脉冲强磁场~3He-~4He稀释制冷系统传热传质仿真及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲强磁场装置是开展极端条件下科学研究的重要装置。稀释制冷系统是其低温部分的重要组成部分,其系统参数的优化可以保证为科学实验提供稳定、足够制冷功率及合适制冷温度的超低温环境。
     根据实验装置的实际情况选择了合适的热交换器形式-套管式热交换器,并改进了换热器的形式,强化传热;在进行模拟之前,收集整理材料物性值,选取合适的数值方法—最小二乘法曲线拟合,并编制程序进行计算,得出物性的函数表达式;对换热器内部流动换热过程建立了计算数理模型,利用FLUENT流固耦合模型Coupled,并将壁面温度和对流换热系数做了合适的处理,结合实际编写Udf程序,使状态方程、边界条件、和数理模型结合起来求解。叙述了这些确定条件在FLUENT软件中的实现方法,为用FLUENT软件模拟整个传热过程做充分的准备。模拟计算结果与理论值进行了比较,变化趋势与理论一致,计算模型和结果较为正确。
     用FLUENT数值模拟了套管式换热器的换热特性。首先,计算了不同换热器长度L(0.8m、1m、1.2m、1.4m),不同3He进口速度V(0.001m/s、0.002m/s、0.003m/s、0.004m/s),不同的换热器管径D(0.3mm、0.5mm、0.7mm、1.0mm)对换热器出口平均温度的影响;此外,还模拟了在相同质量流量下,不同的3He循环流速V和换热器管径D的组合,换热器出口平均温度的变化趋势,进而得到L、V、D对出口平均温度的影响趋势及相互之间的影响。
     此外,根据气液相平衡的关系式、两相分离的原理,综合考虑超流氦分离的特点,结合脉冲强磁场装置的实际需要,对稀释制冷系统相分离装置进行了理论分析并给出相关优化措施;提出了一个尺寸结构的优化方案。
Pulsed High Magnetic Field Device is important to science research under extreme conditions. Dilution refrigeration system is an important part of its cryogenic system. Stable, adequate cooling power and suitable ultra-low temperature environment for scientific experiments can be provided through the optimization of system parameters.
    
     According to the actual situation of experimental device, Casing heat exchanger is selected as the suitable form of heat exchangers. By improving the form of heat exchanger, the exchange of heat is strengthened. The materials property is collected before simulation, least squares fitting is selected as the appropriate numerical method, and then the expression of property parameters is educed by programmed calculation. The heat transfer process simulation model is established, the wall temperature and heat transfer coefficient are amended on basis of the fluid-coupling model-Coupled, and the state equations, boundary conditions, physical parameters and math model are combined calculating by UDF programmer. Meanwhile the settings and operations in FLUENT are discussed in detail. The simulation results are compared with the theoretical values, the changing trends is consistent with the theory, the simulation models and results are correct.
     The performance of casing heat exchanger is simulated and analyzed by FLUENT. First, different heat exchanger length L (0.8m, 1m, 1.2m, 1.4m), different 3He inlet velocity V (0.001m / s, 0.002m / s, 0.003m / s, 0.004m / s), different heat exchanger diameter D (0.3mm, 0.5mm, 0.7mm, 1.0mm) are calculated , and the impacts of these parameters on the area-weighted-average temperature are analyzed. In addition, under the combined situations of the same mass flow, different cycle velocity of 3He V and heat exchanger diameter, the outlet area-weighted-average temperature is calculated, and the changing trend of temperature is found out. Then the impacts of L, V, D parameters on area-weighted-average temperature as well as interaction impacts of these parameters are analyzed.
     Furthermore, in accordance with the gas-liquid equilibrium and two-phase separation principle, combining with the characteristics of super-fluid helium separation and the needs of Pulsed High Magnetic Field Device with dilution refrigeration system, phase separator of dilution refrigeration system is theoretical analyzed and optimization measures is proposed. And a proposal of structural optimization is given.
引文
[1]彭涛,辜承林.脉冲强磁场及其发展动态.电工技术杂志,2002,(11):1~3.
    [2]罗美富,中子散射研究用稀释制冷机,低温与超导, 1982,(01) 74
    [3] K.Uhlig,C.Wang,Cryogen-Free Dilution Refrigerator Precooled by A Pulse-Tube Refrigerator with Non-Magnitic Regenerator,Cryogenic Eneneering Conference-CEC,Vol,51
    [4]边绍雄,低温制冷机,1983,第一版,西安交通大学出版社
    [5]陈长青沈裕浩,低温换热器,1993,第一版,机械工业出版社
    [6]吴世功张善真徐烈等,低温工程学基础,1991,上海交通大学出版社,268~278
    [7]张祉祐 ,低温技术热力学, 1991,第一版,西安交通大学出版社,221~244
    [8] Vladimir shvarts,Lewwis Bobb,Vladimir Luppov et al,3He-4He Dilution Refrigerator for Ultra-Low Temperature,Low Temperature Physics
    [9]袁秀玲谢鸿济,用于稀释制冷机的热交换器,深冷技术, 1987,(06),11~14
    [10]张鹏黄永华,氦-4和氦-3及其应用,2006,第一版,国防工业出版社
    [11]王福军,计算流体动力学分析,2004,第一版,清华大学出版社
    [12]李红,数值分析,2003,第一版,华中科技大学出版社
    [13]贾力万肇洪,高等传热学,2003,第一版,高等教育出版社
    [14]孙德兴,高等传热学,2005,第一版,中国建筑工业出版社
    [15]阎守胜陆果,低温物理实验的原理与方法,1985,第一版,科学出版社
    [16]郑金宝,超流氦及其应用,1992,第一版,华中理工大学出版社
    [17] W.弗罗斯特,低温传热学, 1982,第一版,科学出版社,
    [18]韩占忠王敬兰晓平,FLUENT-流体工程仿真计算实例与应用,2004,第一版,北京理工大学出版社
    [19]郭方中,低温传热学,1989,第一版,机械工业出版社
    [20]许国良王晓墨邬田华等,工程传热学,2005,第一版,中国电力出版社
    [21]陶文铨,数值传热学,1988,第一版,西安交通大学出版社
    [22]大矢晴彦,分离的科学与技术,1999,第一版,中国轻工业出版社
    [23]刘芙蓉金鑫丽,分离过程及系统模拟,2001,第一版,科学出版社
    [24]钱颂文朱冬生,管式换热器强化传热技术,2003,第一版,化学工业出版社
    [25] [25]袁秀玲,~3He和超流~4He之间的相互摩擦,制冷学报, 1989,(01),12~15
    [26]谢鸿济,实现稀释制冷机的关键问题探讨,制冷学报, 1986,(04),1~6
    [27]冉启泽钱永嘉朱元贞,DR100—10稀释制冷机研制,低温物理学报, 1979, (01),18~33
    [28] David G.Haase,Automated control and data acquisition for a small dilution refrigerator,Rev.Sci.Instrum.52(10),Oct.1981,1569~1571
    [29] O V Lounasmaa,Dilution Refrigerator,J.Phys.E:Sci.Instrum.,Vol.12,1979,668~675
    [30] N.Pundak , Y.Winograd , Ralph L.Rosenbaum , Experimental Study of a Sintered-Copper Heat Exchanger,Rev.Sci.Instrum.,Vol.44,No.9,Sep 1973,1173~1177
    [31] J.D.Siegwarth,Ray Radebaugh,The Design of Optimum Heat Exchangers for Dilution Refrigerators,The Review of Scientific Instruments,Feb 1972,197~204
    [32] PER G.Bjornsson,Brian W.Gardner,John R.Kirtley et al,Scanning Superconducting Quantum Interference Device Microscope in Dilution Refrigerator,Review of Scientific Instruments,Nov 2001,4153~4258
    [33] M.Shibata,M.Tada,Y.Kishimoto et al,Field-ionization Electron Detector at Low Temperature of 10 mK Range,Review of Scientific Instruments,Jul 2003,3317~3323
    [34] K. W. Reed. Channel cooling techniques for repetitively pulsed magnetic switches. PHYSICA B,1990,245:192~199
    [35] G. S. Boebinger and A. H. Lacerda. The National High magnetic Field. Journal ofLow Temperature Physics. 2003,133(1/2):121~138
    [36]张裕恒李玉芝,脉冲磁体中的热效应,低温物理,1983,5(3):202~212
    [37]王金星,刘建民,低温脉冲磁体的电流和温升计算,低温与超导,1990,18(2): 62~66
    [38]雷沅忠王秋良,传导冷却超导磁体系统的技术发展与应用,低温与超导,2003, 31(1):47~51
    [39]邱利民蒋彦龙甘智华等,可能用于超导系统冷却的脉管制冷技术.低温物理学报,2003,(25增刊):167~171
    [40]王如竹,超流氦传热中的几个特殊物理问题相界面问题及压力问题,低温超导,1991(4):268~275
    [41]黄永华陈国邦李祥仪,3He的低温物理特性及其应用,低温与超导,2004(1),16~21
    [42]汪世清陈国邦,3He流体的低温输运性质综述,低温技术,2006(4),242~249
    [43]黄永华陈国邦,氦-3低温热物性数值研究,低温工程,2003(2),41~46
    [44]张长贵孙大坤,稀释制冷机,物理学进展,1982(1)92~116
    [45]阎守胜,稀释制冷-一种获得极低温度的新方法,物理,1975(2),111~114
    [46] K.Chowdhury S.Sarangi,隔板壁导热系数对逆流式换热器性能的影响,制冷,1986(2),59~61
    [47]陶金连,顺、逆流换热器温度分布曲线的形状分析,安徽工学院学报,1993(1),92~96
    [48]陶金连,换热器热计算的另一种算法,安徽工学院学报,1992(3),94~96
    [49]郜时旺杨沫危师让,换热器温度场均匀性分析,西安交通大学学报,1999(1),51~54
    [50]过增元李志信,换热器中的温度场均匀性原则,中国科学,1996(1)25~31
    [51]董晋标,微通道内流体的流动与换热理论研究和数值分析,硕士学位论文,西安电子科技大学,20070427
    [52]张培杰辛明道,微矩形通道组散热器的对流与导热耦合换热的数值分析,石家庄铁道学院学报,1995(4),11~16
    [53]欧阳新萍,多管型套管式换热器传热与流阻性能试验研究,热能与动力工程,2002(3),235~236
    [54]张廷蕾佟维,对流换热系数的反求方法,大连铁道学院学报,2005(4),25~28
    [55]陈长青低温换热器的特点及研究方向,深冷技术,1991(4),15~18
    [56]余兴恩,李青,超流氦相分离器实验装置降温过程仿真与实验结果,低温工程,2005(3),6~10
    [57]林理和,空间相分离器,低温与超导,1986(1),11~17
    [58]洪国同余兴恩,超流氦气液相分离器实验装置研制,低温工程,2004(3),1~5
    [59]余兴恩李青,超流氦气液相分离器实验研究,导弹与航天运载技术,2004(6),43~48
    [60] Ph. Bredy, F.-P. Juster et al,Experimental And Theoretical Study of A Two Phase Helium High Circulation Loop,Transactions of the Cryogenic conference–CEC,Vol.51,496~503
    [61] C. Deschildre, A. Barraud et al,Dynamic Simulation of An Helium Refrigerator,Transactions of the Cryogenic conference–CEC,Vol.53,475~482
    [62] Filip Finodeyev, Melissa Ghrist, and Frederick Best,Development of a Passive Flow Coalescence Device for Two-Phase Phase Separation Under Microgravity,CP746,Space Technology and Applications Forum-STAIF 2005,141~149
    [63] Frederick Best and Cable Kunvitz,Modeling and Testing of Two-Phase Flow in Manifolds Under Microgravity Conditions,CP552, Space Technology and Applications Infernational Forum-2001,241~246
    [64]郑金宝,超流氦相分离器,真空与低温,1986(4),35~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700