液压挖掘机发动机冷却系统性能及工作参数匹配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压挖掘机工作环境十分恶劣,尤其对于小型液压挖掘机,由于其冷却风道空间有限,很容易造成发动机冷却水温过高的现象,从而导致挖掘机工作效率以及使用寿命的降低。目前挖掘机厂家对于发动机冷却系统的设计主要通过经验和反复试验来完成,这一方面延长了设计的周期,同时也增加了试验的强度。本文针对液压挖掘机发动机冷却系统设计过程中存在的共性问题,结合国家863课题及企业科研攻关项目从理论上对发动机冷却系统性能进行了系统的研究,并利用MATLAB/GUI工具箱,编写了发动机冷却系统分析软件,为设计人员对冷却系统进行改进提供了理论指导。论文将对以下几个方面展开研究:
     首先,综述国内外发动机冷却系统研究及发展现状及趋势。介绍目前常用的散热器型式,揭示间壁式散热器的传热机理。
     其次,建立管带式散热器散热特性数学模型,分析散热器传热系数、冷却水温度、散热量、风阻、水阻以及功耗等性能参数与散热器尺寸及流体流速之间的关系,并通过SWE50型液压挖掘机冷却系统相关实验,对该模型进行验证。同时,运用MATLAB/GUI工具箱,编写发动机冷却系统分析软件,用户通过GUI界面设置冷却系统对应的尺寸参数及工况参数,经过分析软件进行计算,得到相应的性能曲线及性能参数值。
     再次,对发动机冷却系统风道进行分割、简化,在目前常见的圆孔型出风口流道方案的基础上提出一种百叶窗型出风口流道优化方案,利用FLUENT数值模拟仿真软件对两种方案流场进行分析、对比。同时,通过对细化后的圆孔型出风口流道网格模型进行数值计算,得到该方案风速-风阻变化规律。
     最后,针对SWE50型液压挖掘机发动机冷却系统,建立冷却系统工作参数优化匹配数学模型,利用MATLAB遗传算法工具箱对散热器部分尺寸参数、水流量以及风速进行优化匹配。
Engine cooling system is the key of guaranteeing the hydraulic excavator's normal operation and highly active working. This paper aimed at some common problems existing in the design process of hydraulic excavator's cooling system and researched the combination property of engine cooling system systematically, combined with the national program 863 and enterprise's key scientific research program. In this paper, MATLAB/GUI toolbox has been used to compile the engine cooling system's analysis software. It has provided theoretical guidance for the designers to improve the cooling system. This paper's main work is as follows:
     Firstly, the research development status and tendency of national and international engine cooling systems have been summarized. Radiator type for common use has been introduced, and plate-fin radiator's heat-transfer mechanism has been revealed.
     Secondly, the numerical mode of louvered fin-and-tube radiator's thermal characteristics has been established. The relationship between some performance parameters, such as radiator's heat transfer coefficients, temperature of cooling water, heat dissipation, windage resistance, water resistance, power dissipation and the size of radiator and velocity of fluid has been analyzed. Some experiments based on the SWE50 hydraulic excavator's cooling system have been used to prove the mode. Meanwhile, the engine cooling system's analysis software has been compiled by using the MATLAB/GUI toolbox, and then users could get relevant performance curves and performance parameters by using GUI interface to input cooling system's corresponding size-parameter and working parameter and do some calculations though analysis software.
     Thirdly, engine cooling system's wind channel has been cut up and simplified, an optimized scheme of shutter type wind channel has been put forward, which is based on the common scheme of round hole wind channel. The two types of schemes have been analyzed by using FLUENT numerical simulation software. Meanwhile we got the changing discipline between wind speed and wind resistance by calculate the round hole air outlet channel's grid mode.
     At last, the cooling system's optimize and match numerical mode has been built based on the SWE50 hydraulic excavator's cooling system. The radiator's size parameter, water discharge parameter and wind speed has been matched by using the MATLAB genetic algorithm toolbox.
引文
[1]徐东云,曾庆星.浅谈环保节能型工程机械产品的设计[J].建筑机械化,2004,(11):57-58.
    [2]高峰.液压挖掘机节能技术的研究[D]:[博士学位论文].杭州:浙江大学.2001.
    [3]W.H.Kerbs,D.Langus.Automotive Fuel,Lubricating And Cooling Systems[M].北京:机械工业出版社,1988.
    [4]12150L编写组.12150L柴油机[M].北京:国防工业出版社,1974.
    [5]杨连生.内燃机设计[M].北京:中国农业机械出版社,1981.8.
    [6]朱聘冠.换热器原理及计算[M].北京:清华大学出版社,1987.
    [7]W.M.凯斯,A.L.伦敦.紧凑式热交换器[M].北京:科学出版社,1997.
    [8]C.J.Davenport,Correlation for heat transfer and flow friction characteristics of louvered fin[J].AIChE Symposium Series,1983,79(25):19-27.
    [9]Achaichia,Cowell.Heat Transfer and Pressure Drop Characteristics of Flat Tube and Louvered Plate Fin Surface[J].Experimental Thermal and Fluid Science,1988,1(2):147-157.
    [10]Thomas Perrotin,Denis Clodic.Thermal-hydraulic CFD study in louvered fin-and-flat-tube heat exchangers[J].Internatinal Journal of Refrigeration,2004,27(4):422-432.
    [11]V.P.Malapure,Sushanta K.Mitra,A.Bhattacharya.Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger[J].Internatinal Journal of Refrigeration,2007,46(2):199-211.
    [12]Y.J.Chang,C.C.Wang.Air side performance of brazed aluminum heat exchangers[J].J.of Enhanced Heat Transfer,1996,3(1):15-28.
    [13]Junqi Dong,Jiangping Chen,Zhijiu Chen,Wenfeng Zhang,Yimin Zhou.Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers[J].Energy Conversion and Management,2007,48(5):1506-1515.
    [14]蒋重华.液压挖掘机动力系统热平衡研究[D]:[硕士学位论文].长沙:中南大学.2007.5.
    [15]张毅,俞小莉,陆国栋等.间距对散热器模块匹配性能影响的试验研究[J].内燃机工程,2006.27(5):46-49.
    [16]杨相稳.内燃机车冷却系统散热器散热特性与工作参数匹配研究[D]:[硕士学位论文].长沙:中南大学,2005.5.
    [17]卢广峰,郭新民等.汽车发动机冷却系统的发展与现状[J].农机化研究,2002,(5):129-131.
    [18]黄晖.发动机冷却系统的研究与优化设计[D]:[硕士学位论文].济南:山东大学,2005.
    [19]Fluent6.1 user's guide.Volume 1~5,Fluent Inc.
    [20]李岳林,张纸沛等.管片式散热器在汽车发动机冷却系统设计中的数值模拟[J].汽车工程,2001,23(1):64-71.
    [21]刘越琪,耿晓哲,潘秀明.风扇在汽车发动机冷却系统的匹配和优选方法[J].内燃机,1997,(4):5-8.
    [22]杨家骐.汽车散热器[M].北京:人民交通出版社,1982.5.
    [23]姚仲鹏,王新国.车辆冷却传热[M].北京:北京理工大学出版社,2001.
    [24]王松汉等.板翅式换热器[M].北京:化学工业出版社,1984.4.
    [25]张学学,李桂馥.热工基础[M].北京:高等教育出版社,2000.
    [26]戴有为.对流传热分析[M].北京:兵器工业出版社,1989.2.
    [27]姚平经,郑轩荣.换热器系统的模拟、优化与综合[M1.北京:化学工业出版社,1992.12.
    [28]张雷鸣.内燃机冷却系统的优化[D]:[硕士学位论文].济南:山东大学,2005.
    [29]李重焕,崔淑琴,玄哲浩.管带式散热器优化设计实例[J].汽车研究与开发,1995,(4):18-21.
    [30]康明斯发动机安装推荐冷却系统[M].康明斯发动机有限公司.
    [31]秦叔经,叶文邦等.换热器[M].北京:化学工业出版社,2003.5.
    [32]B.Sunden,J.Svantesson.Correlation of j-and f-factors for multilouvered heat transfer surfaces[J].Proceedings of Third UK National Heat Transfer Conference,1992,2(129):805-811.
    [33]Y.J.Chang,C.C.Wang.A generalized heat transfer correlation for louver fin geometry[J].Int.J.of Heat and Mass Transfer,1997,40(3):533-544.
    [34]刘越琪,耿晓哲.汽车发动机冷却系仿真选优方法的研究[J].内燃机工程,2006,27(4):51-54.
    [35]苏祖恩.传热学[M].大连:大连海运学院出版社,1989.
    [36]Gnielinski V.New equation for heat and mass transfer in turbulent pipe and channel flow[J].J Int Chem Eng,1976,(16):359-368.
    [37]C.-C Wang,C.-J Lee,C.-T Chang,S.-P Lin.Heat transfer and friction correlation for compact louvered fin-and-tube heat exchangers[J].International Journal of Heat and Mass Transfer,1998,42(11):1945-1956.
    [38]章宏甲,黄谊.液压传动[M].北京:机械工业出版社,2000.9.
    [39]罗森诺W.M.,哈特尼特J.P.,加尼E.N.传热学基础手册[M].北京:科学出版社,1992.
    [40]陆垚光等.精通MATLAB GUI设计[M].北京:电子工业出版社,2008.2.
    [41]刘霞,葛新峰.FLUENT软件及其在我国的应用[J].能源研究与利用,2003,(2):36-38.
    [42]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [43]漆波.百叶窗翅片式散热器内对流-导热耦合传热的数值模拟[D].重庆:重庆大学,2005.
    [44]陈玉峰,宋立权,韩文强.液压挖掘机工作装置运动与动力综合优化[J].建筑机械,2005,(2):80.
    [45]曹俊,朱如鹏.遗传算法的发展及其在机械工程领域中的应用[C].第三届中日机械技术史国际学术会议.北京:中国机械工程学会,2002,(10):410-416.
    [46]吴运新.现代设计方法[M].长沙:中南大学出版社,2003.
    [47]雷英杰,张善文等.MATLAB遗传算法工具箱及应用[M].西安:西安电子科大出版社,2005.
    [48]杨小松.汽车冷却匹配性探讨[J].汽车研究与开发,1992,(2):24-26.
    [49]刘永进.筑路机械冷却系统现状及发展趋势[J].建筑机械技术与管理,2005,(2):95-96.
    [50]幡野佐一等.换热器[M].北京:化学工业出版社,1987.
    [51]Yu-Juei Chang,Wen-Jeng Chang,Ming-Chia Li,Chi-Chuan Wang.An amendment of the generalized friction correlation for louver fin geometry[J].International Journal of Heat and Mass Transfer,2006,49(21):4250-4253.
    [52]R.L.Webb,S.H.Jung.Air-side performance of enhanced brazed aluminum heat exchangers[J].ASHRAE Transactions,1992,98(2):391-401.
    [53]尾花英朗(日).热交换器设计手册[M].北京:烃加工出版社,1987.4.
    [54]唐进元,亢文详,杨相稳.DF7型内燃机车散热器散热特性研究[J].内燃机工程,2006,27(6):51-54.
    [55]李科群,李美玲,关欣等.内燃机散热器的设计研究[J].内燃机工程,2001,22(4):66-69.
    [56]严永华.工程机械用柴油机冷却系统匹配技术研究[J].柴油机设计与制造.2004,(3):21-25.
    [57]俞小莉,李婷.发动机热平衡仿真研究现状与发展趋势[J].车用发动机,2005,10(5):1-5.
    [58]陆国栋,愈小莉,张毅,李迎.装载机冷却组优化匹配的试验研究[J].内燃机工程,2005,26(4):47-49.
    [59]杨志坚,魏琪,唐爱坤.应用遗传算法优化设计汽车散热器[J].拖拉机与农用运输车,2006,33(3):32-33.
    [60]张晶,翟鹏程,张本源.惩罚函数在遗传算法处理约束问题中的应用[J].武汉理工大学学报,2002,24(2):56-59.
    [61]毛明智,熊勇刚,谭建平.“基因遗传算法+惩罚函数法”机械优化设计中的应用[J].机械传动,2000,24(2):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700