农杆菌介导的玉米转化技术的改进及转betA基因玉米抗逆性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因枪轰击法和农杆菌介导法是植物遗传转化的两大主流方法。农杆菌介导法与基因枪轰击法、电穿孔法、PEG法等其它DNA直接转移方法相比具有很大的优越性,例如可以转移大片段DNA,整合的外源基因拷贝数较少,并且基因重排频率较低。玉米作为一种单子叶植物不是农杆菌的天然宿主,农杆菌介导的玉米转化难度较大,其发展落后于农杆菌介导的双子叶植物的转化,目前玉米遗传转化的常用方法在大多数实验室仍为基因枪轰击法。尽管农杆菌介导的玉米模式种质A188自交系和Hi-Ⅱ杂交种(来源于A188×B73)的转化获得突破,建立了高效的转化体系,但是具有生产价值的玉米骨干自交系大部分难以通过农杆菌介导法转化。而且随着玉米分子生物学的发展,玉米基因组学研究也需要一种高效的玉米遗传转化方法。因此,建立农杆菌介导的玉米骨干自交系高效遗传转化体系不仅具有理论意义,而且具有重要的实用价值。
     在本研究中,以农杆菌LBA4404侵染玉米骨干自交系齐319、掖515、掖502、DH4866等胚性愈伤组织,经过潮霉素筛选后由抗性愈伤组织再生植株,自交结实。研究发现,侵染时农杆菌悬浮液浓度、共培养时间、真空渗入处理、愈伤组织部分酶解和超声波处理等能影响转化率。
     农杆菌悬浮液浓度OD_(600)0.5-0.7,侵染5 min,共培养3-4天,掖515和齐319胚性愈伤组织的转化率较高(约6%)。而增加或减少农杆菌悬浮液浓度,延长或缩短共培养时间,转化率均降低。原因可能是增加农杆菌悬浮液浓度使吸附在愈伤组织上的农杆菌数目增加,延长共培养时间使农杆菌增殖增加,但同时伴随着玉米愈伤组织死亡率的增加;而减少农杆菌悬浮液浓度,吸附在愈伤组织上的农杆菌数目减少,玉米细胞转化率下降;缩短共培养时间可能造成农杆菌不能有效完成T-DNA的转移和整合过程。
     农杆菌侵染玉米胚性愈伤组织时,在50kPa下真空渗入5min,掖515和
Microprojectile bombardment and Agrobacterium-mediated transformation are two main methods for plant transformation. As compared with other direct DNA transfer methods such as microprojectile bombardment, electroporation and polyethylene glycol-mediated transformation methods, Agrobacterium-mediated transformation facilitates the delivery of larger segments of foreign DNA, and results in the integration of low numbers of gene copies into the plant chromosome and relatively few gene rearrangements. Maize, a monocotyledonous plant, is not a natural host of Agrobacterium. Therefore, Agrobacterium-mediated maize transformation is relatively difficult, and its development lags behind Agrobacterium-mediated dicotyledons. At present, in most laboratories the method routinely used for maize transformation is microprojectile bombardment. Breakthroughs in Agrobacterium-mediated transformation of model maize germplasms including A188 inbred line and Hi-II (with A188xB73 background) hybrid have been made, and efficient transformation systems have been established thereof. However, most elite maize inbred lines with agronomic value are recalcitrant to transformation mediated by Agrobacterium. Moreover, with the advances in maize molecular biology, the research of maize genome will require an efficient transformation system. Thus, the establishment of an efficient transformation system of maize elite inbred lines mediated by Agrobacterium is not only of theoretical significance, but also of great value for agriculture.In this study, embryogenic calli of elite maize inbred lines Qi319, Ye515, Ye502 and DH4866 were infected by Agrobacterium tumefaciens LBA4404, and fertile plants were recovered from the resistant calli after selection by hygromycin. The results . demonstrated that the transformation efficiency was infected by the concentration of
    Agrobacterium suspension, the duration of co-cultivation, vacuum infiltration, partial enzymolysis of calli and sonication.With the concentration of Agrobacterium at OD600 0.5-0.7, the duration of infection of 5 min. and the duration of co-cultivation between 3-4 days, the transformation efficiency of embryogenic calli of Ye515 and Qi319 was highest (about 6%). However, the transformation efficiency decreased when the concentration of Agrobacterium suspension was increased or decreased, and the duration of co-cultivation was prolonged or shortened. The reasons are probably that the number of Agrobacterium attached to calli increased with the increase of the concentration of Agrobacterium, and the proliferation increased with the elongation of the duration of co-cultivation, meanwhile, the mortality rate of infected calli increased. Whereas the reduction in the concentration of Agrobacterium suspension resulted in the decrease in the number of Agrobacterium attached to calli, the transformation efficiency of maize cells decreased; and the process of T-DNA transfer and integration might not have been accomplished when the duration of co-cultivation was shortened.Vacuum infiltration at 50 kPa for 5 min during infection of maize embryogenic calli by Agrobacterium increased the transformation efficiency of Ye515 and Ye502 from 6.3% and 4.5% to 8.7% and 7.8%, respectively. This might result from the fact that assisted with vacuum infiltration during infection Agrobacterium could enter into the inside of calli, and was beneficial to more calli cells to contact with Agrobacterium, and to increase the chances of transformation of maize cells.Partial enzymolysis of embryogenic calli with 0.2% Macerozyme R-10 for 10 min before infection improved transformation efficiency of Ye515 and Ye502 to 8.3% and 8.9%, respectively. This might result from the fact that the partial enzymolysis of maize calli could degrade cell wall, increase intercellular space, and stimulate cell division, all of which were in favor of the attachment and infection of plant cells by Agrobacterium.After sonication for 90-120 s at 100 W during infection of embryogenic calli, the transformation efficiency of was up to 9.1% and 9.4% for Ye515 and Ye502, respectively. This might result from the fact that the sonication of maize calli resulted in
    micro-wounding both on the surface of and deep within the target tissues, and the formation of crannies within plant tissues was beneficial to the intrusion of Agrobacterium into the inside of calli to transform inner cells.The above results demonstrated that the transformation efficiency of embryogenic calli of elite maize inbred lines mediated by Agrobacterium was improved by the optimization of the concentration of Agrobacterium suspension and the duration of co-cultivation, and by the assistance of vacuum infiltration, partial enzymolysis and sonication.Abiotic stresses such as drought, salt and low temperature are main factors limiting the yield and the quality of crops. So it is necessary to breed new crop varieties that are more tolerant to these abiotic stresses so that new land can be brought under cultivation to meet the progressively demand of the society. The problem with traditional plant breeding for achieving this end is that it is time consuming and laborious; it is difficult to modify single traits; and it relies on existing genetic variability. However, genetic engineering can now be used as a relatively fast and precise means of achieving improved stress tolerance. The most consistently successful approach is the introduction of genes encoding enzymes that catalyse the conversion of a naturally occurring substrate into a product with osmoprotective properties, and the most studied method is the introduction of glycine betaine synthesis pathway into plants so that the transgenic plants could accumulate higher levers of glycine betaine and acquire enhanced stress tolerance.In this study, betA gene from Escherichia coli coding for choline dehydrogenase was transferred to elite maize inbred lines mediated by Agrobacterium tumefaciens LBA4404. PCR and Southern analysis of the genomic DNA from transgenic plants in the first and subsequent generations showed that foreign genes have integrated into maize genome. The analysis of five transgenic lines of elite maize inbred DH4866 indicated that four transgenic lines accumulated higher levels of glycine betaine and improved tolerance to chilling and drought stresses.In the third generation of transgenic DH4866, five lines with good agronomical
    traits were selected to detect the tolerance to chilling and drought stresses. In these five lines, the level of betaine in the leaves of line 1 was 1.5 umol [g FW]"1 (FW: fresh weight), which was slightly higher than that of non-transgenic control (wild type) plants with 1.2 umol [g FW]"1, whereas the levels of betaine in leaves of lines 2, 3, 4 and 5 were 2.5-4.0 umol [g FW]'1. The betaine level in seeds of non-transgenic control was 2.0 umol [g DW]1 (DW: dry weight), and that of line 1 was 2.3 umol [g DW]'\ but betaine levels in seeds of line 2, 3, 4 and 5 were 4.1-5.8 umol [g DW]*1. The levels of choline, the substrate of the synthesis of betaine catalyzed by choline dehydrogenase, were not affected by the expression of foreign genes.At 25 °C, the germination rate of transgenic and non-transgenic seeds was all above 95%, and did not show significant difference. At 15 °C, the germination of seeds of transgenic lines 2, 3, 4 and 5 was ahead of that of non-transgenic control and transgenic line 1 for about two days. At 10 °C, the final germination rate of line 1 was reduced to 35%, and those of lines 2, 3, 4 and 5 were reduced to 60-80%, however, the final germination rate of non-transgenic control was reduced to 25%.At 25 °C, the shoot growth rate of geminated seeds was not significantly different. At 15 °C, the shoot growth rate decreased to about 60% as compared to 25 °C, but showed no significant difference between transgenic and non-transgenic plants. However, in comparison with that of 25 °C, the shoot growth rate at 10 °C of lines 2, 3, 4 and 5 was about 20% and that of non-transgenic plants was only 10%.After seedlings at three-leaf stage were subjected to 10 days of chilling treatment at 10/5 °C (day/night), the chilling injury of lines 2, 3, 4 and 5 was significantly less than that of non-transgenic control. When these chilling treated seedlings were transferred to 25 °C for 10 days, the survival percentage of lines 2, 3, 4 and 5 was more than 30% higher than that of non-transgenic control.After seedlings at three-leaf stage were subjected to 10 days of chilling treatment at 10 °C, cell membrane damage of lines 2, 3, 4 and 5 was 20% lower than that of non-transgenic control. The photosystem II activity and net photosynthesis rate of lines 2, 3, 4 and 5 were more than 20% higher than those of non-transgenic control after
引文
1. Gordon-Kamm WJ, Baszczynski CL, Bruce WB, Tomes DT(1999) Transgenic cereals-Zea mays(maize). In Vasil IK(ed.), Molecular Improvement of Cereal Crops. Kluwer Academic Publishers, 189-253.
    2. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams WR, Jr., Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG(1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell, 2(7): 603-618.
    3. Armstrong CL(1999) The first decade of maize transformation: A review and future perspective. Maydica, 44: 101-109.
    4. Fromm ME, Taylor LP, Walbot V(1985) Expression of genes trausferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA, 82(17): 5824-5828.
    5. Fromm ME, Taylor LP, Walbot V(1986) Stable transformation of maize after gene transfer by electroporation. Nature, 319(6056): 791-793.
    6. Rhodes CA, Lowe KS, Ruby KL(1988) Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Bio/Technol., 6: 56-60.
    7. Rhodes CA, Pierce DA, Merrier IJ, Mascarenhas D, Detmer JJ(1988) Genetically transformed maize plants from protoplasts. Science, 240(4849): 204-207.
    8. Shillito RD, Carswell GK, Johnson CM, Dimaio JJ, Harms CT(1989) Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technol., 7: 581-587.
    9. Priori LM, Sondahl MR(1989) Plant regeneration and recovery of fertile plants from protoplasts of maize(Zea mays L.). Bio/Technol., 7: 589-594.
    10. Morocz S, Donn G, Nemeth J, Dudits D(1990) An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor Appl. Genet., 80:721-726.
    11. Petersen WL, Sulc S, Armstrong CL(1992) Effect of nurse cultures on the production of macro-calli and fertile plants from maize embryogenic suspension culture protoplasts. Plant Cell Rep., 10: 591-594.
    12. Laursen CM, Krzyzek RA, Flick CE, Anderson PC, Spencer TM(1994) Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol. Biol., 24(1): 51-61.
    13. Krzyzek RA, Laursen CRM, Anderson PC(1995) Stable transformation of maize cells by electroporation. Patent No. US 5 472 869.
    14. D'Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J(1992) Transgenic maize plants by tissue electroporation. Plant Cell, 4(12): 1495-1505.
    15. Pescitelli SM, Sukhapinda K(1995) Stable transformation via electroporation into maize Type Ⅱcallus and regeneration of fertile plants. Plant Cell Rep., 14: 712-716.
    16. Golovkin MV, Abraham M, Morocz S, Bottka S, Feher A, Dudits D(1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci., 90: 41-52.
    17. Omirulleh S, Abraham M, Golovkin M, Stefanov I, Karabaev MK, Mustardy L, Morocz S, Dudits D(1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol. Biol., 21(3): 415-428.
    18. Wang A, Evans R, Altendorf P, Hanten J, Doyle M, Rosichan J(2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep., 19(7): 654-660.
    19. Sanford JC, Klein TM, Wolf ED, Allen N(1987) Delivery of substances into cells and tissues using a particle bombardment process. Particul. Sci. Technol., 5: 27-37.
    20. Klein TM, Wolf ED, Wu R, Sanford JC(1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature, 327: 70-73.
    21. Vasil V, Vasil IK, Lu C(1984) Somatic embryogenesis in long-term callus cultures of Zea mays L. (Gramineae). Am. J. Bot., 71: 158-161.
    22. Kamo KK, Becwar MR, Hodges TK(1985) Regeneration of Zea mcoys L. from embryogenic callus. Bot. Gaz., 146: 327-334.
    23. Duncan DR, Williams ME, Zehr BE, Widholm BE(1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta, 165: 322-332.
    24. Armstrong CL, Green CE(1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 164: 207-214.
    25. Gengenbach BC, Green CE, Donovan CM (1977) Inheritance of selected pathtoxin resistance in maize plants regenerated from cell cultures. Proc. Natl. Acad. Sci. USA, 74: 5113-5117.
    26. Hibberd KA, Green CE(1982) Inheritance and expression of lysine plus threonine resistance selected in maize tissue culture. Proc. Natl. Acad Sci. USA, 79: 559-563.
    27. Anderson PC, Georgeson M(1989) Herbicide-tolerant mutants of com. Genome, 31: 994-999.
    28. Huang Y, Dennis ES(1989) Factors influencing stable transformation of maize protoplasts by electroporation. Phant Cell Tissue Organ Cult., 18: 281-296.
    29. Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM(1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technol., 8(9): 833-839.
    30. Wan Y, Widholm JM, Lemaux PG(1995) Type Ⅰ callus as a bombardment target for generating fertile transgenic maize(Zea mays L.). Planta, 196: 7-14.
    31. Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV(1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technol., 11:194-200.
    32. Songstad DD, Armstrong CL, Petersen WL, Hairston B, Hinchee MAW(1996) Production of transgenic maize plants and progeny by bombardment of Hi-Ⅱ immature embryos. In Vitro Cell. Dev. Biol. -Plant, 32: 179-183.
    33. Lowe K, Bowen B, Hoerster G, Ross M, Bond D, Pierce D, Gordon-Kamm B(1995) Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technol., 13: 677-681.
    34. Zhong H, Sun B, Warkentin D, Zhang S, Wu R, Wu T, Sticklen MB(1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol., 110(4): 1097-1107.
    35. Li G, Zhang Q, Zhang J, Bi Y, Shah L(2002) Establishment of multiple shoot clumps from maize(Zea mays L.) and regeneration of herbicide-resistant transgenic plantlets. Sci. China (Ser. C), 45(1): 40-49.
    36. Vain P, McMullen MD, Finer JJ(1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep., 12: 84-88.
    37. Kaeppler HF, Gu W, Somers DA, Rines HW, Cockburn AF(1990) Silicon carbide fibermediated DNA delivery into plant cells. Plant Cell Rep., 9: 415-418.
    38. Kaeppler HF, Somers DA, Rines HW, Cockburn AF(1992) Silicon carbide fiber-mediated stable transformation of plant cells. Theor. Appl. Genet., 84: 560-566.
    39. Frame BR, Drayton PR, Bagnali SV, Lewnaw CJ, Bullock WP, Wilson HM, Dunwell JM, Thompson J, Wang K(1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J., 6: 941-948.
    40. Petolino JF, Hopkins NL, Kosegi BD, Skokut M(2000) Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep., 19(8): 781-786.
    41. Pareddy D, Petolino J, Skokut T, Hopkins N, Miller M, Welter M, Smith K, Clayton D, Pescitelli S, Gould A(1997) Maize transformation via helium blasting. Maydica, 42: 143-154.
    42. Hamllton CM, Frary A, Lewis C, Tanksley SD(1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad Sci. USA, 93(18): 9975-9979.
    43. Hiei Y, Ohta S, Komari T, Kumashiro T(1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 6(2): 271-282.
    44. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T(1996) High efficiency transformation of maize(Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol., 14(6): 745-750.
    45. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y(1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Ptysiol., 115(3): 971-980.
    46. Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred DA, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA(1998) Molecular analysis of TO plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet. Coop. Newslett., 72: 34-37.
    47. Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Sehroeder S, Hondred D, Seltzer J, Pierce D(2000) Agrobacterium-mediated sorghum transformation. Plant Mol. Biol., 44(6): 789-798.
    48. Zhao Z-Y, Gu W, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D(2002) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol. Breed, 8(4): 323-333.
    49. Bytebier B, Deboeck F, Greve HD, Van Montagu M, Hernalsteens JP(1987) T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proc. Natl. Acad Sci. USA, 84: 5345-5349.
    50. Schafer W, Gorz A, Kahl G(1987) T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature, 327: 529-532.
    51. Potrykns I (1990) Gene transfer to cereal: an assessment. Bio/Technol., 8: 535-543.
    52. Graves ACF, Goldman SL(1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol., 7: 43-50.
    53. Goldman SL, Graves ACT(1993) Process for transforming corn and the products thereof. Patent No. US 5 177 010.
    54. Grimsley N, Hohn T, Davies JW, Hohn B(1987) Agrobacterium-mediated delivery, of infectious maize streak virus into maize plants. Nature, 325: 177-179.
    55. Grimsley N, Romos C, Hein T, Hohn B(1988) Mefistematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Bio/Technol., 6: 185-189.
    56. Boulton MI, Buchholz WG, Marks MS, Markham PC,, Davies JW(1989) Specificity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol. Biol., 12: 31-40.
    57. Schappi M, Hohn B(1992) Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell, 4(1): 7-16.
    58. Shen WH, Escudero J, Schlappi M, Ramos C, Hohn B, Koukolikova-Nieola Z(1993) T-DNA transfer to maize cells: histochemical investigation of beta-glucuronidase activity in maize tissues. Proc. Natl. Acad Sci. USA, 90(4): 1488-1492.
    59. Escudero J, Neuhaus G, Schlappi M, Hohn B(1996) T-DNA transfer in meristematic cells of maize provided with intracellular Agrobacterium. Plant J., 10(2): 355-360.
    60. Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH(1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol., 95: 426-434.
    61. Chan MT, Chang HH, Ho SL, Tong WF, Yu SM(1993)Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol. Biol., 22(3): 491-506.
    62. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R(1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J., 11(6): 1369-1376.
    63. Komari T(1990) Transformation of cultured cells Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep., 9: 303-306.
    64. Lupotto E, Reali A, Passera S, Chart M-T(1999) Maize elite inbred lines are susceptible to Agrobacterium tumefaciens-mediated transformation. Maydica, 44: 211-218.
    65.黄璐,卫志明(1999)农杆菌介导的玉米遗传转化.实验生物学报,32:381-389.
    66. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K(2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol., 129(1): 13-22.
    67. Gordon-Kamm W, Dilkes BP, Lowe K, Hoerster G, Sun X, Ross M, Church L, Bunde C, Farrell J, Hill P, Maddock S, Snyder J, Sykes L, Li Z, Woo Ym, Bidney D, Larkins BA (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc. Natl. Acad. Sci. USA, 99(18): 11975-11980.
    68. Hansen G, Chilton MD(1996) "Agrolistic" transformation of plant cells: integration of T-strands generated in planta. Proc. Natl. Acad Sci USA, 93(25): 14978-14983.
    69. Hansen G, Shillito RD, Chilton MD(1997) T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc. Natl. Acad Sci. USA, 94(21): 11726-11730.
    70. Sairam RV, Parani M, Franklin G, Lifeng Z, Smith B, MacDougall J, Wilber C, Sheikhi H, Kashikar N, Meeker K, Al Abed D, Berry K, Vierling R, Goldman SL(2003) Shoot meristem: an ideal explant for Zea mays L. transformation. Genome, 46(2): 323-329.
    71. Bechtold N, Ellis J, Pelletier G(1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Sci. Paris, 316: 1194-1199.
    72. Bechtold N, Pelletier G(1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol., 82: 259-266.
    73. Clough SJ, Bent AF(1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 16(6): 735-743.
    74. Dale EC, Ow DW(1990) Intra-and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene, 91(1): 79-85.
    75. Lyznik LA, Mitchell JC, Hirayama L, Hodges TK(1993) Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Res., 21(4): 969-975.
    76. Ow DW, Medberry SL(1995) Genome manipulation through site-specific recombination. Crit. Rev. Plant Sci., 14: 239-261.
    77. Lyznik LA, Rao KV, Hodges TK(1996) FLP-mediated recombination of FRT sites in the maize genome, Nucleic Acids Res., 24: 3784-3789.
    78. Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW(2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev., 14(22): 2869-2880.
    79. Liang F, Han M, Romanienko PJ, Jasin M(1998) Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Natl. Acad Sci USA, 95(9): 5172-5177.
    80. Puchta H(1999) Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics, 152(3): 1173-1181.
    81. Siebert R, Puchta H(2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell, 14(5): 1121-1131.
    82. Vergunst AC, Hooykaas PJJ(1999) Recombination in the plant genome and its application in biotechnology. Crit. Rev,. Plant Sci., 18: 1-31.
    83. Hanin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J(2001) Gene targeting in Arabidopsis. Plant J, 28(6): 671-677.
    84. Terada R, Urawa H, Inagald Y, Tsugane K, Iida S(2002). Efficient gene targeting by homologous recombination in rice. Nat. Bioteclmol., 20(10): 1030-1034.
    85. Hanin M, Paszkowsld J(2003) Plant genome modification by homologous recombination. Curr. Opin. Plant Biol., 6(2): 157-162.
    86. Britt AB, May GD(2003) Re-engineering plant gene targeting. Trends Plcmt Sci., 8(2): 90-95.
    87. Maliga P(2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol., 21(1): 20-28.
    88. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB,.(1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science, 240(4858): 1534-1538.
    89. Svab Z, Hajdnkiewicz P, Maliga P(1990) Stable transformation of plastids in higher plants. Proc. Natl Acad. Sci USA, 87(21): 8526-8530.
    90. Svab Z, Maliga P(1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad Sci. USA, 90(3): 913-917.
    91. Golds T, Maliga P, Koop H(1993) Stable plastid transformation in PEG-treated protoplasts of Nicotiana tabacum. Bio/Technol., 11: 95-97.
    92. Sikdar SR, Serino G, Chaudhnri S, Maliga P(1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep., 18(1-2): 20-24.
    93. Siflorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS(1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J, 19(2): 209-216.
    94. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R(2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol., 19(9): 870-875.
    95. Khan MS, Maliga P(1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol., 17(9): 910-915.
    96. Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM(2003) Chloroplast transformation in oilseed rope. Transgenic Res., 12(1): 111-114.
    97. Skarjinskaia M, Svab Z, Maliga P(2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res., 12(1): 115-122.
    98. Kota M, Daniell H, Varma S, Garczynski SF, GouLd F, Moar WJ(1999) Overexpression of the Bacillus thuringiensis(Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad Sci. USA, 96(5): 1840-1845.
    99. DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H(2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol., 127(3): 852-862.
    100. Daniell H, Datta R, Varma S, Gray S, Lee SB(1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol., 16(4): 345-348.
    101. Iamtham S, Day A(2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol., 18(11): 1172-1176.
    102. Lutz KA, Knapp JE, Maliga P(2001)Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol, 125(4): 1585-1590.
    103. Ye GN, Hajduldewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM(2001) Plastid-expressed 5-enolpyruylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J., 25(3): 261-270.
    104. Guda C, Lee SB, Daniell H(2000) Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep., 19(3): 257-262.
    105. Daniell H, Lee SB, Panehal T, Wiebe PO(2001) Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol., 311(5): 1001-1009.
    106. Daniell H, Khan MS, Allison L(2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci., 7(2): 84-91.
    107. Staub aM, Garcia B, Graves J, Hajduldewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA(2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechmol., 18(3): 333-338.
    108. Staub JM, Maliga P(1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell, 4(1): 39-45.
    109. De Cosa B, Moat W, Lee SB, Miller M, Daniell H(2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol., 19(1): 71-74.
    110. McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P(1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technol., 13(4): 362-365.
    111. Staub JM, Mafiga P(1995) Expression of a chimeric uidA gene indicates that polycistronic mRNAs are efficiently translated in tobacco plastids. Plant J, 7(5): 845-848.
    112. van Bel AJ, Hibberd J, Prufer D, Knoblauch M(2001) Novel approach in plastid transformation. Curr. Opin. Biotechnol., 12(2): 144-149.
    113. Dougherty WG, Parks TD(1995) Transgenes and gene suppression: telling us something new? Curr. Opin. Cell Biol., 7(3): 399-405.
    114. Matzke MA, Matzke A(1995) How and why do plants inactivate homologous(tram)genes? Plant Physiol., 107(3): 679-685.
    115. Kumpatla SP, Chandrasekharan MB, lyer LM, Li G, Hall TC(1998) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci., 3(3): 97-104.
    116. Kooter JM, Matzke MA, Meyer P(1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci., 4(9): 340-347.
    117. Iyer LN, Kumpatla SP, Chandrasekharan MB, Hall TC(2000) Transgene silencing in monocots. Plant Mol. Biol., 43(2-3): 323-346.
    118. Matzke MA, Mette MF, Matzke AJ(2000) Transgene silencing by the host genome defense: implication for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol., 43(2-3): 401-415.
    119. Matzke MA, Aufsatz W, Kanno T, Metre MF, Matzke AJ(2002) Homology-dependent gene silencing and host defense in plants. Adv. Genet., 46: 235-275.
    120. Matzke MA(2002) Gene silencing mechanisms illuminate new pathways of disease resistance. Transgenic Res., 11(6): 637-638.
    121. Hamilton CM(1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene, 200(1-2): 107-116.
    122. Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D(1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl. Acad. Sci USA, 96(11): 6535-6540.
    123. Shibata D, Liu YG(2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci., 5(8): 354-357.
    124. Frary A, Hamilton CM(2001) Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res., 10(2): 121-132.
    125. Liu YG, Nagaki K, Fujita M, Kawaura K, Uozumi M, Ogihara Y(2000) Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector. Plant J., 23(5): 687-695.
    126. Liu YG, Liu H, Chen L, Qiu W, Zhang Q, Wu H, Yang C, Su J, Wang Z, Tian D, Mei M (2002) Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning. Gene, 282(1-2): 247-255.
    127. Sawa S, Ito T, Shimura Y, Okada K (1999) FILAMENTOUS FLOWER controls the formation and development of Arabidopsis inflorescences and floral meristems. Plant Cell, 11(1): 69-86.
    128. Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E, Morita EH, Okada K (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev., 13(9): 1079-1088.
    129. Kubo M, Kakimoto T (2000) The cytokinin-hypersensitive genes of Arabidopsis negatively regulate the cytokinin-signaling pathway for cell division and chloroplast development. Plant J., 23(3): 385-394.
    130. Choi S, Begum D, Koshinsky H, Ow DW, Wing RA (2000) A new approach for the identification and cloning of genes: the pBACwich system using Crellox site-specific recombination. Nucleic Acids Res., 28(7): E19.
    131. Willard HF (1998) Centromeres: the missing link in the development of human artificial chromosomes, Curr. Opin. Genet. Dev., 8(2): 219-225.
    132. Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H (1998) Construction of YAC-based mammalian artificial chromosomes. Nat. Biotechnol, 16(5): 431-439.
    133. Ye X, Al Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287(5451): 303-305.
    134. Daniell H, Dhingra A (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr. Opin. Biotechnol, 13(2): 136-141.
    135. Daniell H, Dhingra A, Fernandez San-Millan A (2001) Chloroplast transgenic approach for the production of antibodies, biopharmaceuticals and edible vaccines. In Proceedings of the 12th International Congress on Photosynthesis. Collingwood, Australia: CSIRO Publishing, Brisbane, Australia, S40-04: 1-6.
    136. Daniell H, Wycoff K (2001) Production of antibodies in transgenic plastids. Patent Application No. WO 01/64929.
    137. Zuo J, Niu QW, Ikeda Y, Chua NH(2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr: Opin. Bioteclmol., 13(2): 173-180.
    138. Scutt CP, Zubko E, Meyer P(2002) Techniques for the removal of marker genes from transgenic plants. Biochimie, 84(11): 1119-1126.
    139. Dale EC, Ow DW(1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad Sci. USA, 88(23): 10558-10562.
    140. Srivastava V, Anderson OD, Ow DW(1999) Single-copy transgenie wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. USM, 96(20): 11117-11121.
    141. Sugita K, Kasahara T, Matsunaga E, Ebinuma H(2000) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J., 22(5): 461-469.
    142. Zuo J, Niu QW, Moiler SG, Chua NH(2001) Chemical-regulated, site-specifie DNA excision in transgenic plants. Nat. Biotechnol., 19(2): 157-161.
    143. Hohn B, Levy AA, Puchta H(2001) Elimination of selection markers from transgenic plants. Curr. Opin. Biotechnol., 12(2): 139-143.
    144. Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H(2002) Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J., 30(1): 115-122.
    145. Hare PD, Chua NH(2002) Excision of selectable marker genes from transgenic plants. Nat. Biotechnol., 20(6): 575-580.
    146. De Block M, Debrouwer D(1991) Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium infection are mainly integrated at the same locus. Theor Appl. Genet., 82: 257-263.
    147. Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T(1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J., 10(1): 165-174.
    148. McCormac AC, Fowler MR, Chen DF, Elliott MC(2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res., 10(2): 143-155.
    149. Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY(2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res., 11(4): 381-396.
    150. Yoder J, Goldsbrough A(1994) Tranformation systems for generating marker-flee transgenic plants. Bio/Technol., 12: 263-267.
    151. Ebinuma H, Sugita K, Matsunaga E, Yamakado M(1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl, Acad Sci. USA, 94(6): 2117-2121.
    152. Zubko E, Scutt C, Meyer P(2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat. Biotechnol., 18(4): 442-445.
    153. Kunkel T, Niu QW, Chan YS, Chua NH(1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat. Biotechnol., 17(9): 916-919.
    154. De Vetten N, Wolters AM, Raemakers K, Van DM, I, Ter Stege R, Heeres E, Heeres P, Vitsser R(2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat. Biotechnol., 21(4): 439-442.
    155. Rathinasabapathi B(2000) Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Ann. Bot., 86(4): 709-716.
    156. de Vries GE(2000) Climate changes leads to unstable agriculture. Trends Plant Sci., 5(9): 367.
    157. Rontein D, Basset G, Hanson AD(2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab. Eng., 4(1): 49-56.
    158. Holmberg N, Bulow L(1998) Improving stress tolerance in plants by gene transfer. Trends Plant Sci., 3(2): 61-66.
    159. Zhang J, Klueva NY, Wang Z, Wu R, David HY-H Nguyen HT(2000) Genetic engineering for abiotic stress resistance in crop plants. In Vitro Cell. Dev. Biol. -Plant, 36(2): 108-114.
    160. Le Rudulier D, Strum AR, Dandekar AM, Smith LT, Valentaine RC(1984) Molecular biology of osmoregulation. Science, 224: 1064-1068.
    161. Sakamoto A, Murata N(2001) The use of bacterial choline oxddase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol., 125(1): 180-188.
    162. Yancey PH, Clark ME, Hand SC, Bowlns RD, Somero GN(1982) Living with water stress: Evolution of osmolyte systems. Science, 217: 1214-1222.
    163. Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BS(1968) Effects of salts on the halophilic alga Dunaliella viridis. J Bacteriol., 95: 1461-1468.
    164. Yancey PH(1994) Compatible and counteracting solutes. In Strange SK(ed.), Cellular and Molecular Physiology of Cell Volume Regulation. CRC Press, 81-109.
    165. Rhodes D, Hanson AD(1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44: 357-384.
    166. McNeil SD, Nuccio ML, Hanson AD(1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol., 120(4): 945-949.
    167. Chen THH, Murata N(2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr. Opin. Plant Biol., 5(3): 250-257.
    168. Grumet R, Hanson AD(1986) Genetic evidence for an osmoregulatory function of glycinebetaine accumulation in barley. Aust. J. Plant Physiol., 18: 317-327.
    169. Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly R J, Rhodes D (1995) Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol., 107(2): 631-638.
    170. Chen WP, Li PH, Chen THH(2000) Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ., 23: 609-618.
    171. Gotham J(1995) Betaines in higher plants-biosynthesis and role in stress metabolism. In Wallsgroves RM(ed.), Amino Acids and Their Derivatives in Higher Plants. Cambridge University Press, 171-203.
    172. Papageorgiou GC, Murata N(1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem Ⅱ complex. Photosynth Res., 44: 243-252.
    173. Sakamoto A, Murata N(2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J. Exp. Bot., 51(342): 81-88.
    174. Sakamoto A, Murata N(2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ., 25(2): 163-171.
    175. Burnet M, Lafontaine PJ, Hanson AD(1995) Assay, purification, and partial characterization of choline monooxygenase from spinach. Plant Physiol., 108(2): 581-588.
    176. Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD(1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: Prosthetic group characterization and cDNA cloning. Proc. Natl. Acad. Sci. USA, 94(7): 3454-3458.
    177. Weretilnyk EA, Hanson AD(1988) Betaine aldehyde dehydrogenase polymorphism in spinach: genetic and biochemical characterization. Biochem. Genet., 26(1-2): 143-151.
    178. Weigei P, Weretilnyk EA, Hanson AD(1986) Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol., 82: 753-759.
    179. Weretilnyk EA, Hanson AD(1990) Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc. Natl. Acad Sci. USA, 87(7): 2745-2749.
    180. MeCue KF, Hanson AD(1992) Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol. Biol., 18(1): 1-11.
    181. Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB(1996) Betaine aldehyde dehydrogenase in sorghum. Plant Physiol., 110(4): 1301-1308.
    182. Nakamura T, Yokota S, Muramoto Y, Tsutsui K, Oguri Y, Fukui K, Takabe T(1997) Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes. Plant J., 11(5): 1115-1120.
    183. Ishitani M, Nakamura T, Han SY, Takabe T(1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol. Biol., 27(2): 307-315.
    184. Nakamura T, Nomura M, Mori H, Jagendorf AT, Ueda A, Takabe T(2001) An isozyme of betaine aldehyde dehydrogenase in barley. Plant Cell Physiol., 42(10): 1088-1092.
    185. Holmstrom KO, Welin B, Mandal A, Kristiansdottir I, Teeri TH, Lamark T, Strom AR, Palva ET(1994) Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants. PlantJ., 6(5): 749-758.
    186. Rathinasabapathi B, McCue KF, Gage DA, Hanson AD(1994) Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 193(2): 155-162.
    187. Landfald B, Strom AR(1986) Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol., 165(3): 849-855.
    188. Andresen PA, Kaasen I, Styrvold OB, Boulnois G, Strom AR(1988) Molecular cloning, physical mapping and expression of the bet genes governing the osmoregulatory choline-glycine betaine pathway of Escherichia coli. J. Gen. Microbiol., 134(Pt 6): 1737-1746.
    189. Lamark T, Kaasen I, Eshoo MW, Falkenberg P, McDougall J, Strom AR(1991) DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol. Microbiol., 5(5): 1049-1064.
    190. Iikuta S, Imamura S, Misaki H, Horiuti Y(1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J. Biochem(Tokyo), 82(6): 1741-1749.
    191. Nyyssola A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T(2000) Extreme haiophiles synthesize betaine from glycine by methylation. J Biol. Chem., 275(29): 22196-22201.
    192. Deshnium P, Los DA, Hayashi H, Mustardy L, Murata N(1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol. Biol., 29(5): 897-907.
    193. Deshnium P, Combos Z, Nishiyama Y, Murata N(1997) The action in vivo of glycine betaine in enhancement of tolerance of Synechococcus sp. strain PCC 7942 to low temperature. J Bacteriol., 179(2): 339-344.
    194. Nomura M, Ishitani M, Takabe T, Rai AK, Takabe T(1995) Synechococcus sp. PCC7942 transformed with Escherichia coli bet genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiol., 107(3): 703-708.
    195. Lilius G, Holmberg N, Bulow L(1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Bio/Technol., 14: 177-180.
    196. Hayashi H, Alias Mustardy L Deshaium P, Ida M, Murata N(1997) Transformation of Arabidopsis thaliana with the coda gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J., 12(1): 133-142.
    197. Sakamoto A, Alia, Murata N, Murata A(1998) Metabolic engineering of rice leading to biosynthesis of giycinebetaine and tolerance to salt and cold. Plant Mol. Biol., 38(6): 1011-1019.
    198. Mudd SH, Datko AH(1989) Synthesis of methylated ethanolamine moieties. Regulation by choline in Lemna. Plant Physiol., 90: 296-305.
    199. Weretilnyk EA, Smith DD, Wilch GA, Summers PS(1995) Enzymes of choline synthesis in spinach(Response of phospho-base N-methyltransferase activities to light and salinity). Plant Physiol., 109(3): 1085-1091.
    200. Takabe T, Hayashi Y, Tanaka A, Takabe T, Kishitani S(1998) Evaluation of glycinebetaine accumulation for stress tolerance in transgenic rice plants. In Proceedings of International Workshop on Breeding and Biotechnology for Environmental Stress in Rice. Hokkaido National Agricultural Experiment Station and Japan International Science and Technology Exchange Center, Sapporo, Japan, 63-68.
    201. Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindi JK, Keller WA, Selvaraj G(2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol., 122(3): 747-756.
    202. Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK(2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet., 106(1): 51-57.
    203. Holmstrom KO, Somersalo S, Mandal A, Palva TE, Welin B(2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp. Bot., 51(343): 177-185.
    204. Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD(1998) The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J, 16(4): 487-496.
    205. Shen YG, Du BX, Zhang WK, Zhang JS, Chen SY(2002) AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor. Appl. Genet., 105(6-7): 815-821.
    206. Yilmaz JL, Bulow L(2002) Enhanced stress tolerance in Escherichia coli and Nicotiana tabacum expressing a betaine aldehyde dehydrogenase/choline dehydrogenase fusion protein. Biotechnol. Prog., 18(6): 1176-1182.
    207. Prasad KV, Sharmila P, Pardha SP(2000) Enhanced tolerance of transgenic Brassica juncea to choline confirms successful expression of the bacterial coda gene. Plant Sci., 159(2): 233-242.
    208. Gao M, Sakamoto A, Miura K, Murata N, Sugiura A, Tao R(2000) Transformation of Japanese persimmon(Diospyros kaki Thunb.) with a bacterial gene for choline oxidase. Mol. Breed, 6: 501-510.
    209. McNeil SD, Nuccio ML, Ziemak MJ, Hanson AD(2001) Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc. Natl. Acad Sci. USA, 98(17): 10001-10005.
    210. Rhodes D, Pich PJ, Brunk DG, Ju GC, Rhodes JC, Pauly MH, Hansen LA(1989) Development of two isogenic sweetcom hybrids differing for glycinebetaine content. Plant Physiol., 91: 1112-1121.
    211. Harinasut P, Tsutsui K, Takabe T, Nomura M, Takabe T, Kishitani S(1996) Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedlings. Biosci. Biotechnol. Biochem, 17: 366-368.
    212. Hayashi H, Alia, Sakamoto A, Nonaka H, Chen THH(1998) Enhanced germination under high-salt conditions of seeds oftransgenic Arabidopsis with a bacterial gene(codA) for choline oxidase. J. Plant Res., 111: 357-362.
    213. Kishitani S, Watanabe K, Yasuda S, Arakawa K, Takabe T(1994) Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ., 17: 89-95.
    214. Allard F, Houde M, Krol M, Ivanov A, Huner NPA, Sarhan F(1998) Betaine improves freezing tolerance in wheat. Plant Cell Physiol., 39: 1194-1202.
    215. Sakamoto A, Vaiverde R, Alia, Chen THH, Murata N(2000) Transformation of Arabidopsis with the coda gene for choline oxidase enhances freezing tolerance of plants. Plant J., 22: 449-453.
    216. Alia, Hayashi H, Chen THH, Murata N(1998) Transformation with a gene for choline oxidase enhances the cold tolerance of Arabidopsis during germination and early growth. Plant Cell Environ., 21(2): 232-239.
    217. Alia, Hayashi H, Sakamoto A, Murata N(1998) Enhancemem of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J, 16(2): 155-161.
    218. Alia, Kondo Y, Sakamoto A, Nonaka H, Hayashi H, Saradhi PP, Chen TH, Murata N(1999) Enhanced tolerance to light Stress of transgenic Arabidopsis plants that express the coda gene for a bacterial choline oxidase. Plant Mol. Biol., 40(2): 279-288.
    219. van Wordragen MF, Dons HJM(1992) Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol. Biol. Rep., 10(1): 12-36.
    220. Bundock P, Dulk-Ras A, Beijersbergen A, Hooykaas PJ(1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J., 14(13): 3206-3214.
    221. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG(1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol., 16(9): 839-842.
    222. Bundock P, Mroczek K, Winlder AA, Steensma HY, Hooykaas PJ(1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet., 261(1): 115-121.
    223. Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN(2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J. Infect. Dis., 181(6): 2106-2110.
    224. Kunik T, Tzfira T, Kapuinik Y, Gafni Y, Dingwall C, Citovsky V(2001) Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA, 98(4): 1871-1876.
    225. Gelvin SB(2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol., 21(3): 95-98.
    226. Miedema P(1982) The effects of low temperature on Zea mays. Adv. Agron., 35: 93-128.
    227.李世润,张举仁,陈惠民(1990)玉米胚性愈伤组织诱导和植株再生的研究.山东大学学报(自然科学版),25(1):116-124.
    228.萨姆布鲁克J,拉塞尔DW著,黄培堂等译(2002)分子克隆实验指南(第三版).北京:科学 出版社.
    229. Hiei Y, Komari T, Kubo T(1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol., 35(1-2): 205-218.
    230. Hansen G(2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol. Plant-Microbe Interact., 13(6): 649-657.
    231. Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hinchee M(1999)Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J, 19(3): 249-257.
    232. D'Halinin K, Gobel E(2000) Process for transforming monocotyledonous plants. Patent No. US 6 074 877.
    233. Joersbo M, Brunstedt J(1990) Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep., 9: 207-210.
    234. Zhang L, Cheng L, Xu N, Zhao N, Li C, Yuan J, Jia S(1991) Efficient transformation of tobacco by ultrasonication. Bio/Technol., 9: 996-997.
    235. Joersbo M, Brunstedt J(1992) Sonication: A new method for gene transfer to plants. Physiol. Plant., 85: 230-234.
    236. Zhang H, Wang GY, Xie Y J, Dai JR, Xu N, Zhao NM, Li TY, Tian YC, Qiao LY, Mang KQ(1997) Transformation of maize embryogenic calli mediated by ultrasonication and regeneration of fertile transgenic plants. Sci. China(Ser. C), 40: 316-322.
    237. Trick H, Finer J(1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res., 6: 329-336.
    238. Finer JJ, Trick HN(1997) Method for transforming plant tissue by sonication. Patent No. US 5 693 512.
    239. Santarem ER, Trick HN, Essig JS, Finer JJ(1998) Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep., 17: 752-759.
    240. Tztira T, Citovsky V(2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol., 12(3): 121-129.
    241. Gelvin SB(2003) Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol. Mol. Biol. Rev., 67(1): 16-37.
    242. Kahi G(1982) Molecular biology of wound healing: the conditioning phenomenon. In Kahl G, Schell J(ed.), Molecular Biology of Plant Tumors. Academic Press, 211-267.
    243. Binns AN, Thomashow MF(1988) Cell biology of Agrobacterium infection and transformation of plants. Ann. Rev. Microbiol., 42: 575-606.
    244. Potrykus I(1090) Gene transfer to plants: assessment and perspectives. Physiol. Plant. 79: 125-134.
    245. Potrykus I(1991) Gene transfer to plants: Assessment of published approches and results. Annu. Rev. Plant Ptysiol. Plant Mol. Biol., 42: 205-225.
    246. Aldemita RR, Hodges TK(1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta, 199: 612-617.
    247. Dong J, Teng W, Buchholz WG, Hall TC(1996) Agrobacterium-mediated transformation of Javanica rice. Mol. Breed, 2: 267-276.
    248. Rashid H, Yokoi S, Toriyama K, Hinata K(1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep., 15(10): 727-730.
    249. Liu CN, Li XQ, Gelvin SB(1992) Multiple copies of vir G enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant Mol. Biol., 20(6): 1071-1087.
    250. Li XQ, Liu CN, Ritchie SW, Peng JY, Gelvin SB, Hodges TK(1992) Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Mol. Biol., 20(6): 1037-1048.
    251. Park SH, Pinson SR, Smith RH(1996) T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol. Biol., 32(6): 1135-1148.
    252. Jones GP(1986) Estimates of solutes accumulating in plants by ~1H nuclear magnetic resonance spectroscopy. Aust. J. Plant Physiol., 13: 649-658.
    253. Xing W, Rajashekar CB(2001) Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Envir. Exp. Bot., 46: 21-28.
    254. Gibon Y, Bessieres MA, Larher F(1997) Is glycine betaine a non-compatible solute in higher plants that do not accumulate it? Plant Cell Environ., 20: 329-340.
    255. Premachandra GS, Ogata S, Saneoka H(1989) Evaluation of polyethylene glycol test for measurement of cell membrane stability in maize. Soil Sci. Plant Nutr., 35: 565-573.
    256. Schriber U(1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorometer. Photosynth Res., 9: 261-270.
    257. Fracheboud Y, Haldimann P, Leipner J, Stamp P(1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize(Zea mays L.). J Exp. Bot., 50(338): 1533-1540.
    258. Yemm EW, Willis AJ(1954) The estimation of carbohydrates in plant extracts by the anthrone. Biochem. J., 57: 508-514.
    259.赵世杰,许长成,邹琦,孟庆伟(1994)植物组织中丙二醛测定方法的改进.植物生理学通讯,30(3):207-210.
    260. Beyer WF, Fridvich I (1987) Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem., 161: 559-566.
    261. Giannopolitis CN, Ries SK(1977) Superoxide Dismutase: Ⅰ. Occurrence in higher plants. Plant Physiol., 59: 309-314.
    262. Rhodes D, Rich PJ, Myers AC, Reuter CC, Jamieson GC(1987) Determination of betaines by fast atom bombardment mass spectrometry: identification of glycine betaine deficiency genotypes of Zea mays. Plant Physiol., 84: 781-788.
    263. Rhodes D, Rich PJ(1988) Preliminary genetic studies of the phenotype of betaine deficiency in Zea mays L. Plant Physiol., 88: 102-108.
    264. Brunk DG, Rich PJ, Rhodes D(1989) Genotype variation for glycinebetaine among public inbreds of maize. Plant Physiol., 91: 1112-1125.
    265. Yang WJ, Nadolska-Orczyk A, Wood KV, Hahn DT, Rich PJ, Wood AJ, Saneoka H, Premachandra GS, Bonham CC, Rhodes JC(1995) Near-isogenic lines of maize differing for glycinebetaine. Plant Physiol., 107(2): 621-630.
    266. McConnell RL, Gardner CO(1979) Selection for cold germination in two corn populations. Crop Sci., 19: 765-768.
    267. Mock JJ, McNeill MJ (1979) Cold tolerance of maize inbred lines adapted to various latitudes in North America. Crop Sci., 19: 239-242.
    268. Aidun VL, Migus WN, Hamilton RI (1991) Use of inbred seedling cold tolerance to predict hybrid cold tolerance in maize (Zea mays L.). Can. J. Plant Sci., 71: 663-667.
    269. Miedema P, Sinnaeve J (1980) Photosynthesis and respiration of maize seedlings at suboptimal temperatures. J. Exp. Bot., 31: 813-819.
    270. Lee EA, Staebler MA, Tollenaar M (2002) Genetic variation in physiological discriminators for cold tolerance-Early autotrophic phase of maize development. Crop Sci., 42(6): 1919-1929.
    271. Hetherington SE, Smillie RM, Hardacre AK, Eagles HA (1983) Using chlorophyll fluorescence in vivo to measure the chilling tolerances of different populations of maize. Aust. J Plant Physiol., 10: 247-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700