.
    [63] Nazridoust, Kambiz and Ahmadi, Goodarz and Smith, Duane H. . A new friction factorcorrelation for laminar, single-phase flows through rock fractures. Journal of Hydrology,2006, 329(1):315–328.
    [64]胡春芝,袁孝敏,高学善(译).水泥混凝土的结构与性能.北京:中国建筑工业出版社, 1979.
    [65] Bechhold . Structure and performance of the cement concrete(in Chinese). Beijing: ChinaConstruction Industry Press, 1984.
    [66]王培铭.无机非金属材料学.上海:同济大学出版社, 1999.
    [67] Hua, C.and Acker, P.and Ehrlacher, A. . Analyses and models of autogenous shrinkages ofhardening cement paste.I.Modelling at macroscopic scale. Cement and Concrete Research,1995, 25(7):1457–1468.95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700