等温热蒸发诱导自组装设备的设计与搭建及蛋白石光子晶体的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Isothermal Heating Evaporation-induced Self-assembly Equipment Design and Build and the Fabrication of Opal Structure Photonic Crystals
  • 作者:李志慧
  • 论文级别:硕士
  • 学科专业名称:凝聚态物理
  • 学位年度:2010
  • 导师:池元斌
  • 学科代码:070205
  • 学位授予单位:吉林大学
  • 论文提交日期:2010-06-01
摘要
描述了一种快速制备高质量蛋白石光子晶体的方法,即等温热蒸发诱导自组装法,为快速制备完全带隙光子晶体奠定了基础。
     首先用种子生长法制备高质量亚微米级二氧化硅微球,与传统Stober法的区别在于:多次添加正硅酸乙酯;调控种子长大的生长条件;控制微球的数密度。
     对等温热蒸发诱导自组装法生长光子晶体的条件进行了研究,结果表明:该方法的关键条件是实验温度,当温度设定略高于溶剂(本论文用的是乙醇)的沸点时,蒸发的速度便会高于小球沉积的速度,保证了溶液对流,带动小球到达晶体生长前沿的位置,从而提高了晶体的生长速度。总结了该方法的优点:制备时间短,重复性高,对球的大小没有特殊限制。
     搭建了一台等温热蒸发诱导自组装法装置,并用该设备制备出高质量的蛋白石光子晶体,总结出光子晶体制备的适宜条件:蛋白石光子晶体的制备采用乙醇作溶剂,温度设定在79.2℃,二氧化硅微球的质量分数为2.0%-6.5%可制备质量较高的胶体晶体。扫描电子显微镜照片表明样品在较大范围内保持单晶面心立方密排有序结构,其(111)面与衬底表面平行。
Preparation of isothermal heating evaporation-induced self-assembly of high quality, large area opal photonic crystals, for the preparation of high-quality basis.
     We prepare high quality silica microspheres by the seed grow method in this thesis. There are some difference between seeds grow method and traditional sol-gel method:the times of addition of TEOS changed from one to several; the growth conditions changes as the microspheres' growth; control the number density of seed microspheres. To prevent the generation of doublet impurity. The aim of added TEOS in several times is adjust its hydrolysis and polycondensation rate, stabilize the grow rate of microsphere, to avoid new nuclear generation; control of growth conditions is to choose the most suitable growing conditions, It's could effectively prevent the twin ball by control number density. We can prepare high quality submicron silica spheres by seed growth method.The roundness, monodisperse, narrow particle size distribution of the sphere is up to the mustard to produce photonic crystals.
     This article summarizes the rule of assembly of opal structure of colloidal crystal by the isothermal heating evaporation-induced method, and the conditions of isothermal heating evaporation-induced method to prepare opal structure of colloidal crystal:the temperature is a little more than the boiling point of solvent (ethanol) to sustain the ethanol evaporation rate faster than spheres sedimentation rate. keep the spheres in the disperse state.The aim is to keep convection flows in order to make spheres arrive at the Forefront of crystal growth.
     The advantage of isothermal heating evaporation-induced self-assembly method is:Preparation time is short, highly reproducibility, no special restrictions on the size of the ball.
     According to the principle of isothermal heating evaporation-induced self-assembly, we have built up a isothermal heating evaporation-induced self-assembly experimental device.The process of the growth is very rapid because the temperature of crystal growth set slightly higher than the boiling point solvents, so it could prepare colloidal crystal fast. It's usually need 2-3days to prepare an area of 5cm×5cm alternating crystal by vertical deposition method, it's only need 1-2hours to prepare a opal structure of colloidal crystal in the same area with this equipment and methods of the same area the time required, it's greatly reduce the preparation time. It's lay the foundation for prepare opal structure of colloidal crystal fast and massive.
     We prepared high quality opal structure of colloidal crystal by this equipment. And summarized the suitable conditions of prepare silica microsphere colloidal crystals:take ethanol as solvent, the temperature set at 79.2℃, silica microspheres mass fraction was 2.0% -6.5% to obtain high quality opal structure of colloidal crystal.The analysis of opal structure of colloidal crystal by scanning electron microscope show silica Microspheres arranged in order within a large area. We also discussed the factors affect the quality of opal colloidal crystal.
引文
[1]Yablonovitch E, Inhibited spontaneous emission in solid-state physics and electro-nic [J]. Phys. Rev. Lett.1987,58(20):2059-2062.
    [2]John S, Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett.1987,58(20):2486-2489.
    [3]Leung K M and Liu Y F, Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media[J]. Phys. Rev. Lett.1990,65,2646-2649.
    [4]Zhang Z and Satpathy S, Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations[J]. Phys. Rev. Lett.1990,65, 2650-2653.
    [5]Dalichaouch R, Armstrong J P, S. Schultz, P. M. Platzman and S. L. McCall, Micro-wave localization by two-dimensional random scattering[J]. Nature.1991, 354:53-55.
    [6]Wiersma D S, Bartolini P, Lagendijk Ad and Righini R, Localization of light in a disordered medium[J]. Nature.1997,390:671-673.
    [7]Brown E R, Parker C D, Yablonovitch E, Radiation properties of a planar antenna on a photonic-crystal substrate[J], J Opt. Soc. Am. B,1993,10(2),404.
    [8]Fink Y, Winn J N, Fan S, et al., A Dielectric Omnidirectional Reflector[J]. Science, 1998,282,1679.
    [9]Knight J C, Broeng J, Birks T A and Russell P St J, Photonic band gap guid-ance in optical fibers[J]. Science.1998,282:1476-1478.
    [10]Suzuki K, Kubota H, Kawanishi S, Tanaka M, Fujita M, Optical properties of a low-loss polarization-maintainingphotonic crystal fiber[J]. Opt. Express,2001,9, 676.
    [11]Cregan D C,Single-Mode Photonic and Gap Guidance of Light in Air [J]. Science,1999,285,1537.
    [12]Joannopoulos J D, Villeneuve P R, Fan S, Photonic crystals:Putting a new twist on light. [J]. Nature,1997,386,143.
    [13]Mekis A, Chen J C, Kurland I, et al., High Transmission through SharpBends in Photonic Crystal Waveguides [J]. Phys. Rev. lett.,1996,77,3787.
    [14]Joannopoulis J D, Villeneuve P R, Fan S, Photonic crystals:Putting a new twist on light. (cover story) [J]. Nature,1997,386,143.
    [15]Painter O, Lee R K, Scherer A, et al., Two-dimensional Photonic Band-Gap Defect Mode Laser[J]. Science,1999,284,1819.
    [16]Li M Z, Liao Q, Liu Y, Li Z Y, Wang J X, Jiang L, Song Y L, A white-lighting LED system with a highly efficient thin luminous film[J]. Appl.Phys. A,2010, 98,85.
    [17]Zhou W D, Rennon S, Baba T, et al., Electrically injected single-defect photonic band gap surface-emitting laser at room temperature [J], Elec. Lett.,2000,36, 1541.
    [18]Guptaetal S, Infrared filters using metallic photonic band gap structures on flexible substrates [J]. Appl. Phys. Lett.,1997,71(17),2412.
    [19]Leietal X Y, Novel application of a perturbed photonic crystal:High-quality filter[J]. Appl. Phys. Lett.1997,71(20),2889.
    [20]Smolka S, Barth M and Benson O, Selectively coated photonic crystal fiber for highly sensitive fluorescence detection[J]. Appl. Phys. Lett.,2007,90:111101
    [21]Arsenault A C, Miguez H, Kitaev V, et al., A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability:A step towards photonic ink (P-Ink) [J]. Adv. Mater.,2003,15,503.
    [22]Fudouzi H, Xia Y, Colloidal crystals with tunable colors and their use as photonic papers[J]. Langmuir,2003,19,9653.
    [23]Fudouzi H, Xia Y, Photonic papers and inks:Color writing with colorless materials[J]. Adv. Mater,2003,11,892.
    [24]Gu Z Z, Uetsuka H, Takahashi K, et al., Structural color and the lotus effect [J].Angew. Chem,2003,115(8).
    [25]Stober W, Fink A and Bohn E, Controlled Growth of Monondisperse Silica Spheres in the Micon Size Range[J]. J. Colloid. Interface. Sci.1968,26,62-69.
    [26]Baily J K and Mecartney M L, Formation of Colloidal Silica Particles from Alkoxides[J]. Collids and Surfaces 1992,63,151-161.
    [27]Johnson S G, Manolatou C, Fan S H, Villeneuve P R, Joannopoulos J D and Haus H A, Elimination of cross talk in waveguide intersections[J]. Opt. Lett.,1998,23: 1855-1857.
    [28]Yablonovitch E, Gmitter T J and Leung K M, Photonic band structure:the face-centered-cubic case employing nonsphereical atoms[J]. Phys. Rev. Lett. 1991,67,2295-2298.
    [29]Shoji S, Sun H B and Kawata S, Photonicfabrication of wood-pile three-dimen-sional photonic crystals using four-beam laser interence[J]. Appl. Phys. Lett., 2003,83:608-610.
    [30]Wong C W, Rakich P T,. Johnson S G, Qi M, Smith H I, Ippen E P, Kimerling L C, Jeon Y, Barbastahis G and Kim S G, Strain-tunable silicon photonic band gap microcavities in optical waveguides[J]. Appl. Phys. Lett.,2004,84:1242-1244.
    [31]Jukam N and Sherwin M S, Two-dimensional terahertz photonic crystals fabrica-ted by deep reactive ion etching in Si[J]. Appl. Phys. Lett.,2003,83:21-23.
    [32]Fan S, P. Villeneuve, Meade R and Joannoupolis J, Design of three-dimensional photonic crystals at submicron lengthscales[J]. Appl. Phys. Lett.1994,65: 1466-1468.
    [33]Pradhan R D, Bloodgood J A, and Watson G H, Photonic band structure of bee colloidal crystals[J]. Phys. Rev. B,1997,55 (15):9503-9507.
    [34]Vlasov Y A, Astrov V N, Karimov O Z, Kaplyanskii A A, Bogomolov V N, and Prokofiev V, Existence of a photonic pseudogap for visible light in synthetic opals[J]. Phys. Rev. B,1997,55 (20):13357-13360.
    [35]Busch K and John S, Photonic bandgap formation in certain self-organizing systems[J]. Phys. Rev. E,1998,58 (3):3896-3908.
    [36]Doosje M, Hoenders B J, and Knoester J, Photonic bandgap optimization in inv-erted fee photonic crystals[J]. J. Opt. Soc. A. m. B,2000,17(4):600-606.
    [37]Miguez H, Blanco A, Lopez C, et al., Face centered cubic photonic bandgap materials based on opal-semiconductor composites [J]. J. Lightwave Tech.,1999, 17(11),1975.
    [38]Johnson N P, McComb D W, Richel A, et al., Synthesis and optical properties of opal and inverse opal photonic crystals[J]. Synth. Met.,2001,116,469.
    [39]Wijnhoven J E G J, Vos W L, Preparation of photonic crystals made of air soheres in titania[J]. Science,1998,281,802.
    [40]Velev O D, Jede T A, Lobo R F, Porous silica via colloidal crystallization[J]. Nature,1997,389,447.
    [41]Park S H, Xia Y, Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters[J]. Langmuir,1999,15(1),266.
    [42]Holgado M, Garcia-Santamaria F, Blanco A, Ibisate M, Cintas A, Miguez H, Serna CJ, Molpeceres C, Requena J, Mifsud A, Meseguer F, Lopez C, Electrophoretic deposition to control artificial opal growth[J].1999,15(14), 4701.
    [43]Stewart A M, Chadderton L T, Senior B R, Self-assembly in the growth of precious opal[J].2010,312,391.
    [44]Seet K K, Mizeikis V, Matsuo S, Juodkazis S, Misawa H, Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing[J]. Adv.Mater.,2005,17,541.
    [45]Tetreault, N; von Freymann, G; Deubel, M, et al. New route to three-dimensional photonic bandgap materials:Silicon double inversion of polymer templates[J]. Adv.Mater.,2006,18,457.
    [46]Gratson, GM; Garcia-Santamaria, F; Lousse, V, et al. Direct-Write Assembly of Three-Dimensional Photonic Crystals:Conversion of Polymer Scaffolds to ilicon Hollow-Woodpile Structures [J]. Adv.Mater.,2006,18,461.
    [47]Sean W, Kitaev V, and Ozin G A, Colloidal Crystal Films:Advances in Universality and Perfection[J]. J. AM. CHEM. SOC.2003,125,15589.
    [48]Jiang P, Bertone J F, Hwang K S and Colvon V L, Single-crystal colloidal mul-tilayers of controlled thickness[J]. Chem. Mater,1999,11(8):2132-2140.
    [49]Denkov N D, Velev O D, Kralchevsky P A, Yoshimura I B and Nagayama K, Two-dimensional crystallization[J]. Nature,1993,361:26-26.
    [50]Dimitrov A S and Nagayama K, Continuous convective assembling of fine partic-les into two-dimensional arrays on solid surfaces[J]. Langmuir,1996,12: 1303-1311.
    [51]Joannopoulos J D, Self-assembly lights up[J]. Nature,2001,414:257-258.
    [52]Kitaev V,Ozin G A, Self-assembled surface patterns of binary colloidal crystals[J],Adv.Mater.2003,15,75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700