点火具燃烧特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究的点火具是用于底排增程弹点火的关键部件。文章以Ba(NO_3)_2、KClO_4、Sr(NO_3)_2、Mg、Al成分组成3种基础配方,分别添加磷铁、锆、石墨等材料,配制了配方1:Ba(NO_3)_2:Mg:Al:磷铁:NC;配方2:KClO_4:Mg:磷铁:NC;配方3:Sr(NO_3)_2:Mg:磷铁:NC;配方4:Ba(NO_3)_2:Mg:Al:Zr:石墨:NC;配方5:KClO_4:Mg:Zr:石墨:NC等5种不同的点火药,通过对其性能参数、燃烧试验的对比分析,最后确定了两种性能较好的配方;并对确定配方的点火具在静态、高减压梯度、高速旋转和高速气流扰动条件下燃烧特性进行了研究。
     在静态条件下,研究了点火药在不同的压药压力、装药量对点火具燃烧时间、燃烧速度和火焰大小的影响。结果表明,配方1、4在压药压力17.56MPa、配方2、5在13.65MPa、配方3在23.41MPa下燃烧时间最长;加入锆、石墨后,点火药燃烧时间明显延长,比加磷铁的配方最多高出23.35%,比基础配方甚至高出40%。配方2、5燃烧火焰面积较大,其它配方在组分比例改变时火焰大小变化不明显。试验中加入的调节剂对点火药燃烧热和燃烧温度影响不大。在配方中磷铁的试验中,发现含量超过15%时燃烧残渣较多,容易堵塞点火具。试验表明石墨含量超过3%造成点火困难。吸湿性试验表明,配方3吸湿性最强,配方1、4吸湿性较差,配方4吸湿率仅为0.800%;点火能力测试结果表明配方4、5的点火能力明显高于其它配方。
     经过以上测试、分析后确定配方4、5为优选配方,其点火具在高减压梯度下能持续稳定地进行点火,没有出现熄火或断火现象。在高速旋转条件下,点火具燃烧时间明显下降,燃烧速度明显增大,达30mm/s左右,是静态下燃速的3倍以上;火焰燃烧面积比静态下明显增大。在高速气流扰动条件下,点火具燃烧时间随马赫数增大而减小,点火具燃烧猛烈,火焰被拉长数倍。最后,利用FLUENT软件对不同马赫数下流场的点火燃烧进行初步的数值模拟计算,得出了其燃烧速度、温度、压力的模拟图形和曲线,模拟结果与试验规律比较吻合。
     本文设计的点火具在以上环境中均获得了稳定、可靠的点火燃烧。
The igniter researched in this paper is the key part of base bleed extended range projectile. The 3 base formulations in this paper was made up of Ba(NO_3)_2, KClO_4, Sr(NO_3)_2, Mg ,Al, which were added Fe_xP_y, Zr and graphite to form five different kinds of igniting powder. Formulation 1: Ba(NO_3)_2:Mg:Al:Fe_xP_y: NC; Formulation 2: KClO_4:Mg :Fe_xP_y : NC; Formulation 3: Sr(NO_3)_2:Mg: Fe_xP_y: NC; Formulation 4: Ba(NO_3)_2 :Mg :Al:Zr: graphite: NC; Formulation 5: KClO_4:Mg: Zr: graphite: NC. Finally two formulations were determined according the analysis of the comparison of the characteristic parameters and combustion tests, the igniters filled with which were researched under the static state, high decompression grads condition, high-speed rotary condition, and high-speed airflow disturbance condition.
     Under the static state, the influence of the pressure of charge pressing, charge mass on burning rate and flame area were researched. The results show that the burning time achieves the longest for Formulation 1 and 4 when the pressure of charge pressing is 17.56MPa while for Formulation2 and 5 is 13.65MPa and for Formulation 3 is 23.41MPa. The combustion time is markedly longer when Zr or graphite were added, being 23.35% longer at most than that of the formulation which contains Fe_xP_y and even 40% longer than base formulations. The flame area of Formulation 2 and 5 are bigger, and the flame areas of other formulation changes not obviously when the proportion changes. There is little influence of regulation powder on the combustion heat and combustion temperature of igniting powder. For the formulations containing Fe_xP_y, the combustion residue is too much when the Fe_xP_y is more than 15%, and it is prone to jam the igniter. The ignition becomes difficulty when the graphite is more than 3%. The strongest moisture absorption is formulation 3 while there are little moisture absorption with formulation 1 and 4. The moisture absorption rate of Formulation 4 is only 0.800%. The ignition capability of Formulation 4 and 5 is obvious better according to the results of ignition capability tests.
     Through the tests above and analysis above, the Formulation 4 and 5 were selected as better formulation, the igniter with which can combust continuously and steadily under the conditions of high decompression grads without misfire or cut-off deflagration. Under the high-speed rotary condition, the combustion time declined obviously, and the burning rate increased obviously, achieving about 30mm/s, being 2 times more than that under the static state, and the flame area is obvious larger than that under the static state. Under the high-speed airflow disturbance condition, the combustion time of the igniter declined when the Mach number increased, the combustion was fierce, and the flame length was several times longer then that under the static state. The ignition and combustion under the flow fields with different Mach numbers were been numerical simulation using FLUENT, acquiring the stimulant graphs and curves of the burning rate, temperature and pressure, and the simulation result is similar to the tests result.
     The igniters used in this paper can ignite and combust steadily and reliably under the conditions above.
引文
1 潘功配,李毅,张炎清.AF/HTFB底排药柱点火试验研究[J].含能材料,2001,9(2):77-79
    2 吴护林.炮弹增程技术的发展[J].四川兵工学报,2005,(5):3-5
    3 陈西武.新型耐水点火药燃烧性能及应用研究[D].南京:南京理工大学,2002
    4 Dodecahydrodecaborate compound[P]. Brit: 989295, Apr. 14, 1965
    5 Robort, K.A.Ignition composition comprising boro-containing salts[P]. US: 3126305
    6 Liles, G.H.Pelleted igniter[P]. US: 3017300
    7 Stevenson, T. Incendiary composition containing a metal, metal alloy, Oxidizer salt and a nitrated organic compound . US: 3617405
    8 Nauflett, GW. preparation of magnesium fluoropolymer pyroteehnic material[P] . US:5886293
    9 1gnitor for roeket with ignition powder contg. Metal and oxidant. JP61083697A Apr. 28, 1986
    10 Pyrotechnic aluminothermic igniter. FR2626875Aug. 11, 1989
    11 秦志春等.纳米点火药.CNO1101196.3
    12 秦志春等.纳米TiO_2对K_1K点火药点火能力的影响[J].火工品,2002,(4):18
    13 Volk.F. ICT thermachemical data base. ICT 1995 26~(th)52/1-52/12
    14 王文杰,劳允亮,陈基业.化学沉积点火药制备机理及应用研究[J].火工品,2001,(2):14-17
    15 周彬,秦志春,徐振相,刘西广.用汽相沉积法制作红外辐射膜材料[J].火工品,2000,(1):12-13
    16 Frederick G Allford, Kent. Pyrotechnic train[P] . US 5090322, 1992
    17 刘静平,潘功配,赵尚军.基于高速分散的烟火药剂制备工艺[J].火工品,2003,(2):11-13
    18 Safe and fast method of mixing potentially explosive charge. DE3925234A. Jan. 31,1991
    19 Production of pyrotechnic primer chages. W09961394 Dec. 2, 1999
    20 Farncomb, R.E. Supercritical carbon dioxide processing of apyrotechnic. NASA conf. Publi.1997, 385-390
    21 马友林,于江,杨斌。一步制粒法制备点火药的工艺研究[J].火工品,2006,(1):22-24
    22 Achwarz, Kurt.Alloy and inorganic component pyrotechnical compositions for fuses. DD300704. 1992.7.9
    23 Lombard, J.M. Application of molecular collisions theory to gas-solid reactions ignition and combustion of pyrotechnic ompositions. Proc.Int.Pyrotch.Semin. 1984, 9~(th): 851-860
    24 Lipanov A.M.et al, Mathematical modeling of nonstationary physic-chemical process in large sized SPRM pyrotechnical ignition system.Def.Sci.J. 1997, 47(4): 505-516
    25 Klimov, V.L. quasi-equilibrium thermodynamic calculation of nonequilibrium combustion products composition of pyrotechnic mixtures. roc.Int. Pyrotech. Semin. 1995, 21th:399-413
    26 王健,马宏伟,张炎清.底排药柱点火燃烧特性研究[J].弹箭与制导学报,2004,24(2):40-43
    27 郝建春.快速喷焰对复合药型底排剂点火机理的研究[J].弹箭与制导学报,2000,19(3):20-22
    28 吴学易.底排点火具参数设计及其与底排药柱的匹配[J].火工品,1995,(2):9-13
    29 陆春义,周彦煌,余永刚.底排点火具在高降压速率下瞬态燃烧特性的实验研究[J].含能材料,2008,16(5):629-630
    30 郝建春,潘功配.高减压梯度下快速点火研究[J].火炸药学报,1998,(1):19-20
    31 潘功配,杨硕.烟火学[M].第一版.北京:北京理工大学出版社,1997:70-74
    32 孙国祥.高分子混合炸药[M].北京:国防工业出版社,1985:215
    33 孙业斌.军用混合炸药[M].北京:兵器工业出版社,1995:224-232
    34 蒋新广,李国新,王志新,劳允亮等.硝胺类烟火输出药的性能研究[J].含能材料,2008,16(3):277-278
    35 中国化工节能技术协会.化工节能技术手册[M].北京:化学工业出版社,2006:297-298.
    36 兵器工业科学技术辞典编辑委员会.兵器工业科学技术辞典·火工品与烟火技术[M].北京:国防工业出版社,1992:29-31
    37 T. Lyman, Metals handbook, 7thed, Ameriean Society for metals Cleveland ohi, 1948 49A 8th ed. 1961
    38 李华,李振锋.Zr粒度及活度对其点火药作用时间的影响.材料,2001:429
    39 华东工学院弹道研究所编译,第一届国际底排技术研讨会译文集.华东工学院情 报研究室,1989
    40 郎敬新.国军标《点火具通用规范》简介[J].兵工标准化,1997:28-30
    41 成一.火工药剂学.南京:南京理工大学,2003.315-318
    42 蒋明,龙新平,严楠.B/KNO 3点火药的热分解动力学参数计算[J].火炸药报,2005,28(4):80-82
    43 [苏]希特洛夫斯基著.诸葛嵩,沈玉华译.烟火学原理[M].北京:国防工业出版社,1958
    44 李余增.热分析[M].北京:清华大学出版社,1987:95-98
    45 王华胜.发热量测定方法[J].煤炭技术,2006,25(5):5-7
    46 Richard A. Yetter, Vigor Yang, and I. A. Aksay. An Integrated Ignition and Combustion System for Liquid Propellant Micro Propulsion. 0704-0188.2008: 1-5
    47 郑子伟.红外测温仪概述[J].计量与测试技术,2006,(10):24-25
    48 于常青,阎军,李家泽,等.炸药爆轰温度的光纤光谱测量方法[J].兵工学报,2001,22(1):70-73
    49 白永林,任克惠,欧阳娴,等.炸药爆轰温度的瞬时多光谱测量[J].光子学报,2003,32(7):868-871
    50 周新利,李燕,刘祖亮,等.炸药爆轰瞬态温度的光谱法测定[J].光谱学与光谱分析,2003,23(5):982-983
    51 郑兆平,曾汉生,丁翠娇,等.红外热成像测温技术及其应用[J].红外技术,2003,25(1):96-98
    52 邓建平,王国林,黄沛然,等.用于高温测量的红外热成像技术[J].流体力学实验与测量,2001,15(1):43-47
    53 王喜世,伍小平,秦俊,等.用红外热成像方法测量火焰温度的实验研究[J].激光与红外,2001,31(3):169-172
    54 张敬贤,李玉丹,金伟其.微光与红外成像技术[M].北京:北京理工大学出版社,1995:186
    55 龚继海,索卫东.某电点火头长贮失效研究[J].火工品,2003, (1):22-25
    56 王志新,李国新,劳允亮,等.硅系延期药贮存与硅粉表面稳定性研究[J].含能材料,2005,13(3):158-161
    57 程庆华.某电点火具的可靠性验证[J].火工品,2001:22-25
    58 朱艳辉,高俊国,张倩,张芳.含金属粉点火药的吸湿性研究[J].爆破器材,2007,36(2):60-61
    59 丁则胜.影响底排药柱二次点火的参数研究[J].弹道学报,1996,8(8):17-21
    60 H. Wirzberger and S. Yaniv. Solid rocket motor ignition transient phenomenom and pressure buildup CFD simulation[J] . AIAA, 2007.5795: 1-4
    61 陆春义,周彦煌,余永刚.高降压速率下复合底排药剂瞬变燃烧特性研究[J].含能材料,2007,15(6):587-591
    62 李上文,赵凤起,罗阳,陈沛等.大口径炮弹增程技术对固体推进剂的要求[J].火炸药学报,2003,26(3):21-22
    63 王栋,余陵,武晓松.固体火箭发动机高速旋转试验研究[J].弹道学报,2004,16(4):87-89
    64 王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:185-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700